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Outline and Papers

Outline
• Model problem, elliptic linear pde

• Variational multiscale method, symmetric version

• Derivation of proposed method, examples

• A posteriori error estimation

• Adaptivity

• Application to oil reservoir problem

• Convection dominated problem

• Future work

Papers
• M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A

Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME
2007

• M.G. Larson and A. Målqvist, A Mixed Adaptive Variational Multiscale Method with
Applications in Oil Reservoir Simulation M3AS 2009 (accepted)
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Model Problem

Poisson equation: Find u such that

−∇ · a∇u = f in Ω,

a∂nu = 0 on ∂Ω,

where a(x) ≥ a0 > 0 bounded, f ∈ L2(Ω) with
∫

Ω f dx = 0, and
Ω polygonal domain.
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Model problem

Weak form (standard): Find u ∈ V such that

a(u, v) = (a∇u,∇v) = (f, v) = l(v) for all v ∈ V ,

where (v,w) =
∫

Ω vw dx.

We can also formulate the problem on mixed form: let
−∇ · u2 = f and u2 = a∇u1 to get,

Weak form (mixed): Find {u1, u2} ∈ V such that

a(u, v) =
(1

a
u2, v2

)

+ (u1,∇ · v2) − (∇ · u2, v1) = (f, v1) = l(v),

for all {v1, v2} ∈ V .
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Variational Multiscale Method: Hughes et. al. 95, 98

We split the space Vc ⊕ Vf = V
(

= H1(Ω)/R
)
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• Vc is a finite dimensional approximation of V . (finite element
space)

• Vf can be chosen in different ways
◦ Hierarchical basis
◦ L2(Ω)-orthogonal to Vc

◦ Wavelet modified hierarchical basis
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Symmetric Variational Multiscale Method

Starting from the model problem: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V

and setting

u = uc + uf v = vc + vf

we get: find uc + uf ∈ Vc ⊕ Vf such that

a(uc + uf , vc + vf ) = l(vc + vf) for all vc + vf ∈ Vc ⊕ Vf

Note that uf ∈ Vf satisfies the equation

a(uf , vf ) = l(vf ) − a(uc, vf ) for all vf ∈ Vf
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Fine Scale Equations

Given the fine scale equation

a(uf , vf ) = l(vf ) − a(uc, vf ) for all vf ∈ Vf

we let uf = uf,l + uf,c ∈ Vf with

a(uf,l, vf ) = l(vf ) for all vf ∈ Vf

a(uf,c, vf ) = −a(uc, vf ) for all vf ∈ Vf

Let T : Vc → Vf denote the solution operator uf,c = T uc. We get

u = uc + T uc + uf,l

a(uc + T uc + uf,l, vc + vf ) = l(vc + vf )

for all vc ∈ Vc and vf ∈ Vf .
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Coarse Scale Equations

Since uf,l is directly determined we get the following problem for
uc: find uc ∈ Vc such that

a(uc + T uc, vc + T vc) = l(vc + T vc) − a(uf,l, vc + T vc)

for all vc ∈ Vc.

• Here we chose vf = T vc to get a symmetric formulation

• Note that a((I + T )vc, vf ) = 0 and l(vf ) − a(uf,l, vf ) = 0

i.e. I + T decouples the problem. Any choice of vf ∈ Vf is
ok.

• In standard VMS vf = 0 in this step and thus when
approximating the local effects using numerical or analytical
tools the resulting method usually gives non-symmetric
matrix.
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Approximation of Fine Scale Solutions

• Let T̃ be a computable approximation of T
• Let Uf,l be a computable approximation of uf,l

We get the method: find Uc ∈ Vc such that

a(Uc + T̃ Uc, vc + T̃ vc) = l(vc + T̃ vc) − a(Uf,l, vc + T̃ vc)

for all vc ∈ Vc. On matrix form this leads to,

KUc = b

Given Uc, Uf,l, and T̃ , Uf can be computed.

Compare with MsFEM (Hou et. al. 97) where basis functions are
modified using local computations.
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Construction of T̃
Recall that uc =

∑

i uc,iNc,i with {Nc,i} a basis in Vc and let

a(T Nc,i, vf ) = −a(Nc,i, vf ) for all vf ∈ Vf

By linearity

T uc =
∑

i

uc,iT Nc,i

and thus we are led to computing T Nc,i for each coarse
basis function Nc,i.
We define T̃ by solving these problems approximately by

• Restricting to a localized patch problem supp(Nc,i) ⊂ ωi

• Discretizing using a fine subgrid on ωi
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Refinement and Layers
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We let H be coarse scale mesh size and h be fine scale mesh
size. Further we let L denote the number of layers of coarse
elements in the patch. Typically homogeneous Dirichlet
boundary condition are used.
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Construction of Uf,l

Recall that uf,l ∈ Vf solves

a(uf,l, vf ) = l(vf) for all vf ∈ Vf

Using a partition of unity ϕi we can split the right hand side
as follows l(vf) =

∑

i l(ϕivf ) to get,

uf,l =
∑

i

uf,l,i

a(uf,l,i, vf ) = l(ϕivf )

Again we find an approximation by restricting to patches
and discretizing the subgrid.
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Simple Observation About Decay in Vf

Consider,
−∆u = ϕi in Ω, u = 0 on ∂Ω,

where ϕi has local support in center of Ω. The weak form reads:
find u ∈ W s.t., (∇u,∇v) = (ϕi, v) for all v ∈ W.
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Solution on 3 layers
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Solution using L2 orthogonality on 3 layers

To the left W = Vc ⊕ Vf , middle W = Vf using hierarchical split,
and right W = Vf using L2-orthogonal split.
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Simple Observation About Decay in Vf

Decay of flux integrated over the boundary.
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We see exponential decay with respect distance measured in
nof coarse elements. This effect gives rapid convergence as the
patch size increases.
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Summary of the Method so Far

• Fine scale equations are divided into a uc dependent part
and a uc independent part

• The equations are decoupled
• We note rapid decay which allows us to restrict local

solutions to patches
• We use local problems to modify coarse scale equation
• Fine scale features can be reconstructed given the coarse

scale solution

We will show a posteriori error estimates and adaptive strategies
later in the talk.
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Parallel Structure

One local problem for each coarse dof, minimal communication.

Data a, f, Ω

K1, b1 K2, b2 K3, b3 K4, b4 . . .

(
∑

k Kk
)

Uc =
∑

k bk

U2

f

Data transfer

Local solves

Global solve

Postprocessing
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Application to a Mixed Problem

Poisson equation on mixed form:











1
aσ −∇u = 0 in Ω

−∇ · σ = f in Ω

n · σ = 0 on Γ

where the permeability a is constant, random, or taken from the
SPE data set (upperness in log-scale),
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Splitting Based on RT-elements

We use lowest order RT basis functions together with piecewise
constants.

• Let πc is the RT-interpolant onto Vc and Pc be the
L2-projection onto Wc

• We define σ = πcσ + (I − πc)σ and thus
σf = (I − πc)σ ∈ Vf σc = πcσ ∈ Vc.

• Further we define
u = Pcuc + (1 − Pc)u = uc + uf ∈ Wc ⊕Wf .

• Thus we are using an L2-orthogonal splitting in the scalar
variable.

Hierarchical split for lagrangian elements leads to nodal
exactness in the coarse solution while here we get exactness of
average values on coarse elements.
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Some Terms Disappear

Find σc ∈ Vc, σf ∈ Vf , uc ∈ Wc, and uf ∈ Wf such that,



















( 1
a(σc + σf ),vc + vf ) + (uc + uf ,∇ · (vc + vf )) = 0

−(∇ · (σc + σf ), wc + wf ) = (f,wc + wf )

( 1
aσf ,vf ) + (uf ,∇ · vf ) = −( 1

aσc,vf ) − (uc,∇ · vf )

−(∇ · σf , wf ) = (f,wf ) + (∇ · σc, wf )

for all vc ∈ Vc, vf ∈ Vf , wc ∈ Wc, and wf ∈ Wf .

Since for coarse elements K

(wf ,∇ · vc) =
∑

K

∇ · vc

∫

K
wf dx = 0,

(wc,∇ · vf ) =
∑

K

wc

∫

K
∇ · vf dx =

∑

K

wc

∫

∂K
n · vf ds = 0.
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Approximate Fine Scales

{

( 1
aσf ,vf ) + (uf ,∇ · vf ) = −( 1

aσc,vf )

−(∇ · σf , wf ) = (f,wf )

• We apply the abstract framework
• Divide the fine scale problem into contributions from the

coarse scale part σc and right hand side f

• Let σc =
∑

i σc,iφi where φi are the Raviart-Thomas basis
functions. Solve the local problem driven by the basis
functions (one problem for each basis function)

• Localize by restricting the problem to a patch and using
homogeneous Neumann conditions

• Discretize using a suitable subgrid
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Example of Local Solutions ξi = T φi

{

( 1
aξi,vf ) + (βi,∇ · vf ) = −( 1

aφi,vf )

−(∇ · ξi, wf ) = 0.
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We use 3 layer patches and plot absolute value of the flux |ξi|.
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Example of Convergence

• Reference mesh has 32 × 32 elements
• The coarse mesh has 8 × 8 elements.
• We let f = 1 lower left corner and f = −1 in upper right,

otherwise f = 0.
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Computational Multiscale Methods, Oberwolfach, Germany, 17 June 2009 – p. 22/35



Adaptive VMS

The Adaptive Variational Multiscale Method (AVMS) builds on
the following ingredients:

• Error estimation framework
• Adaptive strategy for tuning of critical discretization

parameters

The method is designed so that:

error → 0 when h → 0 and L → ∞

• A priori error estimates in progress.
• To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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A Posteriori Error Estimate (standard version, Dirichlet)

The following energy norm bound holds

‖u − U‖2
a = ‖

√
a∇(u − U)‖2 ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

where

R2
ωi

= ‖h(fφi + ∇ · (a∇(Uc,iφi + Uf,i)))‖2
ωi

+
∑

K∈ωi

‖h1/2[a∂nUf,i]‖2
∂K\∂ωi

R2
∂ωi

= ‖h1/2a∂nUf,i‖2
∂ωi\Γ

,

where Uf,i = Uc,iT̃ φi + Uf,l,i.

Similar linear functional estimates have also been derived using
a dual problem.
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A Posteriori Error Estimate (mixed version, Neumann)

The following energy norm bound holds

‖σ − Σ‖2
a = ‖ 1√

a
(σ − Σ)‖2 ≤ Ca

∑

i

(

R2
ωi

+R2
∂ωi

)

where

R2
ωi

= ‖1

a
(Σi

cφi + Σf,i) −∇U∗
f,i‖2

ωi
+ ‖h

a
(fψi + ∇ · (Σi

cφi + Σf,i))‖2
ωi

+
∑

K∈ωi

‖h−1/2[U∗
f,i]‖2

∂K

R2
∂ωi

= ‖h−1/2U∗
f,i‖2

∂ωi\Γ

U∗ is a post processed version (Lovadina and Stenberg 06)
of U , Ca ∼ ‖√a‖L∞(ωi).
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Adaptive Strategy

We have the error bound

‖σ − Σ‖2
a ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

1. Let h = H/2 and L = 1 for all i.

2. Compute the solution {U,Σ}.

3. Calculate residuals for each coarse RT basis functions.

4. Mark large entries.

5. For marked entries R2
ωi

let h := h/2.

6. For marked entries R2
∂ωi

let L := L + 1.

7. Return to 1 or stop if estimators are small enough.
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Application in Oil Reservoir Simulation

We seek the water saturation s (oil is 1 − s) that solves the
system of a pressure and a transport equation,

1
aλ(s)σ −∇u = 0 in Ω,

−∇ · σ = q in Ω,

n · σ = 0 on Γ,

ṡ + σ · ∇f(s) = 0,

f(s) referred to as fractional flow function, λ(s) is total mobility,
and q is a source term.

This is a simple model of two phase flow. Note the two way
coupling, λ(s) is one except at the water front.
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Application in Oil Reservoir Simulation

Layer 1 and 50 in the SPE comparative sol. proj. (log scale).

Plot of the sol. (pressure), q = 1 upper right q = −1 lower left.
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Refinements and layers SPE50

We use 55 × 15 coarse elements and a reference mesh with
440 × 120 elements.
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We start the adaptive algorithm with one refinement and one
layer in all local problems. After three iterations in the algorithm
marking 30%.
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Convergence of Adaptive Algorithm

We compare error in energy norm with reference solution.
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• Critical areas are found
• A majority of the patches uses one layer and one

refinement.
• As the water front travels only local problems at the front

need to be recomputed.
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Convection Dominated Problem

−ǫ△u + ∇ · (bu) = f in Ω, u = 0 on ∂Ω,

where ǫ = 0.01, f = 1 lower left corner, b = [bx, bx], bx oscillates
between 0.01 and 1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

Computational Multiscale Methods, Oberwolfach, Germany, 17 June 2009 – p. 31/35



Solutions to Local Problems Uf,i

(ǫ∇Uf,i,∇v)+(∇·(bUf,i), v) = (fφi, v)−(ǫ∇(Uc,iφi),∇v)−(∇·(bUc,iφi), v)

for all v ∈ Vf |ωi
. We use hierarchical split.
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Error in Multiscale Solution

Let H = 1/24, h = H/4 and study relative error
(U − Uref, 1)/(Uref, 1) compared to reference solution.
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We observe a very clear exponential decay. Note that the error
using standard Galerkin on the coarse mesh is very high.
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Summary

The AVMS provides:
• Systematic technique for construction of a computable

approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

• A posteriori error estimation framework (also for goal
functionals)

• Adaptive algorithms for automatic tuning of critical
discretization parameters

• Its applicable to a range of equations (only linear at this
point)

The decay in Vf together with the adaptive strategy makes the
method efficient.
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Future Work

• Scale up numerics, parallel code, 3D. (PhD student)
• A priori error analysis, capture decay.
• More then two scales.
• Use Discontinuous Galerkin with L2 orthogonal split

between the scales.
• Multiscale approach to the coupled transport-pressure

equation. (Time dependent problems Nordbotten 09)
• Tests on more realistic data, compare with other methods.
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