Numerical upscaling of perturbed diffusion problems

Axel Målqvist

Fredrik Hellman and Tim Keil

Workshop on Computational multiscale methods

Oberwolfach, Germany

Chalmers and University of Gothenburg

2019-07-29

Målqvist (University of Gothenburg)

2019-07-29 1/30

Heterogeneous materials

We consider problems with changing or perturbed diffusion.

▷ time dependency

defects

local deformation

Propagating front in a porous material, random defects in a composite, and large deformation in a network model.

Two issues: rapidly varying and perturbed data.

Multiscale approach

Main objective

- Develop an algorithm for local recomputation of a reference multiscale basis.
- Derive corresponding error indicators.
- Take advantage of the exponential decay of the basis.

3 d 🕹 🕹

Motivation and model problem

- Multiscale approach
- Perturbed diffusion
- Numerical examples

Final comments

Elliptic model problem

The Poisson equation with a reference \hat{A} (left) and perturbed A (right) diffusion that fulfills $0 < \alpha \leq \hat{A}, A \leq \beta$.

On weak form we have: find $\hat{u} \in V := H_0^1(\Omega)$ and $u \in V$ such that

$$\hat{a}(\hat{u}, v) := \int_{\Omega} (\hat{A} \nabla \hat{u}) \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \text{ for all } v \in V,$$
$$a(u, v) := \int_{\Omega} (A \nabla u) \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx \text{ for all } v \in V.$$

Målqvist (University of Gothenburg)

Modelling error

$$\begin{split} \|A^{1/2}\nabla(u-\hat{u})\|_{L^{2}(\Omega)}^{2} &= (A\nabla(u-\hat{u}), \nabla(u-\hat{u})) \\ &= ((\hat{A}-A)\nabla\hat{u}, \nabla(u-\hat{u})) + (f-f, u-\hat{u}) \\ &\leq \alpha^{-1}\|\hat{A}-A\|_{L^{\infty}(\Omega)}\|\hat{A}^{1/2}\nabla\hat{u}\|_{L^{2}(\Omega)}\|A^{1/2}\nabla(u-\hat{u})\|_{L^{2}(\Omega)}. \end{split}$$

We conclude $||A^{1/2}\nabla(u-\hat{u})||_{L^2(\Omega)} \leq C\alpha^{-3/2}||f||_{L^2(\Omega)}||A-\hat{A}||_{L^{\infty}(\Omega)}$.

Here $\hat{A} = 1 - 0.9\chi_{\{0 < x < 0.1\}}$, $A = 1 - 0.9\chi_{\{-0.1 < x < 0\}}$, and $f = \chi_{\{0 < x < 0.1\}}$.

The full problem has to be resolved for each perturbation.

Resolution of fine scales

We let $A(x) = 2 + \sin(2\pi x/\epsilon)$, $\epsilon = 2^{-6}$, and f = 1.

- FEM on mesh *h* ≥ *ϵ* leads to averaging of the diffusion and wrong effective behavior.
- A priori error bound: $|||u - u_h||| := ||A^{1/2}\nabla(u - u_h)||_{L^2(\Omega)} \le Ch||u||_{H^2(\Omega)} \approx Ch\epsilon^{-1}.$

- Multiscale approach
- Perturbed diffusion
- Oumerical examples
- Final comments

Orthogonal decomposition

- (coarse) FE mesh \mathcal{T}_H with parameter H > h
- P1-FE space $V_H := \{v \in V \mid \forall T \in \mathcal{T}_H, v |_T \in P_1(T)\}$
- $\mathfrak{I}_{\mathcal{T}}: V \to V_H$ some interpolation operator

Decomposition

$$V = V_H \oplus V^f$$
 with $V^f := \text{kernel } \mathfrak{I}_{\mathcal{T}} = \{v \in V \mid \mathfrak{I}_{\mathcal{T}} v = 0\}$

• For each $v \in V_H$ define finescale projection $Qv \in V^{f}$ by

$$a(Qv, w) = a(v, w)$$
 for all $w \in V^{f}$

a-Orthogonal Decomposition

$$V = V_H^{ms} \oplus V^{f}$$
 with $V_H^{ms} := (V_H - QV_H)$

Målqvist (University of Gothenburg)

イロト イポト イヨト イヨト

Petrov-Galerkin formulation

Given the space V_{H}^{ms} we define:

Petrov-Galerkin-method: Find $u_{H}^{ms} \in V_{H}^{ms}$: $a(u_{H}^{ms}, v) = (f, v), \forall v \in V_{H}.$

We have that $u = v_H^{ms} + u_f$ for some $v_H^{ms} \in V_H^{ms}$. Since V_H^{ms} and V^f are *a*-orthogonal:

$$|||u - u_{H}^{ms}|||^{2} := a(u - u_{H}^{ms}, u - u_{H}^{ms}) = |||v_{H}^{ms} - u_{H}^{ms}|||^{2} + |||u_{f}|||^{2}$$
$$|||u_{f}|||^{2} = a(u, u_{f}) = (f, u_{f} - \Im_{\mathcal{T}}u_{f}) \le \frac{C_{\Im_{\mathcal{T}}}}{\alpha^{1/2}} ||Hf||_{L^{2}(\Omega)} |||u_{f}|||.$$

Furthermore $|||v_{H}^{ms} - u_{H}^{ms}|||^{2} = a(v_{H}^{ms} - u_{H}^{ms}, \mathfrak{I}_{\mathcal{T}}(v_{H}^{ms} - u_{H}^{ms})) = ...$ = $-a(u_{f}, \mathfrak{I}_{\mathcal{T}}(v_{H}^{ms} - u_{H}^{ms})) \leq C|||u_{f}||||||v_{H}^{ms} - u_{H}^{ms}|||.$

Together we have $|||u - u_H^{ms}||| \le CH ||f||_{L^2(\Omega)}$.

イロト イポト イヨト イヨト 三日

Modified nodal basis

- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in N$)
- $Q\phi_x \in V^{f}$ denotes the finescale correction of $\phi_x \ (x \in \mathcal{N})$

Multiscale FE space

$$V_H^{ms} =$$
span { $\phi_x - Q\phi_x \mid x \in \mathcal{N}$ }

Example

Localization

• Define nodal patches of ℓ -th order $\omega_{T,\ell}$ about $T \in \mathcal{T}_H$

 $\omega_{T,1}$

 $\omega_{T,2}$

• Correctors $Q_{\ell}^{T}\phi_{x} \in V^{f}(\omega_{T,\ell}) := \{v \in V^{f} \mid v|_{\Omega \setminus \omega_{T,\ell}} = 0\}$ solve

$$a(Q_\ell^{\mathsf{T}}\phi_x,w) = \int_{\mathsf{T}} A
abla \phi_x \cdot
abla w \, dx \quad ext{for all } w \in V^{\mathsf{f}}(\omega_{\mathcal{T},\ell})$$

Localized multiscale FE space

$$V_{H,\ell}^{\mathsf{ms}} = \mathsf{span}\{\phi_x - \sum_{T \in \mathcal{T}_H} Q_\ell^T \phi_x \mid x \in \mathcal{N}\}$$

Fully discrete method (PG-LOD)

We discretize the fine scales and let

$$V_{H,\ell}^{\mathrm{ms},h} = \mathrm{span}\{\phi_x - \sum_{T \in \mathcal{T}} Q_{\ell,h}^T \phi_x \mid x \in \mathcal{N}\}$$

Fully discrete multiscale approximation $u_{H,\ell}^{ms,h} \in V_{H,\ell}^{ms,h}$

$$a(u_{H,\ell}^{\mathrm{ms},h},v)=(f,v) \quad ext{ for all } v\in V_H$$

Theorem (A priori error bound)

$$|||u_h - u_{H,\ell}^{\mathsf{ms},h}||| \le C'(H + e^{-c\ell}) = CH,$$

13/30

with C independent of A' and $\ell \approx |\log(H)|$.

Elfverson, Ginting, and Henning, On multiscale methods in PG formulation, Numer. Math., 2015.

Målqvist (University of Gothenburg) Numerical upsclaing of perturbed problems 2019-07-29

Comments on the choice of method

- The multiscale representation can be reused (evolution, iteration, samples).
- 2 Local changes in data leads to local recomputations.
- LOD allows a priori error bounds for non-periodic data.
- The PG formulation reduces communication.
- GFEM 1983-, Babuška-Osborn, Melenk, Lipton, ...
- VMS 1995-, Hughes et.al., Larson-M., Hughes-Sangalli, ...
- MsFEM 1996-, Hou & Wu, Efendiev et.al., ...
- HMM 2003-, Engquist & E, ...
- LOD 2013-, M. & Peterseim, Henning et.al., ...
- Baysian NH, Gamblets, 2010-, Owhadi et.al.

There are many other related methods not listed here.

- Motivation and model problem
- Multiscale approach
- Perturbed diffusion
- Oumerical examples
- Final comments

Local recomputation of basis functions

We assume we have computed $\hat{Q}_{\ell}^{\mathsf{T}}\phi_x \in V^{\mathsf{f}}(\omega_{\mathsf{T},\ell})$ associated with \hat{A}

$$\hat{a}(\hat{Q}_{\ell}^{T}\phi_{x},w)=\int_{T}\hat{A}
abla\phi_{x}\cdot
abla w\,dx$$
 for all $w\in V^{\mathsf{f}}(\omega_{T,\ell})$

We only recompute for $T \in \mathcal{T}_H \setminus \tilde{\mathcal{T}}_H$ and let

$$\tilde{Q}_{\ell}^{\mathsf{T}} = \left\{ \begin{array}{ll} \hat{Q}_{\ell}^{\mathsf{T}}, & \mathsf{T} \in \tilde{\mathcal{T}}_{H} \\ Q_{\ell}^{\mathsf{T}}, & \mathsf{T} \in \mathcal{T}_{H} \setminus \tilde{\mathcal{T}}_{H} \end{array} \right.$$

We let
$$\tilde{V}_{H,\ell}^{ms} = \operatorname{span}(\{\phi_x - \sum_{T \in \mathcal{T}_H} \tilde{Q}_{\ell}^T \phi_x\}).$$

Local recomputation of basis functions

We let $v, w \in V_H$ and define

$$ilde{a}(v,w) = \sum_{T \in \mathcal{T}_H} (ilde{A}_T
abla v,
abla w)_T - (ilde{A}_T
abla ilde{Q}_\ell^T v,
abla w)_{\omega_\ell(T)}$$

where

$$ilde{A}_T = \left\{ egin{array}{ll} \hat{A}, & T \in ilde{\mathcal{T}}_H \ A, & T \in \mathcal{T}_H \setminus ilde{\mathcal{T}}_H \end{array}
ight.$$

We let $\tilde{u} := (1 - \sum_T \tilde{Q}_\ell^T) \tilde{u}_H$, where $\tilde{u}_H \in V_H$ solves

$$\tilde{a}(\tilde{u}_H, w) = (f, w), \quad \forall w \in V_H$$

- One could use *a* instead of *ã* but more computations are needed.
- We note that A
 _T on T is arbitrary in this formulation. It can
 e.g. refer to different time steps for different T

Målqvist (University of Gothenburg)

Error indicators

Given $v \in V_H$ we have with $z = Q_\ell^T v - \tilde{Q}_\ell^T v$

$$\begin{split} |A^{1/2}\nabla(Q_{\ell}^{\mathsf{T}}\boldsymbol{v}-\tilde{Q}_{\ell}^{\mathsf{T}}\boldsymbol{v})||_{L^{2}(\omega_{\mathcal{T},\ell})}^{2} \\ &=((\tilde{A}_{\mathcal{T}}-A)\nabla\tilde{Q}_{\ell}^{\mathsf{T}}\boldsymbol{v},\nabla z)-((\tilde{A}_{\mathcal{T}}-A)\nabla\boldsymbol{v},\nabla z)_{\mathcal{T}} \\ &=\|(\tilde{A}_{\mathcal{T}}-A)A^{-1/2}(\chi_{\mathcal{T}}\nabla\boldsymbol{v}-\nabla\tilde{Q}_{\ell}^{\mathsf{T}}\boldsymbol{v})\|_{L^{2}(\omega_{\mathcal{T},\ell})}\|A^{1/2}\nabla z\|_{L^{2}(\omega_{\mathcal{T},\ell})} \\ &=\boldsymbol{e}_{\mathcal{T}}\|A^{1/2}\nabla\boldsymbol{v}\|_{L^{2}(\mathcal{T})}\|A^{1/2}\nabla(Q_{\ell}^{\mathsf{T}}\boldsymbol{v}-\tilde{Q}_{\ell}^{\mathsf{T}}\boldsymbol{v})\|_{L^{2}(\omega_{\mathcal{T},\ell})} \end{split}$$

with
$$e_T := \max_{v|_T} \frac{\|(\tilde{A}_T - A)A^{-1/2}(\chi_T \nabla v - \nabla \tilde{Q}_\ell^T v)\|_{L^2(\omega_{T,\ell})}}{\|A^{1/2} \nabla v\|_{L^2(T)}}$$
. Furthermore

$$\|A^{1/2}\nabla(Q_{\ell}v-\tilde{Q}_{\ell}v)\|_{L^{2}(\Omega)}:=\ell^{d/2}\max_{T\in\tilde{\mathcal{T}}_{H}}e_{T}\|A^{1/2}\nabla v\|_{L^{2}(\Omega)}.$$

- We note that e_T is only large if $\tilde{A}_T A$ is large at T.
- The indicator e_T is independent of Q_ℓ^T .

Theorem (A priori error bound)

If $\ell \approx |\log(H)|$ and $\max_{T \in \tilde{\mathcal{T}}} e_T < TOL$, where

$$\boldsymbol{e}_{\mathcal{T}} := \max_{\boldsymbol{v}|_{\mathcal{T}}, \boldsymbol{v} \in V_{H}} \frac{\|(\tilde{A}_{\mathcal{T}} - \boldsymbol{A})\boldsymbol{A}^{-1/2}(\boldsymbol{\chi}_{\mathcal{T}}\nabla\boldsymbol{v} - \nabla\tilde{\boldsymbol{Q}}_{\ell}^{\mathsf{T}}\boldsymbol{v})\|_{L^{2}(\omega_{\mathcal{T},\ell})}}{\|\boldsymbol{A}^{1/2}\nabla\boldsymbol{v}\|_{L^{2}(\mathcal{T})}}$$

then $|||u_h - \tilde{u}||| \le CH + C\ell^{d/2} TOL.$

- e_T is computable and independent of Q_ℓ^T .
- We only recompute for elements *T* where e_T > TOL.
- It is computed by solving a (d + 1) × (d + 1) eigenvalue problem.
- A coarse version can be computed by summing over coarse elements.

Målqvist (University of Gothenburg)

- Motivation and model problem
- Multiscale approach
- Perturbed diffusion
- Numerical examples
- Final comments

Numerical examples (defects)

We consider an example with 2% defects with $f = \chi_{[1/8,7/8] \times [1/8,7/8]}$ and the diffusion taking values 1 (dots) and 0.01.

We let $H = 2^{-5}$, $h = 2^{-8}$, $\ell = 4$, and increase the amount of updates.

伺 ト イヨ ト イヨト

Numerical examples (defects)

Error indicator (left) and relative error in energy norm $u_h - \tilde{u}$ (right).

Right hand side correction eliminates *H*-dependency: find $u_f^T \in V^f$ such that

$$a(u_{f}^{T},v)=(f,v)_{T}$$

for all $v \in V^{f}$. The full solution is $u^{\text{full}} = u^{\text{ms}} + \sum_{T \in \mathcal{T}_{H}} u_{f}^{T}$.

Numerical example (domain mapping)

We consider a map $\psi : \Omega \to \Omega$ that is continuous one-one and $\psi : \Gamma \to \Gamma$. We let $J = \frac{\partial \psi_i}{\partial x_i}, i, j = 1, ..., d$.

The perturbed diffusion is $(\hat{A} - D) \circ \psi^{-1}(y)$, where *D* account for defects, we get (in *x*):

$$A = det(J)J^{-1}(\hat{A} - D)J^{-T}$$
 $f = det(J)f_y \circ \psi$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Numerical examples (domain mapping)

We again have 2% defects with $f = \chi_{[1/8,7/8] \times [1/8,7/8]}$ and the diffusion taking values 1 (dots) and 0.01.

Domain mapping becomes change in value perturbation in *x*.

We let $H = 2^{-5}$, $h = 2^{-8}$, $\ell = 4$, and increase the amount of updates.

Målqvist (University of Gothenburg)

Numerical examples (domain mapping)

Error indicator (left) and relative error in energy norm $u_h - \tilde{u}$ as a function of updates (right).

- The domain mapping leads to smaller errors.
- Again right hand side correction eliminates *H*-dependency.

Numerical examples (two phase flow)

$$-
abla \cdot \lambda(s) K
abla u = 0$$
 $\dot{s} -
abla \cdot \lambda_w(s) K
abla u = 0$

- K piecewise constant, log-normal, correlation length 0.05.
- The total mobility $\lambda(s) = s^3 + (1 s)^3$ and $\lambda_w(s) = s^3$.
- Pressure *u* has Dirichlet 1 (left) and 0 (right).
- Initial condition s(0) = 0.
- s = 1 on the inflow for the saturation.

Numerical examples (two phase flow)

Let $0 < t_1 < t_2 < \cdots < t_n < \ldots t_N$ and use a dG0 upwind forward Euler type scheme¹ for the saturation with the pressure and saturation solved sequentially i.e. diffusion $A_n(x) = \lambda(s_{n-1})K(x)$.

- We let $h = 2^{-9}$, $H = 2^{-6}$, N = 2000, and $\tau = 1/N$.
- We allow $\{\tilde{A}_T\}_{T \in \mathcal{T}_H}$ to be evaluated at different times.

With $\ell = 2$, TOL = 0.05 we get below 2% L^2 -error in s_H^{2000} and on average 20.3 recomputations per coarse element i.e. 1%.

Numerical examples (two phase flow)

We let $\ell = 1, 2, 3$ and vary TOL in the example.

Dashed is standard Galerkin on coarse mesh. Solution improves with $\ell = 1$ (squares) $\ell = 2$ (circles) $\ell = 3$ (diamonds). More recomputations with decreasing TOL (right).

Only coarse scale saturations are computed to minimize storage.

- Motivation and model problem
- Multiscale approach
- Perturbed diffusion
- Numerical examples
- Final comments

- We derive error indicators driving local recomputation of multiscale basis functions.
- We prove a priori error bounds for the proposed method.
- We show that multiscale methods can be useful also for problems with locally varying diffusion.
- Future work: application to random diffusion problems. Sample diffusion locally and recompute basis when necessary.

Hellman and M., Numerical homogenization of elliptic PDEs with similar coefficients, MMS, 2019.

Thank you for your attention!