Adaptive Variational Multiscale Methods

•

Axel Målqvist

axel@math.colostate.edu

Department of Mathematics, Colorado State University

Main results of the thesis

- A new adaptive variational multiscale method based on energy norm error estimation.
- An extension of the adaptive variational multiscale method to a mixed setting.
- Framework for adaptivity in multi-physics.

The new multiscale method

Model problem: The Poisson equations with coefficient a > 0,

$$-\nabla \cdot a \nabla u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \Gamma.$$

Weak form: Find $u \in V = H_0^1(\Omega)$ such that,

$$a(u,v) = l(v)$$
 for all $v \in H_0^1(\Omega)$,

where $a(v, w) = \int_{\Omega} a \nabla v \cdot \nabla w \, dx$, $l(v) = \int_{\Omega} f v \, dx$, $f \in L^2(\Omega)$ and Ω is a domain in \mathbf{R}^d , d = 1, 2, 3.

The permeability a

Figure 1: The permeability *a* (in log scale).

Why multiscale method?

• If we for the moment assume a to be periodic $a = a(x/\epsilon)$ we have (Hou),

$$\|\nabla u - \nabla U\| \le C \frac{H}{\epsilon} \|f\|.$$

- H > \epsilon will give unreliable results even with exact quadrature.
- *H* < *\epsilon* will be too computationally expensive to solve on a single mesh.
- Parallelized local problems must be solved.

The variational multiscale method

Find $u_c \in V_c$ and $u_f \in V_f$, $V_c \oplus V_f = V$ such that,

$$a(u_c + u_f, v_c + v_f) = l(v_c + v_f),$$

for all $v_c \in V_c$ and $v_f \in V_f$.

$$a(u_c, v_c) + a(u_f, v_c) = l(v_c) \quad \text{for all } v_c \in V_c,$$

$$a(u_f, v_f) = (R(u_c), v_f) \quad \text{for all } v_f \in V_f.$$

where we introduce the residual distribution, $(R(u_c), v_f) = l(v_f) - a(u_c, v_f).$

The variational multiscale method

Figure 2: u_c , u_f , and $u_c + u_f$.

Approximation

We derive the method in two steps.

• We decouple the fine scale equations by introducing a partition of unity $\sum_{i \in \mathcal{N}} \varphi_i = 1$,

$$a(u_{f,i}, v_f) = (R(u_c), \varphi_i v_f)$$
 for all $v_f \in V_f$.

• For each $i \in \mathcal{N}$ we discretize V_f and solve the resulting problem on a patch ω_i rather then Ω ,

$$a(U_{f,i}, v_f) = (R(U_c), \varphi_i v_f)$$
 for all $v_f \in V_f^h(\omega_i)$.

To the right we see a mesh star to the left what we call a two layer mesh star. The coarse mesh size is denoted H and the fine mesh size is denoted h.

The new vms

۲

The resulting method reads: find $U_c \in V_c$ and $U_f = \sum_{i \in \mathcal{N}} U_{f,i}$ where $U_{f,i} \in V_f^h(\omega_i)$ such that

$$a(U_c, v_c) + a(U_f, v_c) = l(v_c),$$

$$a(U_{f,i}, v_f) = (R(U_c), \varphi_i v_f),$$

for all $v_c \in V_c$, $v_f \in V_f^h(\omega_i)$, and $i \in \mathcal{N}$.

The patch is chosen such that $supp(\varphi_i) \subset \omega_i \subset \Omega$.

The local solution $U_{f,i}$

The solution improves as the patch size increases.

Motivation of the method

Why do we expect the method to work?

- The right hand side of the fine scale equations has support on a coarse mesh star, $(R(U_c), \varphi_i v_f)$.
- The fine scale solution $U_{f,i} \in V_f^h(\omega_i)$ which is a slice space.

This makes $U_{f,i}$ decay rapidly, which makes it possible to get a good approximation using small patches.

How do we choose the patchsize and h?

Our aim is to create a method that tunes critical parameters by itself.

- A posteriori error estimation bounds the error from above in terms of known quantities.
- Based on this we formulate an adaptive algorithm.
- The algorithm tunes the critical parameters automatically.

Energy norm estimate, $||e||_a^2 = a(e, e)$

$$\begin{aligned} \|e\|_{a} &\leq \sum_{i \in \mathcal{C}} C_{i} \|H\mathcal{R}(U_{c})\|_{\omega_{i}} \\ &+ \sum_{i \in \mathcal{F}} C_{i} \left(\|\sqrt{H\Sigma}(U_{f,i})\|_{\partial \omega_{i}} + \|h\mathcal{R}_{i}(U_{f,i})\|_{\omega_{i}} \right) \end{aligned}$$

- The first term is the coarse scale mesh error.
- The second term is the error committed by restriction to patches $\Sigma(U_{f,i}) \approx \mathbf{n} \cdot a \nabla U_{f,i}$.
- The third term is the fine scale mesh error.

The local solution $U_{f,i}$

The term $\boldsymbol{n} \cdot a \nabla U_{f,i}$ decreases on the boundary $\partial \omega_i$ as the patch size increases.

Adaptive strategy

$$\begin{aligned} \|e\|_{a} &\leq \sum_{i \in \mathcal{C}} C_{i} \|H\mathcal{R}(U_{c})\|_{\omega_{i}} \\ &+ \sum_{i \in \mathcal{F}} C_{i} \left(\|\sqrt{H\Sigma}(U_{f,i})\|_{\partial \omega_{i}} + \|h\mathcal{R}_{i}(U_{f,i})\|_{\omega_{i}} \right) \end{aligned}$$

- We calculate these for each $i \in \{\text{coarse fine}\}$.
- Large values i ∈ coarse → more local problems.
- Large values $i \in fine \rightarrow more$ layers or smaller h.

Extension to a mixed setting

In Paper IV we have extended this theory to the mixed formulation of the Poisson equation,

$$\begin{cases} \frac{1}{a}\boldsymbol{\sigma} - \nabla u = 0 & \text{in } \Omega, \\ -\nabla \cdot \boldsymbol{\sigma} = f & \text{in } \Omega, \\ n \cdot \boldsymbol{\sigma} = 0 & \text{on } \Gamma. \end{cases}$$

We give error estimates in energy norm $\|\frac{1}{\sqrt{a}}(\boldsymbol{\sigma} - \boldsymbol{\Sigma})\|$ and for a linear functional $(\boldsymbol{\sigma} - \boldsymbol{\Sigma}, \omega).$

Numerical examples

Figure 3: 2D slice of the permeability *a* (in log scale) taken from the tenth SPE comparative so-lution project.

Reference solutions

Figure 4: Above we see the reference solution, (left) flux $-\Sigma$ and (right) pressure u.

Convergence

Figure 5: Max norm error (compared to reference solution) in log scale versus number of layers.

Example using the adaptive algorithm

1									000000	$\overline{}$
		• • • • • •		<i>.</i>	• • • • • •	0	0 · · · ·		000000	200
	· · · · ·				• • • • •	• • • • • •		• • • • • • •	000000	00
0.9 - • •			• • • • •				\cdots		000000	200
	· · · · ·				• • • • •	• • • • • •		0	000000	00
• •			• • • • •					· · 00 · 0	000000	200
0.8 - • •	\cdot \cdot \cdot \cdot \circ	$\cdot \cdot \circ \cdot \circ \cdot$			• • • • •		· · · o · c	00000	000000	00
• •	· · · · c	000000					· · 000	000000	000000	200
	· · o · o	00000 ·			• • • • •			00000	000000	00
0.7 - • •	· · · · oc	000000	· o · · ·				· · 000	000000	00.000	200
	\cdots	· 00000	$\cdot \circ \circ \cdot \cdot \cdot$	0 · · · ·	• • • • •			00000	000000	00
• •		• • • • • • • • • •		D · · · · · C			00000	000000	000000	э · · с
0.6 - • •	\cdots	· · · · 00	· 00 · 00	0 · · · ·	• • • • •		000.	0000.	000000	·о
		• • • • • • • • • • • • • • • • • • • •	0000	00		00	000	· · · 000	000000	200
· 00	\cdots	· 00 · 00	0000·c	0 · · · ·	• • • • •	· · · 00 ·			000000	·о
0.5-000	00000	0000 · · c	00000	oc		· · · · · · · · · · · · · · · · · · ·		· · · · · c	$ \cdots $	200
· 00	· 000 ·	0000.0	0000 · ·	0.0.00		• • • • • •			0	• •
2000	00000	000000	000.	· · o · oo	0 • • • •			\cdots		•••
0.4 000	00000	000000	00 · · · •	· 00000		• • • • •			• • • • • 0	• •
2000	00000	000000	000	· · 0000	0 • • • •					•••
000	00000	0.0000	00 · · · ·	· · · ooc	.0000		· · · · ·		• • • • • •	•••
0.3 000	200000	000000		• • • • • • • •	00000		• • • • •			• • •
000	00000	000000	$\cdot \cdot \cdot \circ \cdot c$.0000	• • • • •			• • • • • •	• •
2000	200000	000	· · · 000	00	· 0000 ·			• • • • •		
0.2 000	00000	000	· · 00 · C	· 000 · 0	$\cdot 000 \cdot$	• • • • • •	· · · oo ·		• • • • • •	• •
2000	>00000	0000 · · ·	• 00000	000000	000		$\cdot \cdot \cdot \circ \cdot$			• • •
000	00000	0000 · ·	· · 000 ·	· · 0000	. • 0000	• • • • •	· · · oo ·		• • • • • •	• •
0.1 000	00000		· 000 ·	· · 0000	000		· · · 00	\cdots		• • •
000	0000 ·	$\cdot \circ \circ \circ \cdot \cdot$	· · 000 ·	· · 0000	· · · · ·	• • • • • •				•••
2000	. • 0000	.00	$\cdot \cdot \cdot \circ \cdot$	· · 000 ·			• • • • •			
ممط0	~~ ~									
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

1 ₁								· · · · · •		
							0			100
· ·										
0.9								0		
					0 .	00				
· ·					0	0 • • • • • • •	00	· 000 ·		
08	👝	.0000						0000		00
						0	00000			ЮC
						0 . 0	00000		000000	00
074.				0				00000		DOC
0.7				. .						
		000000		6 0 · · ·			0000			DO C
06								0.0000		
0.0										
					00					
0.5 000										
0.5000					N O					
										. oc
0.4										
0.4										
0.2										
0.3									0	• • •
						00				
0.2										•••
					0000	00				• • •
			• • • • • • • • •				••••••••	-		• •
0.1					0000					• • •
							• • • • • • •	· · · · ·		• •
		· · · · · ·	• 0000					· · · ·		•••;
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

Figure 6: 35% of the patches increased in each iteration.

Example using the adaptive algorithm

1 _Г					$\overline{}$
		· · 00 · · · ·	00	000000	oc
• • • • • • • • • • • • • • • • • • • •		• • • • • • •	• • • • • 0	000000	00
0.9				000000	oc
			• • • • • 0	000000	00
			· · 00 · 0	000000	oc
0.8 - • • • • • • • • • • • • • • • • • •			0000.0	000000	00
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	000000	000000	oc
		0000	00000	000000	00
0.7 0000000 0			000000		oc
		00000	00000	000000	00
		00000	000000	000000	ъ·с
0.6		000 .	· 000 ·	000000	·о
		.0.000.		000000	oc
				000000	·о
0.5 0000000000 0000 0000				00	oc
000000.0000.0000.0000.00				0	·о
000000000000000000000000000000000000000	00				• •
0.4 00000000000000000000000000000000000					
000000000 00000 00	00				• •
00000000.000000	00000				• •
0.3 00000000000000000000000000000000000	000000 · · ·				• •
000000000.00.00.0.0.0.0.0.0.0.0.0.0.0.0.	00000				• •
00000000000.00000	0000				• •
0.2 00000000000000000000000000000000000	0.000	0			· ·
000000000000000000000000000000000000000	0000				• •
00000000000	00 .00	00			· ·
0.1 00000000000000000000000000000000000	0000				• •
000000000000000000000000000000000000000					· •
000000 0000 0000 000	0				• •
0	<u> </u>	· · · · · · · · · · · · · · · · · · ·		I	
0 0.1 0.2 0.3 0.4	0.5 0.	6 0.7	0.8	0.9	1

õ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
						· · · · · ·		• • • • • •	 	· · ·
000				• • • • • • • • •	0 · · · ·	• • • • • •	• • • • • •	••••	• • • • • •	• •
0.1					● ○● ○ · ·		• • • • • • • •			
					00000					
0.2										
						•••••				· · ·
							• • • • •			•••
0.3			• • • • • •		00000 0		• • • • • •			• • •
000			$\mathbf{D} \circ \cdot \circ \cdot$				••••			<i>·</i> ·
			• • • •		99 0 · · ·		• • • • • •			• • •
0.4			90 00 ·							
000	000000	00000	.000							c
0.3 000										
0.5-000										
						0			000000	
0.6	• • • • • •	0.000	000.0		• • • • •		- 000 -	· · • • • • • • • • • • • • • • • • • •	000000	
	•••••	00000	· · · · •			• • • • •	· 0 000 0	00000		
· · ·	• • • • • •	•••••	••••	• • • • • •	• • • • •		· 0 00 00			••
0.7	•••••		· o · · ·		• • • • • •		· · •			104
		••••								
							-			
08		0000.								
								0000		
0.9		· · · · · · ·		· · · · · ·		· · · · · ·				
		· · · · ·				••••	•••••	•••••		
· · ·				• • • • •	• • • • • •	0				
1 [· · · · · •		

Figure 7: 35% of the fine scale meshes refined in each iteration.

Relative error in energy norm

Figure 8: Relative error in energy norm: 106%, 16%, 10%, and 8%.

Adaptivity in multi-physics

Adaptivity in multi-physics

We seek the water concentration c that solves the system,

$$\begin{cases} \frac{1}{a}\boldsymbol{\sigma} - \nabla u = 0 & \text{in } \Omega, \\ -\nabla \cdot \boldsymbol{\sigma} = f & \text{in } \Omega, \\ \boldsymbol{n} \cdot \boldsymbol{\sigma} = 0 & \text{on } \Gamma, \end{cases}$$

$$\begin{aligned} \dot{c} + \nabla \cdot (\boldsymbol{\sigma} c) - \epsilon \Delta c &= g \quad \text{in } \Omega \times (0, T], \\ \boldsymbol{n} \cdot \nabla c &= 0 \quad \text{on } \Gamma, \\ c &= c_0 \quad \text{for } t = 0. \end{aligned}$$

Meshes

Figure 9: The mesh for the flow problem is denoted Q and the transport problem \mathcal{K} .

Adaptivity in multi-physics

Figure 10: The solution to the transport problem.

Error estimates based on duality

We introduce the dual problems:

$$\begin{aligned} -\dot{\phi} - \boldsymbol{\Sigma} \cdot \nabla \phi - \epsilon \Delta \phi &= \psi \quad \text{in } \Omega \times (0, T], \\ \boldsymbol{n} \cdot \nabla \phi &= 0 \quad \text{on } \Gamma, \\ \phi &= 0 \quad \text{for } t = T, \end{aligned}$$

$$\begin{cases} \frac{1}{a}\boldsymbol{\chi} - \nabla\eta = \int_0^T c\nabla\phi \,dx & \text{in }\Omega, \\ -\nabla\cdot\boldsymbol{\chi} = 0 & \text{in }\Omega, \\ \boldsymbol{n}\cdot\boldsymbol{\chi} = 0 & \text{on }\Gamma, \end{cases}$$

Error estimates based on duality

$$\begin{split} \int_0^T (e, \psi) \, dt &\leq \sum_{K \in \mathcal{K}} \int_0^T \rho_K(C) (\Delta t \| \dot{\phi} \|_K + h \| \nabla \phi \|_K) \, dt \\ &+ \sum_{K \in \mathcal{Q}} (\| \nabla U^* - \frac{1}{a} \mathbf{\Sigma} \|_K + h^{-1/2} \| [U^*] \|_{\partial K \setminus \Gamma}) \| \mathbf{\chi} \|_K \\ &+ \sum_{K \in \mathcal{Q}} h \| \nabla \cdot \mathbf{\Sigma} + f \|_K \| \nabla \eta \|_K, \end{split}$$

 $\rho_K(C) = \|\dot{C} + \nabla \cdot (\boldsymbol{\Sigma}C) - \epsilon \triangle C - g\|_K + h^{-1/2} \|\epsilon[\boldsymbol{n} \cdot \nabla C]\|_{\partial K}.$

Adaptive algorithm

- Calculate the solutions Σ and U to the flow problem on Q.
- Calculate the solution to the transport problem C on \mathcal{K} .
- Calculate an approximate solution to the dual transport problem Φ , given ψ , on \mathcal{K} .
- Calculate an approximation to $\int_0^T c \nabla \phi \, dx$ from C and Φ .
- Calculate the approximate solutions to the dual flow problem χ and η on the mesh Q.

Adaptive algorithm

Figure 11: Information flow between solvers and data base.

Adaptive algorithm

۲

Calculate error indicators,

$$\begin{cases} I_1^K = \int_0^T \rho_K(C) (\Delta t \| \dot{\phi} \|_K + h \| \nabla \phi \|_K) dt, \\ I_2^K = (\| \nabla U^* - \frac{1}{a} \Sigma \|_K + h^{-1/2} \| [U^*] \|_{\partial K \setminus \Gamma}) \| \boldsymbol{\chi} \|_K \\ + h \| \nabla \cdot \Sigma + f \|_K \| \nabla \eta \|_K. \end{cases}$$

- If $I_1 = \sum_{K \in \mathcal{K}} I_1^K$ and $I_2 = \sum_{K \in \mathcal{Q}} I_2^K$ ok stop.
- If $I_1 >> I_2$ refine \mathcal{K} , $I_2 >> I_1$ refine \mathcal{Q} , return.
- If non of these hold we refine both ${\cal K}$ and ${\cal Q}$ and return.

Error indicators

Figure 12: The error indicators I_1 and I_2 . We use 15 and 100 % refinement level.

Adaptive meshes

Figure 13: Mesh after each of the five iterations. Rectangular mesh for the flow problem.

Solution after five iterations

Figure 14: The final solution to the transport problem after five iterations.

Specific output quantity

Figure 15: The water concentration at the producer at different times for approximations after one, three, and five iterations.

Convergence to reference solution

Figure 16: Convergence to reference solution (last iterate).

Extension to convection-diffusion

Ongoing research

Model problem:

$$\begin{aligned} -\nabla \cdot \epsilon \nabla u + b \cdot \nabla u &= f \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \Gamma. \end{aligned}$$

Weak form: Find $u \in V = H_0^1(\Omega)$ such that,

a(u,v) + b(u,v) = l(v) for all $v \in H_0^1(\Omega)$,

where $a(v, w) = \int_{\Omega} \epsilon \nabla v \cdot \nabla w \, dx$, $b(u, v) = \int_{\Omega} b \cdot \nabla u \, v \, dx$ and $l(v) = \int_{\Omega} fv \, dx$.

Multiscale method for this problem

The multiscale method reads: find $U_c \in V_c$ and $U_f = \sum_{i \in \mathcal{N}} U_{f,i}$ where $U_{f,i} \in V_f^h(\omega_i)$ such that,

$$a(U_c, v_c) + a(U_f, v_c) + b(U_c, v_c) + b(U_f, v_c) = l(v_c), a(U_{f,i}, v_f) + b(U_{f,i}, v_f) = (R(U_c), \varphi_i v_f),$$

for all $v_c \in V_c$, $v_f \in V_f^h(\omega_i)$, and $i \in \mathcal{N}$.

۲

Numerical example

Let $\epsilon = 0.01$, f is a big close to [0, 0], and $b = -[b_x, b_x]$ as in figure:

Numerical example

Figure 17: $U_{f,i}$ for different patches.

Convergence

۲

Figure 18: In this example h = 1/100 and H = 4h.

Comments and questions

- Study quadrature error since b will not be resolved on coarse meshes. This will help to determine h.
- Adaptivity should now create patches that are very influenced by b. The boundary error should be seen as a function on the boundary.
- Is it possible to do a better split V = V_c ⊕ V_f in this case?
- What happens when $\epsilon \to 0$?