Computation of Eigenvalues by Upscaling

Axel Målqvist Daniel Peterseim

Uppsala University Humboldt Universität

2013-06-18
Multiscale problems

Applications such as

- composite materials
- flow in a porous medium

require numerical solution of partial differential equations with rough data (module of elasticity, conductivity, or permeability).

Major challenge: Features on multiple non-separated scales.
Multiscale methods

Let A be rapidly varying data and consider a differential equation and its corresponding numerical approximation,

$$\mathcal{L}(A)u = f \quad \mathcal{L}_h(A)u_h = f_h.$$

For classical methods in many situations

$$|||u - u_h||| \leq C(A, A') h^\beta.$$

Multiscale methods seek an upscaled representation

$$\mathcal{L}_H(A)u_H = f_H$$

fulfilling $|||u_h - u_H||| \leq C(A) H^\beta$ with C independent of A'.

How well is the (low part of the) spectrum of \mathcal{L} preserved?
Outline

1. Model problem
2. Upscaling technique and error analysis
3. Numerical experiments
4. Application to a non-linear eigenvalue problem
5. Conclusions
Model multiscale eigenvalue problem

Prototypical self-adjoint eigenvalue problem

\[- \nabla \cdot A \nabla u = \lambda u \quad \text{in } \Omega \quad u = 0 \quad \text{on } \partial \Omega\]

with data \(0 < \alpha \leq A \in L^\infty(\Omega)\)
Model multiscale eigenvalue problem

Prototypical self-adjoint eigenvalue problem (variational form): find $u \in V := H^1_0(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$a(u, v) := \int_{\Omega} (A \nabla u) \cdot \nabla v \, dx = \lambda \int_{\Omega} u \cdot v \, dx \quad \text{for all } v \in V$$

with data $0 < \alpha \leq A \in L^\infty(\Omega)$
Model multiscale eigenvalue problem

Prototypical self-adjoint eigenvalue problem (FE approximation):

\(u_h \in V_h \subset V \) and \(\lambda_h \in \mathbb{R} \) such that

\[
a(u_h, v) := \int_{\Omega} (A \nabla u_h) \cdot \nabla v \, dx = \lambda_h \int_{\Omega} u_h \cdot v \, dx \quad \text{for all } v \in V_h
\]

with data \(0 < \alpha \leq A \in L^\infty(\Omega) \)
Model multiscale eigenvalue problem

Prototypical self-adjoint eigenvalue problem \((\text{FE approximation})\):
\(u_h \in V_h \subset V\) and \(\lambda_h \in \mathbb{R}\) such that

\[
a(u_h, v) := \int_\Omega (A \nabla u_h) \cdot \nabla v \, dx = \lambda_h \int_\Omega u_h \cdot v \, dx \quad \text{for all } v \in V_h
\]

with data \(0 < \alpha \leq A \in L^\infty(\Omega)\)

Numerical error (piecewise linear continuous FE approximation)

- For an eigenpair \((u^{(k)}, \lambda^{(k)})\) with \(u^{(k)} \subset H^2(\Omega)\) it holds

 \[
 \lambda^{(k)} \leq \lambda_h^{(k)} \leq \lambda^{(k)} + C(A, A', k)h^2,
 \]

 \[
 \|\|u^{(k)} - u_h^{(k)}\|\| := \|A^{1/2} \nabla (u^{(k)} - u_h^{(k)})\|_{L^2(\Omega)} \leq C(A, A', k)h.
 \]

- The mesh size \(h\) has to resolve the variations in \(A\), e.g. \(h < \epsilon\) if \(A\) is periodic.
Investigate how well the localized orth. decomposition technique in

A. Målqvist and D. Peterseim.

Localization of Elliptic Multiscale Problems.

preserves the (low) spectrum of \(-\nabla \cdot A \nabla\).

Without any assumptions on scales \((A')\) or regularity \((u)\):

\[
\lambda_h \leq \lambda_{ms}^{H} \leq \lambda_h + CH^4,
\]

\[
\|\|u_h - u_{ms}^{H}\|\| \leq CH^2.
\]

A. Målqvist and D. Peterseim.

Computation of eigenvalues by numerical upscaling.

1. Model problem
2. **Upscaling technique and error analysis**
3. Numerical experiments
4. Application to a non-linear eigenvalue problem
5. Conclusions
Multiscale decomposition

- (coarse) FE mesh \mathcal{T} with parameter H
- P1-FE space $V_H := \{ v \in V \mid \forall T \in \mathcal{T}, v|_T \in P_1(T) \}$
- $\mathcal{S}_T : V \rightarrow V_H$ a Clément interpolation operator

Decomposition

\[V = V_H \oplus V^f \quad \text{with} \quad V^f := \text{kernel} \mathcal{S}_T = \{ v \in V \mid \mathcal{S}_Tv = 0 \} \]

Example:

rough coefficient
Multiscale decomposition

- (coarse) FE mesh \mathcal{T} with parameter H
- P1-FE space $V_H := \{ v \in V \mid \forall T \in \mathcal{T}, v|_T \in P_1(T) \}$
- $\mathcal{I}_T : V \rightarrow V_H$ a Clément interpolation operator

Decomposition

$$V = V_H \oplus V^f \quad \text{with} \quad V^f := \text{kernel} \mathcal{I}_T = \{ v \in V \mid \mathcal{I}_T v = 0 \}$$

Example:

$$u \in V = u_H \in V_H + u^f \in V^f$$
Orthogonalization

For each \(v \in V_H \) define finescale projection \(\mathcal{F}v \in V^f \) by

\[
a(\mathcal{F}v, w) = a(v, w) \quad \text{for all } w \in V^f
\]

Orthogonal Decomposition

\[V = V^\text{ms}_H \oplus V^f \text{ with } V^\text{ms}_H := (V_H - \mathcal{F}V_H) \]

Example:

\[u \in V \quad = \quad u^\text{ms}_H \in V^\text{ms}_H \quad + \quad u^f \in V^f \]
Given the space V_{ms}^H we construct a Galerkin approximation:

Ideal method

Find $u_{ms}^H \in V_{ms}^H$, $\lambda_{ms}^H \in \mathbb{R}$ such that

$$a(u_{ms}^H, v) = \lambda_{ms}^H (u_{ms}^H, v), \quad \forall v \in V_{ms}^H.$$

- We note that $\dim(V_{ms}^H) = \dim(V_H)$.
- For V_{ms}^H to be useful we need a discrete localized basis.
- But first of all we need to show that λ_{ms}^H is a good approximation of λ.
A priori error bound (ideal case)

For the k:th eigenvalue it holds

Theorem

$$\lambda^{(k)} \leq \lambda_{H}^{ms,(k)} \leq \lambda^{(k)} + CH^4,$$

with C independent on variations in A or the regularity of u.

Sketch of proof for the lowest eigenvalue:

Let $u^{(1)} := u = u_c + u_f$ with $u_c \in V_H^{ms}$ and $u_f \in V_f$, such that $\|u\|_{L^2(\Omega)} = 1$. Then

$$\lambda_{H}^{ms,(1)} \leq \frac{a(u_c, u_c)}{(u_c, u_c)} \leq \frac{a(u, u)}{(u_c, u_c)} = \frac{a(u, u)}{(u - u_f, u - u_f)} \lambda^{(1)} \leq \frac{\lambda^{(1)}}{1 - 2(u, u_f)}.$$
A priori error bound (ideal case)

For the k:th eigenvalue it holds

Theorem

$$\lambda^{(k)} \leq \lambda_{H}^{\text{ms},(k)} \leq \lambda^{(k)} + CH^{4},$$

with C independent on variations in A or the regularity of u.

Sketch of proof for the lowest eigenvalue:

- Since $\mathcal{Z}_{T} u_f = 0$, $(\mathcal{Z}_{T} u, u_f) = 0$ (weighted Clement), $a(u_c, u_f) = 0$, and $\| \| u \| \|^{2} = \lambda^{(1)}$, we have

 $$\langle u, u_f \rangle = \langle u - \mathcal{Z}_{T} u, u_f - \mathcal{Z}_{T} u_f \rangle \leq CH^{2} \| u \| \cdot \| u_f \| \leq C'H^{2} \| u_f \|,$$

 $$\| u_f \|^{2} = a(u, u_f) = \lambda^{(1)}(u - \mathcal{Z}_{T} u, u_f - \mathcal{Z}_{T} u_f) \leq CH^{2} \| u_f \|.$$

- We conclude $\lambda_{H}^{\text{ms},(1)} \leq \frac{\lambda^{(1)}}{1-CH^{4}} \leq \lambda^{(1)} + 2CH^{4}$.
A priori error bound (ideal case)

For the k:th eigenfunction it holds

Theorem

$$|||u^{(k)} - u^{ms,(k)}_H||| \leq CH^2,$$

with C independent on variations in A or the regularity of u.

- Similar arguments using $\mathcal{S}_T u_f = 0$ and $(\mathcal{S}_T u, u_f) = 0$.
- Only $H^1(\Omega)$ regularity is assumed.

Can we find a localized discrete basis that approximates V^{ms}_H?
Modified nodal basis

- \mathcal{N} denotes set of interior vertices of \mathcal{T}
- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in \mathcal{N}$)
- $\mathcal{F}\phi_x \in V^f$ denotes finescale correction of ϕ_x ($x \in \mathcal{N}$)

Ideal multiscale FE space

$$V^{ms}_H = \text{span} \{ \phi_x - \mathcal{F}\phi_x \mid x \in \mathcal{N} \}$$

Example

$$\phi_x - \mathcal{F}\phi_x \in V^{ms}_H = \phi_x \in V_H - \mathcal{F}\phi_x \in V^f$$
Modified nodal basis

- \mathcal{N} denotes set of interior vertices of \mathcal{T}
- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in \mathcal{N}$)
- $\mathcal{G}\phi_x \in V^f$ denotes finescale correction of ϕ_x ($x \in \mathcal{N}$)

Ideal multiscale FE space

$$V_{ms}^H = \text{span} \{ \phi_x - \mathcal{G}\phi_x \mid x \in \mathcal{N} \}$$

Example
Assuming more regularity on A we have $\phi_x - \bar{\phi}_x \in H^2(\Omega) \cap H^1_0(\Omega)$.
Define nodal patches of ℓ-th order $\omega_{x,\ell}$ about $x \in \mathcal{N}$

Localized corrections $\mathcal{F}\phi_{x,\ell} \in V^f(\omega_{x,\ell}) := \{ v \in V^f \mid v|_{\Omega \setminus \omega_{x,\ell}} = 0 \}$

solve

$$a(\mathcal{F}\phi_{x,\ell}, w) = a(\phi_x, w) \quad \text{for all} \ w \in V^f(\omega_{x,\ell})$$

Localized multiscale FE spaces

$$V_{ms}^{H,\ell} = \text{span}\{ \phi_x - \mathcal{F}\phi_{x,\ell} \mid x \in \mathcal{N} \}$$
Fine scale discretization

- Finescale mesh

\[\mathcal{T} \sim \mathcal{T}_h \text{ with } h \leq H \]

- Reference FE space

\[V_h := \{ v \in V \mid \forall T \in \mathcal{T}(\Omega), v|_T \in P_1(T) \} \]

- Reference FE solution \(u_h \in V_h \) and \(\lambda_h \in \mathbb{R} \) solves

\[a(u_h, v) = \lambda_h (u_h, v) \quad \text{for all } v \in V_h \]

- Fully discrete corrections \(\mathcal{S}_h \phi_{x,\ell} \in V^f_h(\omega_{x,\ell}) := V^f(\omega_{x,\ell}) \cap V_h : \)

\[a(\mathcal{S}_h \phi_{x,\ell}, w) = a(\phi_{x}, w) \quad \text{for all } w \in V^f_h(\omega_{x,\ell}) \]
Localized Orthogonal Decomposition (LOD)

Fully discrete multiscale FE spaces

\[V_{H,\ell}^{\text{ms},h} = \text{span}\{\phi_x - \mathcal{G}\phi_{x,\ell} \mid x \in \mathcal{N}\} \]

Fully discrete multiscale approximation \(u_{H,\ell}^{\text{ms},h} \in V_{H,\ell}^{\text{ms},h}, \lambda_{H,\ell}^{\text{ms},h} \in \mathbb{R} \)

\[a(u_{H,\ell}^{\text{ms},h}, v) = \lambda_{H,\ell}^{\text{ms},h}(u_{H,\ell}^{\text{ms},h}, v) \text{ for all } v \in V_{H,\ell}^{\text{ms},h} \]

Remarks:

- \(\dim V_{H,\ell}^{\text{ms},h} = |\mathcal{N}| = \dim V_H \)
- The basis functions have local support, with overlap depending on \(\ell \approx \log \frac{1}{H} \), and are independent.
Lemma (Truncation error)

There exist $C_1 < \infty$ and $\gamma < 1$ independent of x, ℓ, H such that

$$\|\mathcal{F}_x^h - \mathcal{F}_{x,\ell}^h\| \leq C_1 \gamma^\ell \|\mathcal{F}_x^h\|.$$

By choosing $\ell = C \log(H^{-1})$ with appropriate C we guarantee that the truncation leads to a higher order perturbation:

Theorem

$$\lambda_h^{(k)} \leq \lambda_{H,\ell}^{ms,(k)} \leq \lambda_h^{(k)} + CH^4,$$

$$\|u_h^{(k)} - u_{H,\ell}^{ms,(k)}\| \leq CH^2,$$

with C independent on variations in A or the regularity of u.
A priori error analysis (discrete case)

The result can be improved using a postprocessing technique:

J. Xu and A. Zhou.
A two-grid discretization scheme for eigenvalue problems.

Find $u^p_h \in V_h$ s.t.

$$a(u^p_h, v) = \lambda^{ms}_{H,\ell}(u^{ms}_{H,\ell}, v), \quad v \in V_h,$$

and letting $\lambda^p_h = a(u^p_h, u^p_h)/(u^p_h, u^p_h)$.

Theorem

$$\lambda^{(k)}_h \leq \lambda^{p,(k)}_h \leq \lambda^{(k)}_h + CH^8,$$

$$\|\|u^{(k)}_h - u^{p,(k)}_h\|\| \leq CH^4.$$
Outline

1. Model problem
2. Upscaling technique and error analysis
3. **Numerical experiments**
4. Application to a non-linear eigenvalue problem
5. Conclusions
Eigenvalue Problem

\[\lambda_h^{(k)} = e^{(k)}(1/2 \sqrt{2}) \]

\[e^{(k)}(1/4 \sqrt{2}) = e^{(k)}(1/8 \sqrt{2}) = e^{(k)}(1/16 \sqrt{2}) \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\lambda_h^{(k)})</th>
<th>(e^{(k)}(1/2 \sqrt{2}))</th>
<th>(e^{(k)}(1/4 \sqrt{2}))</th>
<th>(e^{(k)}(1/8 \sqrt{2}))</th>
<th>(e^{(k)}(1/16 \sqrt{2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.6436869</td>
<td>0.003494567</td>
<td>0.000034466</td>
<td>0.000000546</td>
<td>0.000000010</td>
</tr>
<tr>
<td>2</td>
<td>15.1989274</td>
<td>0.009621397</td>
<td>0.000079887</td>
<td>0.000000845</td>
<td>0.000000010</td>
</tr>
<tr>
<td>3</td>
<td>19.7421815</td>
<td>0.023813222</td>
<td>0.000213097</td>
<td>0.000002073</td>
<td>0.000000023</td>
</tr>
<tr>
<td>4</td>
<td>29.5281571</td>
<td>0.096910157</td>
<td>0.0006574</td>
<td>0.00000076</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>31.9265496</td>
<td>0.094454625</td>
<td>0.0009627</td>
<td>0.00000138</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>41.4922250</td>
<td>-0.002395227</td>
<td>0.0019934</td>
<td>0.00000254</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>44.9604884</td>
<td>-0.002443271</td>
<td>0.0019683</td>
<td>0.00000223</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>49.3631826</td>
<td>-0.003651870</td>
<td>0.0028869</td>
<td>0.00000308</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>49.3655623</td>
<td>-0.00426472</td>
<td>0.0032835</td>
<td>0.00000355</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>56.7389993</td>
<td>-0.006863742</td>
<td>0.0055219</td>
<td>0.00000618</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>65.4085991</td>
<td>-0.011534878</td>
<td>0.0082414</td>
<td>0.00000856</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>71.0947630</td>
<td>-0.012596114</td>
<td>0.0090083</td>
<td>0.00001002</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>71.6064671</td>
<td>-0.014249938</td>
<td>0.0098736</td>
<td>0.00001006</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>79.0043994</td>
<td>-0.021801461</td>
<td>0.0164436</td>
<td>0.00001605</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>89.3706421</td>
<td>-0.03550079</td>
<td>0.0211985</td>
<td>0.00002296</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>92.3648207</td>
<td>-0.040060692</td>
<td>0.0239441</td>
<td>0.00002295</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>97.4459210</td>
<td>-0.037438984</td>
<td>0.0284936</td>
<td>0.00002724</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>98.754147</td>
<td>-0.044544409</td>
<td>0.0269854</td>
<td>0.00002559</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>98.7545639</td>
<td>-0.047835987</td>
<td>0.0276139</td>
<td>0.00002539</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>101.6755971</td>
<td>-0.038203654</td>
<td>0.0297356</td>
<td>0.00002909</td>
<td></td>
</tr>
</tbody>
</table>

Table: Errors \(e^{(k)}(H) = \frac{\lambda_{ms}^{(k)} - \lambda_h^{(k)}}{\lambda_h^{(k)}} \) and \(h = 2^{-7} \sqrt{2} \).
Eigenvalue Problem

\[
0.01 \quad 1 \quad 100 \quad 10000
\]

\[
k \quad \lambda_h^{(k)} \quad e_h^{(k)}(1/2 \sqrt{2}) \quad e_h^{(k)}(1/4 \sqrt{2}) \quad e_h^{(k)}(1/8 \sqrt{2}) \quad e_h^{(k)}(1/16 \sqrt{2})
\]

<table>
<thead>
<tr>
<th>k</th>
<th>\lambda_h^{(k)}</th>
<th>e_h^{(k)}(1/2 \sqrt{2})</th>
<th>e_h^{(k)}(1/4 \sqrt{2})</th>
<th>e_h^{(k)}(1/8 \sqrt{2})</th>
<th>e_h^{(k)}(1/16 \sqrt{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.4144522</td>
<td>5.472755371</td>
<td>0.237181706</td>
<td>0.010328293</td>
<td>0.000781683</td>
</tr>
<tr>
<td>2</td>
<td>40.9134676</td>
<td>-</td>
<td>0.649080539</td>
<td>0.032761482</td>
<td>0.002447049</td>
</tr>
<tr>
<td>3</td>
<td>44.1561133</td>
<td>-</td>
<td>1.687388874</td>
<td>0.097540102</td>
<td>0.004131422</td>
</tr>
<tr>
<td>4</td>
<td>60.8278691</td>
<td>-</td>
<td>1.648439518</td>
<td>0.028076168</td>
<td>0.002079812</td>
</tr>
<tr>
<td>5</td>
<td>65.6962136</td>
<td>-</td>
<td>2.071005692</td>
<td>0.247424446</td>
<td>0.006569640</td>
</tr>
<tr>
<td>6</td>
<td>70.1273082</td>
<td>-</td>
<td>4.265936007</td>
<td>0.232458016</td>
<td>0.016551520</td>
</tr>
<tr>
<td>7</td>
<td>82.2960238</td>
<td>-</td>
<td>3.632888104</td>
<td>0.355050163</td>
<td>0.013987920</td>
</tr>
<tr>
<td>8</td>
<td>92.8677605</td>
<td>-</td>
<td>6.850048057</td>
<td>0.377881216</td>
<td>0.049841235</td>
</tr>
<tr>
<td>9</td>
<td>99.6061234</td>
<td>-</td>
<td>10.305084010</td>
<td>0.469770376</td>
<td>0.026027378</td>
</tr>
<tr>
<td>10</td>
<td>109.1543283</td>
<td>-</td>
<td>-</td>
<td>0.476741452</td>
<td>0.005606426</td>
</tr>
<tr>
<td>11</td>
<td>129.3741945</td>
<td>-</td>
<td>-</td>
<td>0.505888044</td>
<td>0.062382302</td>
</tr>
<tr>
<td>12</td>
<td>138.2164330</td>
<td>-</td>
<td>-</td>
<td>0.554736550</td>
<td>0.039487317</td>
</tr>
<tr>
<td>13</td>
<td>141.5464639</td>
<td>-</td>
<td>-</td>
<td>0.540480876</td>
<td>0.043935515</td>
</tr>
<tr>
<td>14</td>
<td>145.7469718</td>
<td>-</td>
<td>-</td>
<td>0.765411709</td>
<td>0.034249528</td>
</tr>
<tr>
<td>15</td>
<td>152.6283573</td>
<td>-</td>
<td>-</td>
<td>0.712383825</td>
<td>0.024716759</td>
</tr>
<tr>
<td>16</td>
<td>155.2965039</td>
<td>-</td>
<td>-</td>
<td>0.761104705</td>
<td>0.026228034</td>
</tr>
<tr>
<td>17</td>
<td>158.2610708</td>
<td>-</td>
<td>-</td>
<td>0.749058367</td>
<td>0.091826207</td>
</tr>
<tr>
<td>18</td>
<td>164.1452194</td>
<td>-</td>
<td>-</td>
<td>0.840736127</td>
<td>0.118353184</td>
</tr>
<tr>
<td>19</td>
<td>171.1756923</td>
<td>-</td>
<td>-</td>
<td>0.946719951</td>
<td>0.111314058</td>
</tr>
<tr>
<td>20</td>
<td>179.3917590</td>
<td>-</td>
<td>-</td>
<td>0.928617606</td>
<td>0.119627862</td>
</tr>
</tbody>
</table>

Table: Errors $e_h^{(k)}(H) =: \frac{\lambda_{\text{ms},(k)} - \lambda_h^{(k)}}{\lambda_h^{(k)}}$ and $h = 2^{-7} \sqrt{2}$.

Målvist (Uppsala)
Computation of Eigenvalues by Upscaling
2013-06-18 19 / 23
1 Model problem
2 Upscaling technique and error analysis
3 Numerical experiments
4 Application to a non-linear eigenvalue problem
5 Conclusions
Consider the Gross-Pitaevskii equation: find \(u \in V, \|u\|_{L^2(\Omega)} = 1 \), and \(\lambda \in \mathbb{R} \) such that

\[
(A \nabla u, \nabla v) + (bu, v) + (u^3, v) = \lambda(u, v), \quad \forall v \in V.
\]

The equation describes the quantum states of a boson gas cooled down to an ultra-low temperature.

- We reuse the same discrete space \(V_{H,\ell}^{ms,h} \) i.e. we ignore the low order non-linearity on the fine scale.
- We then solve the upscaled non-linear eigenvalue problem on the coarse scale.

Consider the Gross-Pitaevskii equation: find $u \in V$, $\|u\|_{L^2(\Omega)} = 1$, and $\lambda \in \mathbb{R}$ such that

$$(A \nabla u, \nabla v) + (bu, v) + (u^3, v) = \lambda (u, v), \quad \forall v \in V.$$

The equation describes the quantum states of a boson gas cooled down to an ultra-low temperature.

Theorem

$$\lambda \leq \lambda_h^p \leq \lambda + CH^2 \|u - u_h\|_{H^1(\Omega)} + CH^4,$$

$$\|u - u_h^p\|_{H^1(\Omega)} \leq C\|u - u_h\|_{H^1(\Omega)} + CH^3.$$

for the ground state, with C independent on the regularity of u and variations in A.

Outline

1. Model problem
2. Upscaling technique and error analysis
3. Numerical experiments
4. Application to a non-linear eigenvalue problem
5. Conclusions
Conclusion

- The Localized Orthogonal Decomposition (LOD) technique preserves the low spectrum of the operator. In particular the eigenvalue error is proportional to H^4 after postprocessing H^8.
- Numerical experiments indicates even higher rates possibly due to additional regularity in the solution that is not taken advantage of in the analysis.
- The technique is applicable also for non-linear eigenvalue problems again with very impressive convergence rates.

Thank you for your attention!