Adaptive Variational Multiscale Methods with Applications in Oil Reservoir Simulation

Axel Målqvist

axel.malqvist@it.uu.se

Division of Scientific Computing

Uppsala University

SIAM Computational Science and Engineering, Miami, USA, 2nd March 2009 - p.1/27

Outline and Papers

Outline

- The Variational Multiscale Method (VMS)
- Symmetric VMS
- Error estimates and adaptivity
- Mixed formulation
- Numerical examples
- Conclusions

Papers

- M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME 2007
- M.G. Larson and A. Målqvist, A Mixed Adaptive Variational Multiscale Method with Applications in Oil Reservoir Simulation M3AS 2009

Model Problem

The framework covers a range of equations.

Poisson Equation. Find $u : \Omega \rightarrow \mathbf{R}$ such that

 $-\nabla \cdot a \nabla u = f$ in Ω , u = 0 on $\partial \Omega$

where $a(x) \ge a_0 > 0$ bounded with multiscale features, $f \in L^2$, and Ω is a domain in \mathbb{R}^d , d = 1, 2, 3

Weak Form. Find $u \in H_0^1(\Omega)$ such that

 $a(u,v) = (a\nabla u, \nabla v) = (f,v)$ for all $v \in H_0^1(\Omega)$,

where $(v, w) = \int_{\Omega} v \cdot w \, dx$.

Variational Multiscale Method

We introduce two spaces \mathcal{V}_c and \mathcal{V}_f such that

$$\mathcal{V}_c \oplus \mathcal{V}_f = H_0^1(\Omega)$$

- \mathcal{V}_c is a finite dimensional approximation of $H_0^1(\Omega)$. (finite element space)
- \mathcal{V}_f can be chosen in different ways
 - Hierarchical basis
 - $\circ L^2(\Omega)$ -orthogonal to \mathcal{V}_c
 - Wavelet modified hierarchical basis

Construction of Symmetric VMS

Starting from the model problem: find $u \in \mathcal{V}$ such that

a(u,v) = l(v) for all $v \in \mathcal{V}$

and setting

$$u = u_c + u_f \quad v = v_c + v_f$$

we get: find $u_c + u_f \in \mathcal{V}_c \oplus \mathcal{V}_f$ such that

 $a(u_c + u_f, v_c + v_f) = l(v_c + v_f)$ for all $v_c + v_f \in \mathcal{V}_c \oplus \mathcal{V}_f$

Note that $u_f \in \mathcal{V}_f$ satisfies the equation

$$a(u_f, v_f) = l(v_f) - a(u_c, v_f)$$
 for all $v_f \in \mathcal{V}_f$

Fine Scale Equations

Given the fine scale equation

$$a(u_f, v_f) = l(v_f) - a(u_c, v_f)$$
 for all $v_f \in \mathcal{V}_f$

we let

$$u_f = u_{f,l} + u_{f,c}$$

with

• $u_{f,l} \in \mathcal{V}_f$ the contribution from the right hand side

$$a(u_{f,l}, v_f) = l(v_f)$$
 for all $v_f \in \mathcal{V}_f$

• $u_{f,c} \in \mathcal{V}_f$ the contribution from the coarse scale part

$$a(u_{f,c}, v_f) = -a(u_c, v_f)$$
 for all $v_f \in \mathcal{V}_f$

Fine Scale Effects Coarse Scale

Let $\mathcal{T}: \mathcal{V}_c \to \mathcal{V}_f$ denote the solution operator to $a(u_{f,c}, v_f) = -a(u_c, v_f)$ for all $v_f \in \mathcal{V}_f$

i.e.

$$u_{f,c} = \mathcal{T}u_c$$

Using the resulting decomposition

$$u = u_c + \mathcal{T}u_c + u_{f,l}$$

we get

$$a(u_c + Tu_c + u_{f,l}, v_c + v_f) = (f, v_c + v_f)$$

for all $v_c \in \mathcal{V}_c$ and $v_f \in \mathcal{V}_f$.

Symmetric VMS

Since $u_{f,l}$ is directly determined we get the following problem for u_c : find $u_c \in \mathcal{V}_c$ such that

 $a(u_c + \mathcal{T}u_c, v_c + \mathcal{T}v_c) = (f, v_c + \mathcal{T}v_c) - a(u_{f,l}, v_c + \mathcal{T}v_c)$

for all $v_c \in \mathcal{V}_c$.

- Here we chose $v_f = T v_c$ to get a symmetric formulation
- Note that in the standard VMS procedure one basically sets $v_f = 0$ in this step and thus the resulting problem is not necessarily symmetric
- However, when the exact operator \mathcal{T} is used, the methods are equivalent.
- Note also that $a((I + T)v_c, v_f) = 0$ i.e., the exact T decouples the problem.

Symmetric VMS

Let

• $\tilde{\mathcal{T}}$ be a computable approximation of \mathcal{T}

• $U_{f,l}$ be a computable approximation of $u_{f,l}$ We get the method: find $U_c \in \mathcal{V}_c$ such that

$$a(U_c + \tilde{\mathcal{T}}U_c, v_c + \tilde{\mathcal{T}}v_c) = (f, v_c + \tilde{\mathcal{T}}v_c) - a(U_{f,l}, v_c + \tilde{\mathcal{T}}v_c)$$

for all $v_c \in \mathcal{V}_c$.

On matrix form this leads to,

$$K_{\text{mod}}U_c = b_{\text{mod}}$$

Given U_c , $U_{f,l}$, and $\tilde{\mathcal{T}}$, U_f can be computed.

Construction of $\widetilde{\mathcal{T}}$

Recall that $u_c = \sum_i u_{c,i} N_{c,i}$ with $\{N_{c,i}\}$ a basis in \mathcal{V}_c and let

$$a(\mathcal{T}N_{c,i}, v_f) = -a(N_{c,i}, v_f) \text{ for all } v_f \in \mathcal{V}_f$$

By linearity

$$\mathcal{T}u_c = \sum_i u_{c,i} \mathcal{T}N_{c,i}$$

and thus we are led to computing $TN_{c,i}$ for each coarse basis function $N_{c,i}$.

We define $\tilde{\mathcal{T}}$ by solving these problems approximately by

- Restricting to a localized patch problem $supp(N_{c,i}) \subset \omega_i$
- Discretizing using a fine subgrid on ω_i

Refinement and Layers

One and two layer stars. Typically homogeneous Dirichlet boundary condition are used.

Construction of $U_{f,l}$

Recall that $u_{f,l} \in \mathcal{V}_f$ solves

$$a(u_{f,l}, v_f) = l(v_f)$$
 for all $v_f \in \mathcal{V}_f$

Using a partition of unity φ_i we can split the right hand side as follows $l(v_f) = \sum_i l(\varphi_i v_f)$ to get,

$$u_{f,l} = \sum_{i} u_{f,l,i}$$
$$u(u_{f,l,i}, v_f) = l(\varphi_i v_f)$$

Again we find an approximation by restricting to patches and discretizing the subgrid.

Localized Fine Scale Solution

Typical local solutions $U_{f,i} = U_{c,i}\tilde{T}N_i + U_{f,l,i}$ using 1, 2, and 3 layer stars on triangles. The right hand side has support in the center and the solution is forced to be zero in coarse nodes.

Parallel Structure

- No communication between subgrid problems
- Multiple levels possible
- Different physics in subgrid model possible. Need transfer operator.

Adaptive VMS

The Adaptive Variational Multiscale Method (AVMS) builds on the following ingredients:

- Error estimation framework
- Adaptive strategy for tuning of critical discretization parameters

The method is designed so that:

error $\rightarrow 0$ when $h \rightarrow 0$ and $L \rightarrow \infty$

- A priori error estimates in progress.
- To circumvent difficulties with choosing discretization parameters h and L we use an adaptive algorithm based on a posteriori error estimates

Energy Norm Error Estimate

$$\|\sqrt{a}\nabla e\|^{2} \leq \sum_{i\in\mathcal{C}} C_{i} \|H\mathcal{R}(U_{c})\|_{\omega_{i}}^{2}$$
$$+ \sum_{i\in\mathcal{F}} C_{i} \left(\|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_{i}}^{2} + \|h\mathcal{R}_{i}(U_{f,i})\|_{\omega_{i}}^{2}\right)$$

- The first term measures the coarse mesh error
- The second term is the normal derivative of the fine scale solutions on ∂ω_i and measures the error due to restriction to subdomains
- The third term measures the fine scale error caused by discretization

Adaptive Strategy

$$\|\sqrt{a}\nabla e\|^{2} \leq \sum_{i\in\mathcal{C}} C_{i} \|H\mathcal{R}(U_{c})\|_{\omega_{i}}^{2}$$
$$+ \sum_{i\in\mathcal{F}} C_{i} \left(\|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_{i}}^{2} + \|h\mathcal{R}_{i}(U_{f,i})\|_{\omega_{i}}^{2}\right)$$

- 1. Compute the solution U.
- 2. Calculate residuals for each $i \in \{C \mathcal{F}\}$. Mark large entries.
- 3. For marked $i \in C$, let h = H/2 and L = 1 for these entries.
- 4. For marked $i \in \mathcal{F}$, either let L := L + 1 or h := h/2 depending on the indicators.
- 5. Return to 1.

Application to a Mixed Problem

Poisson equation on mixed form:

$$\int \frac{1}{a} \boldsymbol{\sigma} - \nabla u = 0 \quad \text{in } \Omega$$
$$-\nabla \cdot \boldsymbol{\sigma} = f \quad \text{in } \Omega$$
$$n \cdot \boldsymbol{\sigma} = 0 \quad \text{on } \Gamma$$

where the permeability *a* is taken from the SPE data set (upperness in log-scale),

Splitting Based on RT-elements

We use lowest order RT basis functions together with constants.

- Let π_c is the RT-interpolant onto \mathcal{V}_c and P_c be the L^2 -projection onto W_c
- We define $\boldsymbol{\sigma} = \pi_c \boldsymbol{\sigma} + (I \pi_c) \boldsymbol{\sigma}$ and thus $\boldsymbol{\sigma}_f = (I \pi_c) \boldsymbol{\sigma} \quad \boldsymbol{\sigma}_c = \pi_c \boldsymbol{\sigma}.$
- Further we define $u = P_c u_c + (1 P_c)u = u_c + u_f$.
- Thus we are using an L^2 -orthogonal splitting in the scalar variable.

Hierarchical split for lagrangian elements leads to nodal exactness in the coarse solution while here we get exactness of average values on coarse elements.

Approximate Fine Scales

- We apply the abstract framework
- Divide the fine scale problem into contributions from the coarse scale part σ_c and right hand side f
- Let $\Sigma_c = \sum_i \Sigma_{c,i} \phi_i$ where ϕ_i are the Raviart-Thomas basis functions. Solve the local problem driven by the basis functions (one problem for each basis function)
- Localize by restricting the problem to a patch and using homogeneous Neumann conditions
- Discretize using a suitable subgrid

Example of Convergence

We solve the SPE problem.

To the left we see the flux and to the right the pressure. We use 220×60 elements for the reference solution, f = 1 in the lower left corner and f = -1 in the upper right corner.

Example of convergence

 55×15 coarse elements and h = H/4. We get exponential decay in max norm error compared with reference solution when increasing the number of layers!

A Posteriori Error Estimate

The following energy norm bound holds

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_a^2 \le C_a^2 \sum_i R_{\omega_i}^2 + R_{\partial \omega_i}^2$$

where

$$R_{\omega_i} = \left\| \frac{1}{a} (\Sigma_c^i \boldsymbol{\phi}_i + \boldsymbol{\Sigma}_{f,i}) - \nabla U_{f,i}^* \right\|_{\omega_i}^2$$
$$+ \left\| \frac{h}{a} (f \psi_i + \nabla \cdot (\Sigma_c^i \boldsymbol{\phi}_i + \boldsymbol{\Sigma}_{f,i})) \right\|_{\omega_i}^2$$
$$R_{\partial \omega_i} = \left\| \frac{1}{2\sqrt{h}} U_{f,i}^* \right\|_{\partial \omega_i \setminus \Gamma}^2$$

 U^* is a post proc version of U, $C_a \sim \|\sqrt{a}\|_{L^{\infty}(\omega_i)}$.

Adaptivity Example: Layers and Refinements

Black circle is one, blue is two and red is three layers/refinements (layers top, refs bottom). Remember,

SIAM Computational Science and Engineering, Miami, USA, 2nd March 2009 - p.24/27

Relative Error in Energy Norm

Galerkin 105.6% and one iteration 15.8%.

Two iterations 10.1% and three iterations 7.6%.

Conclusions from Example

- The error indicators finds critical areas
- More computational effort in these areas decreases the global error quickly
- To get an equally good approximation without adaptivity we need to use three refinements on two layer patches
- In the example above we still have 70% of the patches using one layer and one refinement

Summary

The AVMS provides:

- Systematic technique for construction of a computable approximation of the fine scale part of the solution using decoupled localized subgrid problems.
- A posteriori error estimation framework (also for goal functionals)
- Adaptive algorithms for automatic tuning of critical discretization parameters