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Motivating example: Secondary oil recovery

Find pressure p and water concentration s such that:

−∇ · kλ(s)∇p = q, ṡ+∇ · [f(s)v] = g, v = −kλ(s)∇p,

where k is permeability, λ(s) the total mobility, v total velocity, f
fractional flow, and g, q sink and source terms.
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Motivation for a multiscale approach

These three ideas can be found in most multiscale methods:
• Split the problem into two or more scales.
• Localize the fine scale computations in space.
• Use the fine scale information to modify (improve) the

coarse scale solution.

Why do we need it in this application?
• The permeability has multiscale features.
• The size of the system is huge, parallelism is needed.
• The diffusion coefficient changes in time, but only at the

water front. We can reuse most of the modifications made
on the fine scale.
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Multiscale methods

• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98
• Variational multiscale method: Hughes et al. 95,

Larson-Målqvist 05, Nordbotten 09
• Multiscale finite element method: Hou-Wu 96,

Efendiev-Ginting 04, Aarnes-Lie 06
• Multiscale finite volume method: Jenny et al. 03
• Heterogeneous multiscale method: Engquist-E 03,

E-Ming-Zhang 04
• Equation free: Kevrekidis et al. 05
• ...

1. Convergence is typically only studied in the periodic case.

2. More work has been done for elliptic than hyperbolic
problems.
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A priori error analysis of a multiscale method

A. Målqvist
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Model problem

We consider the strong form:

−∇ · α∇u = f, in Ω, u = 0 on ∂Ω.

The weak form reads: find u ∈ V := H1
0 (Ω) such that,

〈u, v〉 :=
∫

Ω
α∇u · ∇v dx =

∫

Ω
fv dx := l(v), for all v ∈ V .

We assume f ∈ L2(Ω) and 0 < α0 ≤ α ∈ L∞(Ω).
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Derivation of multiscale methods

We let T0 be a (coarse) mesh of Ω and TJ be the mesh after J
refinements. Let V0 ⊂ VJ ⊂ V be corresponding spaces.

Reference solution uJ ∈ VJ fulfills 〈uJ , w〉 = l(w) for all w ∈ VJ .

Let π0 : V ∩C(Ω) → V0 and WJ = {w ∈ VJ : π0w = 0}. Introduce
the a-orthogonal map I + TJ with TJ : V0 → WJ fulfilling,

〈v0 + TJv0, w〉 = 0, for all v0 ∈ V0, w ∈ WJ .

We let u0 = π0uJ and write uJ = u0 + TJu0 + ul,J . Then
ul,J = (1− π0 − TJπ0)uJ ∈ WJ solves,

〈ul,J , w〉 = l(w), for all w ∈ WJ ,

Find u0 ∈ V0 s.t. 〈u0 + TJu0, v0〉 = l(v0)− 〈ul,J , v0〉, for all v0 ∈ V0.
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Three multiscale methods

VMS: 〈u0 + T vms
J u0, v0〉 = l(v0)− 〈uvms

l,J , v0〉,
〈v0 + T vms

J v0, v〉 ≈ 0,

〈uvms
l,J , v〉 ≈ l(v),

MsFEM: 〈u0 + Tmfem
J u0, v0 + Tmfem

J v0〉 = l(v0 + Tmfem
J v0),

〈v0 + Tmfem
J v0, v〉 ≈ 0,

Sym-AVMS: 〈u0 + T k
J u0, v0 + T k

J v0〉 = l(v0 + T k
J v0)− 〈ukl,J , v0 + T k

J v0〉,
〈v0 + T k

J v0, v〉 ≈ 0,

〈ukl,J , v〉 ≈ l(v),

for all v0 ∈ V0 and v ∈ WJ . Note that 〈v0 + TJv0, wJ 〉 = 0.
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Approximation of TJ and ul,J in Sym-AVMS

We localize the fine scale equations. Let V0 = span({φi}) and,
〈φi + TJφi, v〉 = 0, for all w ∈ WJ ,

〈ul,J,i, v〉 = l(φiv), for all w ∈ WJ ,

We introduce a patch ωk
i around supp(φi):

ω
1

i

i

i

ω
2

Now let WJ (ω
k
i ) = {v ∈ WJ : supp(v) ⊂ ωk

i }.
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Sym-AVMS

Let T k
J φi ∈ WJ (ω

k
i ) and ukl,J ∈ WJ (ω

k
i ) be given by,

〈φi + T k
J φi, v〉 = 0, for all w ∈ WJ (ω

k
i ),

〈ukl,J,i, v〉 = l(φiv), for all w ∈ WJ (ω
k
i ).

The method reads: Find uk0 ∈ V0 such that

〈uk0+T k
J u

k
0 , v0+T k

J v0〉 = l(v0+T k
J v0)−〈ukl,J , v0+T k

J v0〉, ∀v0 ∈ V0.
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Observation about decay in W (Fourier)

Consider the Poisson equation,

−∆u = φi in Ω, u = 0 on ∂Ω,

where φi has local support in Ω. The weak form reads: find
u ∈ Z such that, 〈u, v〉 = (φi, v) for all v ∈ Z.
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Solution using interpolation on 3 layers

To the left Z = V (log decay) and right Z = W (exp decay).

Constraints are realized using Lagrangian multipliers.
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Convergence analysis: basis functions TJφi

We sketch the convergence proof below. We start with the
decay of TJφi.

Let {χj}j∈MJ
be a hierarchical basis for WJ . Let Â = 〈χl, χj〉,

l, j ∈ MJ . Further let TJφi =
∑

j∈MJ
αjχj . We use CG with

α̂0 = 0 and right hand side bj = −〈φi, χj〉. We have,

|α−α̂m|
Â
≤ 2





√

κ(Â)− 1
√

κ(Â) + 1





m

|α|
Â
:= 2ρm|α|

Â
, where |v|2A = vTAv.

Note that
√

κ(Â) ∼ J in 2D and
√

κ(Â) ∼ 2J in 3D.
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Convergence analysis: local solutions TJφi

We have TJφi =
∑

j∈MJ
αjχj , with corresponding vector α,

where MJ is the set non-coarse nodes on level J .

Since bj has support on a coarse 1-ring and the HB only
spreads information within ωk

i in 2k iterations we have,

|αΩ\ωk |2 =
∑

j∈MJ (Ω\ωk

i
)

|αj |2 =
∑

j∈MJ (Ω\ωk

i
)

|αj − α̂2k
j |2 ≤ |α− α̂2k|2,

where αΩ\ωk only contains the node values outside ωk
i .

Furthermore |αΩ\ωk |2
Â
≤ C|α− α̂2k|2

Â
≤ Cρ4k|α|2

Â
which means

that the coefficients in α decays away from node i and more
precisely |||TJφi|||Ω\ωk

i
≤ Cρ2k|||TJφi|||, with |||v|||2ω = 〈v, v〉ω.
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Convergence analysis: local solutions T k
Jφi → TJφi

Now let T k
J φi =

∑

j∈MJ(ωk

i
) α

k
jχj .

We have 〈TJφi − T k
J φi, w〉 = 0 for all w ∈ WJ(ω

k
i ).

Now let w =
∑

j∈MJ (ωk

i
)(αj − αk

j )χk ∈ WJ(ω
k
i ), with

corresponding vectors αωk and αk. We get,

|α− αk|2
Â
= (α− αωk

)T Â(α− αk)

= αT
Ω\ωkÂ(α− αk)

≤ |αΩ\ωk |
Â
|α− αk|

Â
,

But now |α− αk|
Â
≤ Cρ2k|α|

Â
or,

|||TJφi−T k
J φi||| ≤ Cρ2k|||TJφi||| and |||ul,J,i−ukl,J,i||| ≤ Cρ2k|||ul,J,i|||.
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Convergence analysis: system

Let V0,J = span({φi + TJφi}), Vk
0,J = span({φi + T k

J φi}). We

introduce projections PJ : V → V0,J and P k
J : V → Vk

0,J such that,

〈PJ (uJ − ul,J), v〉 = 〈uJ − ul,J , v〉, for all v ∈ V0,J ,

〈P k
J (uJ − ukl,J), v〉 = 〈uJ − ukl,J , v〉, for all v ∈ Vk

0,J .

Since 〈u0 + TJu0, v0 + TJv0〉 = (f, v0 + TJv0)− 〈ul,J , v0 + TJv0〉.

We have ukJ = P k
J (uJ − ukl,J) + ukl,J and uJ = PJ (uJ − ul,J) + ul,J .

Algebraic manipulation gives

uJ − P k
J (uJ − ukl,J)− ukl,J = (1− P k

J )PJuJ + P k
J (PJuJ + ul,J − uJ)

+ (1− P k
J )(ul,J − ukl,J) = (1− P k

J )PJuJ+
∑

i

(1− P k
J )(ul,J,i − ukl,J,i).
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Convergence analysis: main result

Lemma 1 It holds |||(1− P k
J )PJuJ ||| ≤ C‖uJ‖L∞(Ω)ρ

2k/h0.

Let w =
∑

vi(TJφi − T k
J φi), with vi = π0uJ(xi). Since P k

J is a
projection |||PJuJ − P k

JPJuJ ||| ≤ |||w||| ≤ C‖uJ‖L∞(Ω)ρ
2k/h0.

Theorem 2 Let uJ be the reference solution and ukJ the
Sym-AVMS approximation. Then,

|||uJ − ukJ ||| ≤ C
(

‖uJ‖L∞(Ω)/h0 + ‖f‖L2(Ω)

)

ρ2k,

where ρ =

√
κ(Â)−1√
κ(Â)+1

and
√

κ(Â) ∼ J in 2D and
√

κ(Â) ∼ 2J in 3D.
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Numerical examples































α1(x, y) = 1,

α2(x, y) = 1 + 0.5 · sin(8x)sin(8y),
α3(x, y) = 0.1 + 0.9 ∗ rand, (x, y) ∈ τ, for all τ ∈ T1,
α4(x, y) = aGSLIB(i, j), for i−1

120 ≤ x < i
120 ,

j−1
120 ≤ y < j

120 ,

α5(x, y) = aSPE(i, j), for i−1
120 ≤ x < i

120 ,
j−1
120 ≤ y < j

120 ,

We let f = χinj − χprod, with supp(χinj) = [0, 1/60]× [0, 1/60], and
supp(χprod) = [1− 1/60, 1] × [1− 1/60, 1].
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Convergence of local solution T k
Jφi

We let i = 435, J = 3, and h0 = 1/30, using rectangular mesh.
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Relative error in energy norm (left). We get exponential
convergence in k.

Corresponding error using 2k cg iterations (right) ⇒ slower
convergence for high condition numbers.

Preconditioner that works in the argument?
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Convergence of global solution

Again J = 3 and h0 = 1/30. We plot the error uJ − ukJ in energy
norm (relative).
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How does the error depend on h0?

Remember

|||uJ − ukJ ||| ≤ C
(

‖uJ‖L∞(Ω)/h0 + ‖f‖L2(Ω)

)

ρ2k,

We let J = 2 and k = 3.
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The bound is probably not sharp in terms of h0.
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Summary of this paper

1. We prove an a priori error bound and thereby convergence
as k → ∞ for Sym-AVMS, for fix h0 and J .

2. The bound reveals that for fix h0 and J we get exponential
decay in the number of layers k.

3. Numerics experiments confirms this and furthermore
reveals that a very small value k ∼ 2 is needed for 2D
examples in practise.

4. The numerics indicates that for high ratios maxx α(x)
minx α(x) direct

computation of the linear systems on the patches is
preferable to using a few iterations of cg.

5. There are still improvements needed in the analysis in the

case when maxx α(x)
minx α(x) is large and in the dependency on h0.

Preconditioner and/or wavelet basis might resolve this.
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A discontinuous Galerkin multiscale method for first order
hyperbolic equations

M. G. Larson, A. Målqvist, and R. Söderlund
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Model problem

We let I = (0, T ] and Ω be a domain with boundary
∂Ω = Γ− ∪ Γ+, where Γ− = {x ∈ ∂Ω : n · σ < 0} is inflow.
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Strong form: Given u(0) = u0 find u(t), t ∈ I such that

u̇+∇ · (σu) = f, in Ω× I,

u = g on Γ− × I, n · ∇u = 0 on Γ+ × I.
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Discontinuous Galerkin (dG1) formulation

We let TJ be a mesh for Ω and VJ = {v : v|K ∈ P1(K),∀K ∈ TJ}.
Further let EI ∪ EΓ be the set of edges, [v] = v+ − v−,
〈v〉 = (v+ + v−)/2, and the upwind value

ṽ = v+, n · σ > 0,

ṽ = v−, n · σ < 0,

ṽ = 〈v〉, n · σ = 0.

Find uJ (t) ∈ VJ such that,

(u̇J , v) + q(uJ , v):=
∑

K∈TJ

(u̇J , v)K −
∑

K∈TJ

(uJ , σ· ∇v)K +
∑

E∈E\Γ−

(n · σũJ , [v])E

= (f, v)−
∑

E∈Γ−

(n · σ, gv)E := l(v), ∀v ∈ VJ , t ∈ I.

Brezzi, Marini, and Süli, DG methods for first-order hyperbolic systems, 2004.
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Variational multiscale framework

Let 0 = t0 < t1 < · · · < tN = T . Given un−1
J we get unJ as the

solution to,

(u̇J , v) + q(uJ , v) = l(v), ∀v ∈ VJ , t ∈ (tn−1, tn],

(uJ(tn−1), v) = (un−1
J , v), ∀v ∈ VJ .

We let T0 be a coarse mesh with space V0 and let VJ = V0 ⊕WJ

using L2(Ω) orthogonal split.

Find u0 ∈ V0 and wJ = uJ − u0 ∈ WJ such that,

(u̇0 + ẇJ , v0 + vJ ) + q(u0 + wJ , v0 + vJ ) = l(v0 + vJ),

(u0(tn−1) + wJ (tn−1), v0 + vJ ) = (un−1
0 + wn−1

J , v0 + vJ ),

for all v0 ∈ V0, vJ ∈ WJ , and t ∈ (tn−1, tn].
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Coarse and fine scale equations

We consider the non-symmetric version of AVMS and split the
coarse and the fine scale using the L2-orthogonality.

(u̇0, v0) + q(u0 + wJ , v0) = l(v0),

(u0(tn−1), v0) = (un−1
0 , v0),

(ẇJ , v) + q(wJ , v) = l(v)− q(u0, v),

(wJ(tn−1), v) = (un−1
J , v),

for all v0 ∈ V0, v ∈ WJ , and t ∈ (tn−1, tn].

Again we split the fine scale contribution into different parts. Let
wJ = ul,J + TJu0 + u0,J , where ul,J is associated with l(v), TJu0

with q(u0, v), and u0,J with (un−1
J , v).
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Split of fine scale equations and coarse scale equation

Let V0 = span({φi}) and let ul,J,i, TJφi, u0,J,i ∈ WJ solve

(u̇l,J,i, vJ ) + q(ul,J,i, vJ ) = l(φivJ ),

(ul,J,i(tn−1), vJ ) = 0,

( ˙TJφi, vJ ) + q(TJφi, vJ ) = −q(φi, vJ ),

(TJφi(tn−1), vJ ) = 0,

(u̇0,J,i, vJ ) + q(u0,J,i, vJ ) = 0,

(u0,J,i(tn−1), vJ ) = (φiu
n−1
J , vJ ),

for all v0 ∈ V0, vJ ∈ WJ , and t ∈ (tn−1, tn]. Let u0 =
∑

i αiφi and
TJu0 =

∑

i αiTJφi. We get the following coarse scale system,

(u̇0, v0) + q(u0 + TJu0, v0) = l(v0)− q(ul,J + u0,J , v0),

(u0(tn−1), v0) = (un−1
0 , v0).

SIMULA, Oslo, Norway, 17th June, 2011 – p. 28/38



Solving fine scale problems on patches

We now consider two types of patches.
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We solve localized fine scale problems in WJ (ω
k
i ), let uk0 solve,

(u̇k0 , v0) + q(uk0 + T k
J u

k
0 , v0) = l(v0)− q(ukl,J + uk0,J , v0),

(uk0(tn−1), v0) = (uk,n−1
0 , v0).

We only consider uniform fine time step for all equations.
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Sketch of algorithm

for i = 1 to N do
Compute T k

J φi and ukl,J,i on patches, given data σ, f,Ω.

Compute to moments q(T k
J φi, φj) and q(ukl,J,i, φj).

end for
while do tn < T

for i = 1 to N do
Compute uk,n0,J,i given uk,n−1

0,J,i , T k
J φi, ukl,J,i, and uk,n−1

0 .

Compute moments q(uk,n0,J,i, φj).
end for
Compute uk,n0 given q(T k

J φi, φj), q(ukl,J + uk,n0,J , φj), and

uk,n−1
0 .

end while
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Numerical examples

We let Ω = [0, 1]× [0, 1] consider two different problems,

(Case 1) Γ− = [0, 1]× {0}, σ = [0, 1], g = 0, f = 1,

(Case 2) Γ− = ∅, σ = σSPE, f = χinj − χprod.
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We use backward Euler for the time discretization.

SIMULA, Oslo, Norway, 17th June, 2011 – p. 31/38



Convergence of local solutions

We consider T k
J φi(tn), where φi has support in the black

triangles, ukl,J,i and uk0,J,i behave in a very similar way.
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• Case 1 (left) dt = 0.005, i = 216.
• Case 2 (right) dt = 1, i = 210.

We now plot T k
J φi using both symmetric and directed patches.
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Local solutions
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Case 1 above and case 2 below.
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Convergence local solutions

Relative error compared to reference solution in H1-norm for
symmetric (green) and directed (blue) patches. Case 1 (left) and
case 2 (right). Note x-axis is dofs in local problems.
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• The time step (dt) will affect how much T k
J φi spreads out

over the domain.
• We would like to have a coarse time step (dt) which leads to

a reasonable size of the patches and then a fine time step
used to compute T k

J φi(tn−1 + dt).
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Reference solutions

We first plot reference solutions for the two problems:
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Convergence of global solution

Relative error compared to reference solution in H1-norm at final
time.
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Case 1 (left) and case 2(right). We again see that the directed
patches are much more efficient and that we get exponential
decay in (average) degrees of freedom in the local sub
problems.

The large relative error for small patches is the result of
accumulation over time.
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Summary of this paper

1. We have extended the AVMS framework to hyperbolic
problems.

2. We have implemented an efficient way of choosing the
shape of the patches.

3. We provide numerical examples that show very promising
results.

4. A lot of work is still needed for the time discretization. Both
simple and more complicated problems.

5. We have not yet done any error analysis. A posteriori error
estimates would give us a possibility to refine and increase
the size of the patches adaptively. We would also be able to
choose the time step adaptively.

SIMULA, Oslo, Norway, 17th June, 2011 – p. 37/38



Other recent results and future directions

We have also studied
• a posteriori error estimation for Poisson equation, CG, DG,

RT
• adaptive algorithms for local mesh patch size refinement
• convection dominated stationary problems

Future projects include
• improving the convergence result
• adaptive algorithm for the hyperbolic method
• convergence of adaptive algorithms
• solving the coupled system using RT and DG
• multiscale in time
• implement AMVS on parallel machines, 3D
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