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The Model Problem

The Dirichlet Problem.

−∇ · a∇u = f in Ω, u = 0 on ∂Ω.

where a > 0 is bounded.

Weak Form. Find u ∈ V = H1

0
(Ω) such that

a(u, v) = (a∇u,∇v) = (f, v) for all v ∈ V.
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Example of a Basic Error Estimate

If we for the moment assume a to be periodic
a = a(x/ε) we have (Hou),

‖e‖2

a = a(e, e) ≤ C

(

h

ε

)2

‖f‖2.

• h > ε will give unreliable results even with
exact quadrature.

• h < ε will often be to computationally
expensive.
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Conclusion of the Simple Estimate

We need to solve PDE:s on a scale that captures
the oscillations but we can not afford to do it on
the entire domain.
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Figure 1: Coarse H > ε and fine h < ε mesh.

Since ‖e‖a ∼ h
ε , ‖e‖a ∼ H is reasonable.
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First Step of Three: Spaces

Leaving the periodic setting. We let V = Vc ⊕ Vf .
• The goal of our calculation affects the choice

of Vf .
• Hierarchical basis gives an approximation of

the nodal interpolant of u onto Vc.
• The Scott-Zhang interpolant.
• A modified hierarchical basis that increases
L2 orthogonality between the scales.

Fine scale base functions needs to decay rapidly.
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First Step: Spaces
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Figure 2: Different choices of fine scale base
functions.
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Second Step: VMM and Decoupling

We let u = uc + uf and v = vc + vf in the weak
form (Hughes): Find uc ∈ Vc and uf ∈ Vf such
that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf , vf ) = (f, vf ) − a(uc, vf )

:= (R(uc), vf ) for all vf ∈ Vf .

Let {ϕi}i∈N be a partition of unity and define
uf,i ∈ Vf ,

a(uf,i, vf ) = (R(uc), ϕivf) for all vf ∈ Vf .
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Second Step: VMM and Decoupling
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Figure 3: The fine scale solution uf,i.
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Third Step: Approximation on Patches

We finally solve the fine scale problems
approximately on patches ωi: Find Uc ∈ Vc and
Uf,i ∈ Vh

f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf ) = (R(Uc), ϕivf) for all vf ∈ V h
f (ωi).

Fine scale problems can be solved for all coarse
nodes N or some F where N = C ∪ F .
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Third Step: Approximation on Patches
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Figure 4: The fine scale solution Uf,i for different
patches ωi.

One, two, and three layer stars. We get good
agreement with the truth mesh solution.
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Error Equation

We introduce the coarse and fine scale error
ec = uc − Uc, ef,i = uf,i − Uf,i, and
e = ec +

∑

i∈N ef,i. We have the following
orthogonality properties:

a(ec, vc) + a(ef , vc) = 0, for all vc ∈ Vc

and

a(ef,i, vf ) + a(ec, ϕivf) = 0, for all vf ∈ Vh
f (ωi).
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Energy Norm Estimate

‖e‖2

a = a(e, e) = a(e, e− πce)

= (f, e− πce) − a(Uc, e− πce) − a(Uf , e− πce)

=
∑

i∈N
(f, ϕi(e− πce)) − a(Uc, ϕi(e− πce))

− a(Uf,i, e− πce)

Remember

a(Uf,i, vf)+a(Uc, ϕivf)−(f, ϕivf) = 0, for all vf ∈ Vh
f (ωi).
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Energy Norm Estimate
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Figure 5: We study z = e− πce. We have z − π0

fz

to the left, z − πfz in the middle and πfz − π0

fz to
the right.
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Energy Norm Estimate

We work with these two parts separately. We
start with z − πfz where z = e− πce,

∑

i∈N
(f, ϕi(z − πfz)) − a(Uc, ϕi(z − πfz))

− a(Uf,i, z − πfz)

≤
(

∑

i∈N
Ca‖hRi(Uf,i)‖2

ωi

)1/2

‖e‖a.
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Energy Norm Estimate

Next we study the boundary part πfz − π0

fz,
∑

i∈N
(f, ϕi(πfz − π0

fz)) − a(Uc, ϕi(πfz − π0

fz))

− a(Uf,i, πfz − π0

fz)

≤
(

∑

i∈N
Ca‖

√
HΣ(Uf,i)‖2

∂ωi

)1/2

‖e‖a.

Σ(Uf,i) is a variational approximation of ∂nUf,i.
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Energy Norm Estimate

‖e‖2

a ≤
∑

i∈N
Ca

(

‖hRi(Uf,i)‖2

ωi
+ ‖

√
HΣ(Uf,i)‖2

∂ωi

)

If we just solve local problems on part of the
domain F we get,

‖e‖2

a ≤
∑

i∈C
Ca‖HR(Uc)‖2

ωi

+
∑

i∈F
Ca

(

‖hRi(Uf,i)‖2

ωi
+ ‖

√
HΣ(Uf,i)‖2

∂ωi

)
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Energy Norm Estimate

The boundary part ‖
√
HΣ(Uf,i)‖2

∂ωi
, where

Σ(U(f, i)) is an approximation of ∂nUf,i decays
rapidly on ∂ωi.
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Figure 6: One two and three layer stars.
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Adaptive Algorithm

‖e‖2

a ≤
∑

i∈N
Ca

(

‖hRi(Uf,i)‖2

ωi
+ ‖

√
HΣ(Uf,i)‖2

∂ωi

)

1. Start with given r and L where h = H/2r.

2. Calculate U using AVMM.

3. Ei
r = ‖hRi(Uf,i)‖2

ωi
Ei

L = ‖
√
HΣ(Uf,i)‖2

∂ωi
.

4. Stop if Ei
h and Ei

L are small enough else if
Ei

h > Ei
L let rnew := 2r and if Ei

L > Ei
h let

Lnew = 2L end return to 2.
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Adaptive Algorithm

Example using the Adaptive Algorithm,

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10−3
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Refinement [1 2 3 3 4 4]
Layers [1 1 1 2 2 3]

Figure 7: Periodic a (0.05 blue 1 white) with ε = H

and 129 × 129 coarse nodes.
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Linear Functional Error (e, ψ)

We introduce the dual problem: find φ such that

a(v, φc) + a(v, φf ) = (v, ψ), for all v ∈ V.
From the orthogonality showed earlier on we
have a(e, φc) = 0. We get

(e, ψ) = a(e, φ) = a(e, φf) = (f, φf) − a(U, φf)

=
∑

i∈C
(f, ϕiφf) − a(Uc, ϕiφf)

+
∑

i∈F
(f, ϕiφf) − a(Uc, ϕiφf) − a(Uf,i, φf).
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Linear Functional Error (e, ψ)

We need to calculate an approximation of φf

numerically.
• If possible φf can be calculated by a global

calculation on a mesh where h < hφ < H.
• Or φf can be calculated by AVMM. We need

to keep track on neighboring patches to form
φf locally.

Multiscale Modeling and Applications in Fluid and Material Science, Oslo 18/10-2004 – p. 21



Linear Functional Error (e, ψ)
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Figure 8: The dual solution on the red patches
affects the error calculated on the black patch.
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Linear Functional Error (e, ψ)

We consider an example where we seek a very
accurate solution in part of the domain.
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Figure 9: Geometry to the left with interesting re-
gion marked ψ = I{0≤x,y≤0.5}. Solution to the right,
a = f = 1.
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Linear Functional Error (e, ψ)

We solve the dual problem with ψ = I{0≤x,y≤0.5}.
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Figure 10: Dual solution φ to the left and φf to the
right.
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Linear Functional Error (e, ψ)

We remember the error estimate,

(e, ψ) =
∑

i∈C
(f, ϕiφf) − a(Uc, ϕiφf)

+
∑

i∈F
(f, ϕiφf) − a(Uc, ϕiφf) − a(Uf,i, φf).

1. Start with all nodes in C. Calculate U and φf .

2. Calculate error estimators, solve local
problems or increase number of layers.

3. Stop if the error is small enough else go to 2.
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Linear Functional Error (e, ψ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: Local problems are solved using two
and three layer stars in marked nodes.
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Linear Functional Error (e, ψ)
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Figure 12: Error compared to reference mesh
for standard Galerkin (left) and two iterations of
AVMM as described above (right).
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Standard A Posteriori Error Estimates

For duality based algorithms we know that:
• The dual solution φ need to be approximated

but not in Vc.
• Regular refinement or higher order methods

allocate lots of memory.

Instead we solve the dual problem by AVMM in
each coarse node,

(e, ψ) =
n
∑

i=1

(R(U),Φf,i) + a(U, φf − Φf).
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Standard A Posteriori Error Estimates

The second term can be estimated in the
following way,

a(e, (φf − Φf)) ≤ ‖e‖a ‖φf − Φf‖a

≤ ‖e‖a ‖φ− (Φc + Φf)‖a.

Both these terms can be estimated.

We can use standard Galerkin on the primal and
AVMM on the dual and have control on the error
committed by not solving the dual exactly.
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Ongoing Projects on This Subject

• Adaptivity for the local problems.
• More tests on how the split between Vc and
Vf affects the algorithm.

• More layers than two.
• 3D implementation.
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