Progress in the SSF project "CutFEM, Geometry, and Optimal design" Computer simulation of multiscale problems

Axel Målqvist and Daniel Elfverson

University of Gothenburg and Uppsala University

Umeå 2015-05-20

Målqvist (Gothenburg)

Computer simulation of multiscale problems

Research group and Outline

My research group consists of:

Daniel Elfverson, Uppsala, Multiscale and UQ, 2011-2015 Fredrik Hellman, Uppsala, Multiscale and UQ, 2012-2017 Anna Persson, Göteborg, Time dep. ms problems, 2013-2018 Gustav Kettil, Göteborg, Simulation of paper, 2014-2016 Tony Stillfjord, Göteborg, Time dep. PDE and splitting, 2015-2017 *Support from SSF project 2016-2018.*

- Introduction to Localized Orthogonal Decomposition techniques for solving multiscale problems (Axel)
- Application to eigenvalue problems (Axel)
- Application to problems posed on complex geometry (Daniel)
- Recent development and openings for collaboration (Axel)

Multiscale problems

Applications such as

▷ flow in a porous medium

composite materials

require numerical solution of partial differential equations with rough data (e.g. permeability or module of elasticity).

Major challenge: Features on multiple scales in space and time.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Example (periodic coefficient): $A(x) = 2 + \sin(2\pi x/\varepsilon), \varepsilon = 2^{-6}, f = 1$

oscillatory coefficient

Målqvist (Gothenburg)

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Example (periodic coefficient): $A(x) = 2 + \sin(2\pi x/\varepsilon), \varepsilon = 2^{-6}, f = 1$

Målqvist (Gothenburg)

Poisson's equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

where A has rapid oscillations.

Conclusion

- Fine scale features have to be resolved even to get coarse solution behavior right (both *H*¹ and *L*² errors are large).
- Resolution of the fine scales by a uniform mesh is very computationally expensive.
- Local mesh refinement is not an option.
- The standard basis does not seem to be suitable for this problem.

Standard FE decomposition

- Coarse FE mesh with parameter H
- Piecewise linear continuous FE space V_H
- $\mathfrak{I}_{\mathcal{T}}: V \to V_H$ interpolation operator

Decomposition

$$V = V_H \oplus V^{\mathsf{f}}$$
 with $V^{\mathsf{f}} := \{v \in V \mid \mathfrak{I}_T v = 0\}$

Example:

rough coefficient

Målgvist (Gothenburg)

Standard FE decomposition

- Coarse FE mesh with parameter H
- Piecewise linear continuous FE space V_H
- $\mathfrak{I}_{\mathcal{T}}: V \to V_H$ interpolation operator

Decomposition

$$V = V_H \oplus V^{\mathsf{f}}$$
 with $V^{\mathsf{f}} := \{v \in V \mid \mathfrak{I}_T v = 0\}$

Example:

Orthogonal multiscale decomposition

• Let dim
$$(V_H^{ms}) = dim(V_H)$$

• Start from V_H and add fine scale corrections in V^f

•
$$\forall v_H^{ms} \in V_H^{ms}, v_f \in V^{f} \text{ holds } \int_{\Omega} A \nabla v_H^{ms} \cdot \nabla v_f \, dx = 0$$

Decomposition

$$V = V_H^{ms} \oplus V^f$$
 with $V^f := \{v \in V \mid \mathfrak{I}_T v = 0\}$

Example:

rough coefficient

Målqvist (Gothenburg)

Orthogonal multiscale decomposition

• Let dim
$$(V_H^{ms}) = dim(V_H)$$

• Start from V_H and add fine scale corrections in V^f

•
$$\forall v_H^{ms} \in V_H^{ms}, v_f \in V^{f} \text{ holds } \int_{\Omega} A \nabla v_H^{ms} \cdot \nabla v_f \, dx = 0$$

Decomposition

$$V = V_H^{ms} \oplus V^f$$
 with $V^f := \{v \in V \mid \mathfrak{I}_T v = 0\}$

Example:

Let $V_H = \text{span} \{\lambda_x \mid x \in \mathcal{N}\}$ and further let, $\phi_x \in V^{\text{f}}$ solve

$$\int_{\Omega} A\nabla (\lambda_x - \phi_x) \cdot \nabla w \, dx = 0, \quad \text{for all } w \in V^{\text{f}}.$$

Multiscale FE space

$$\mathcal{I}_{H}^{\mathsf{ms}} = \mathsf{span}\left\{\lambda_{x} - \phi_{x} \mid x \in \mathcal{N}\right\}$$

Example:

Let $V_H = \text{span} \{\lambda_x \mid x \in \mathcal{N}\}$ and further let, $\phi_x \in V^{\text{f}}$ solve

$$\int_{\Omega} A\nabla (\lambda_x - \phi_x) \cdot \nabla w \, dx = 0, \quad \text{for all } w \in V^{\text{f}}.$$

Multiscale FE space

$$\mathcal{I}_{H}^{\mathsf{ms}} = \mathsf{span}\left\{\lambda_{x} - \phi_{x} \mid x \in \mathcal{N}\right\}$$

We have proven exponential decay of $\lambda_x - \phi_x!$

Målqvist (Gothenburg)

This allows us to truncate to a patch.

Målqvist (Gothenburg)

Computer simulation of multiscale problems

Umeå 2015-05-20 7 / 30

This allows us to truncate to a patch and fine scale discretization.

Målqvist (Gothenburg)

Computer simulation of multiscale problems

Localized patch with refined mesh gives computable basis functions

- The multiscale basis functions are computed by solving the PDE on local patches.
- The basis functions are totally independent, leading to trivial parallelization.
- Exponential decay has been proven and is crucial.
- Remember $\dim(V_H^{ms}) = \dim(V_H)$.

Computing the multiscale approximation

Multiscale approximation:
$$u_H^{ms} \in V_H^{ms}$$
 satisfies
$$\int_{\Omega} A \nabla u_H^{ms} \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx \quad \text{for all } v \in V_H^{ms}$$

• We have proven error bound (using $k = \log(1/H)$ layers):

$$\|\nabla (u-u_H^{\rm ms})\| \le CH \|f\|,$$

where $||v||^2 = \int_{\Omega} v^2 dx$ and *C* is independent on variations in *A*. • Note that for the standard FEM with $A = A(\frac{x}{\epsilon})$ we have,

$$\|\nabla(u-u_H)\| \leq C\frac{H}{\epsilon}\|f\|.$$

Numer. exp. (Poisson, $f \in L^2(H)$, $f \in H_0^1(H^2)$!)

Numer. exp. (linear eigenvalue problem, H^4)

l	$\lambda_{h}^{(\ell)}$	$e^{(\ell)}(1/2\sqrt{2})$	$e^{(\ell)}(1/4\sqrt{2})$	$e^{(\ell)}(1/8\sqrt{2})$	$e^{(\ell)}(1/16\sqrt{2})$
1	21.4144522	5.472755371	0.237181706	0.010328293	0.000781683
2	40.9134676	-	0.649080539	0.032761482	0.002447049
3	44.1561133	-	1.687388874	0.097540102	0.004131422
4	60.8278691	-	1.648439518	0.028076168	0.002079812
5	65.6962136	-	2.071005692	0.247424446	0.006569640
6	70.1273082	-	4.265936007	0.232458016	0.016551520
7	82.2960238	-	3.632888104	0.355050163	0.013987920
8	92.8677605	-	6.850048057	0.377881216	0.049841235
9	99.6061234	-	10.305084010	0.469770376	0.026027378
10	109.1543283	-	-	0.476741452	0.005606426
11	129.3741945	-	-	0.505888044	0.062382302
12	138.2164330	-	-	0.554736550	0.039487317
13	141.5464639	-	-	0.540480876	0.043935515
14	145.7469718	-	-	0.765411709	0.034249528
15	152.6283573	-	-	0.712383825	0.024716759
16	155.2965039	-	-	0.761104705	0.026228034
17	158.2610708	-	-	0.749058367	0.091826207
18	164.1452194	-	-	0.840736127	0.118353184
19	171.1756923	-	-	0.946719951	0.111314058
20	179.3917590	-	-	0.928617606	0.119627862

Table: Errors
$$e^{(\ell)}(H) =: \frac{\lambda_H^{(\ell)} - \lambda_h^{(\ell)}}{\lambda_h^{(\ell)}}$$
 and $h = 2^{-7}\sqrt{2}$.

The quadratic eigenvalue problem

Consider discretized structure with damping,

$$Kx + \lambda Cx + \lambda^2 Mx = 0,$$

where $K_{ij} = (A \nabla \phi_j, \nabla \phi_i)$ is stiffness, $C_{ij} = c(\phi_j, \phi_i)$ is damping, and $M_{ij} = (\phi_j, \phi_i)$ is mass matrix. Linearization: $(y = \lambda x)$

$$Ax := \begin{bmatrix} K & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} -C & -M \\ M & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} := \lambda Bx,$$

Note that $T = A^{-1}B$ has eigenvalues λ^{-1} . *T* is not symmetric (even if *C* is), it is compact but not necessarily in the limit $h \rightarrow 0$.

The analysis is very different from symmetric case. Semi-simple eigenvalues are ok but defective leads to unknown constants.

Målqvist (Gothenburg)

Numerical experiment

Numerical experiment

Relevant papers

Some papers relevant for the SSF project (work package D):

- Poisson P1, M. & Peterseim, Math. Comp., 2014.
- Poisson DG, E., Georgoulis, M., & Petersiem, SINUM, 2013.
- Linear Eig., M. & Peterseim, Numer. Math. 2015.
- Gross-Pitaevskii, Henning, M., & Peterseim, SINUM, 2014.
- Helmholtz, Peterseim, two preprints

LOD is applicable when: The diffusion is present and lower order terms are not dominating.

LOD is efficient when: basis can be reused many times in the calculation (nonlinear iteration, time stepping, ...).

LOD – complex geometry

Consider the Poisons equation

$$\begin{aligned} -\Delta u &= f & \text{in } \Omega, \\ v \cdot \nabla u &= -\kappa u & \text{on } \Gamma_R, \\ u &= 0 & \text{on } \Gamma_D, \end{aligned}$$

where Γ_D and Γ_R are not resolved by the mesh

Construct a multiscale method for complicated geometries with the following properties:

- No pre-asymptotic effect
- Linear convergence without resolving the boundary
- Conditioning is independent of how the boundary cut the mesh
- Only enrich the coarse finite element space in the vicinity of the boundary

Poincaré-Friedrich inequality

Difficulties: We need a inequality of the type

$$\inf_{c \in \mathbb{R}} \|u - c\|_{L^{2}(\omega)} \leq C(\omega) \operatorname{diam}(\omega) \|\nabla u\|_{L^{2}(\omega)}$$

where

• $C(\omega)$ is bounded independent of diam (ω)

Error analysis

• Let ω_{Γ} be a vicinity of the complicated boundary

Theorem (Locally enriched LOD method)

Given that $u \in H^1_{\Gamma_D} \cap H^2(\Omega \setminus \omega_{\Gamma})$ and that $u_H^{\Gamma} \in V_H^{\Gamma,L}$ is the LOD solution, then

$$\begin{split} |||u - u_{H}^{LOD}|||_{h} & \leq ||\nabla(u - \Im_{h}u)||_{L^{2}(\omega_{\Gamma})} + H|u|_{H^{2}(\Omega\setminus\omega_{\Gamma})} \\ & + H||f||_{L^{2}(\omega_{\Gamma})} + H^{-1}(L)^{d/2}\gamma^{L}||f||_{L^{2}(\Omega)} \end{split}$$

holds. The condition number scale as $\kappa \leq H^{-2}$.

- $\Im_h u$: interpolation operator on the fine mesh
- L: Number of layers
- $0 < \gamma < 1$: depends on the Poinaré-Friedrich constant

Error analysis

• Choose $L = \lceil C \log(H^{-1}) \rceil$,

Theorem (Locally enriched LOD method)

Given that $u \in H^1_{\Gamma_D} \cap H^2(\Omega \setminus \omega_{\Gamma}^{k-1})$ and $u_H^{\Gamma} \in V_H^{\Gamma,L}$, then

 $|||u - u_H^{LOD}|||_h \lesssim H$

holds. The condition number scale as $\kappa \leq H^{-2}$.

Numerical verification – Fractal domain

Consider the Poisson equation in the domain:

- Correctors are computed everywhere
- Mixed boundary condition

Numerical verification – Fractal domain

- The convergence in relative energy norm
- Conditioning

Numerical verification – Local singularities

Consider the Poisson equation in the domains:

- Correctors are computed in the red areas
- Dirichlet boundary condition

Numerical verification – Local singularities

- The convergence in relative energy norm
- Conditioning

Numerical verification – Saw tooth boundary

Consider the Poisson equation in the domain:

- Correctors are computed in the red area
- Test both Dirichlet and Neumann boundary condition on the saw tooth

Numerical verification – Saw tooth boundary

- The convergence in relative energy norm
- Conditioning

Numerical verification – Cut domain

Consider the Poisson equation in the domain:

- Correctors are computed everywhere
- Conside a fix mesh and cut the domain in different ways

Numerical verification – Cut domain

Cut 1	$e_{\rm rel}(a)$	$e_{\rm rel}(b)$	$e_{\rm rel}(c)$				
D	0.085	0.082	0.082				
D-N	0.092	0.078	0.077				
N-D	0.036	0.036	0.035				
	cond(a)	cond(b)	cond(c)				
D	10.37	10.59	11.47				
D-N	10.82	11.17	12.06				
N-D	272.56	254.58	256.48				
Cut 2	$e_{\rm rel}(a)$	$e_{\rm rel}(b)$	$e_{\rm rel}(c)$				
D	0.086	0.091	0.100				
D-N	0.086	0.081	0.080				
N-D	0.037	0.052	0.068				
	cond(a)	$\operatorname{cond}(b)$	cond(c)				
D	10.32	10.08	9.49				
D-N	10.41	11.98	13.56				
N-D	222.78	99.95	71.06				

Recent development and collaboration

We consider a Poisson type model problem with a diffusion coefficient *A* that varies between two different values:

$$-\nabla \cdot A \nabla u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

- The objects may be short fibres/particles or cracks/holes
- the solution has low regularity at the boundary of the objects
- local mesh refinement work for single configuration but not when multiple configurations or "moving" objects are allowed
- Monte Carlo simulation or optimization procedure

Recent development

- In order to treat multiple configurations we want a regular static coarse background mesh.
- We only compute LOD basis functions in a region around each object and use standard P1 FEM basis functions in between.
- The size of the surrounding region can be controlled by *H* to meet tolerance, *p* adaptivity, DG. .
- If the regions overlap we compute basis functions for the union of the overlapping domains.

Målqvist (Gothenburg)

Recent development

- CutFEM allows us (we hope) to "glue" the LOD computations to the background mesh avoiding remeshing.
- The assembly of the LOD parts is independent of the orientation of the object (rotation,translation).
- If the objects have the same shape huge savings are possible.
- Compared to CutFEM using spatially adapted subgrids around the objects the LOD approach leads to much smaller systems of equations for each configuration of the objects.

Målqvist (Gothenburg)

Recent development

- Random distribution of objects: Monte-Carlo simulation can be performed on the coarse scale with "fine scale" accuracy.
- Design of materials: Optimization procedure where the objects are moved in order to minimize some output. Again repeated solves on the coarse scale still gives "fine" scale accuracy.

Comments/questions/possible collaborations

- The problem is very similar to complex boundary, holes is a direct application.
- Any comments from or difficulties seen by the CutFEM experts?
- We got the idea from porous media flow applications, where there is a great uncertainty in the location and direction of defects. We seek applications in composite materials which fits our framework.
- Uncertainty quantification in material science is a possible application for this approach.
- What about applicability to optimal design problems?

We will start this work after the summer, in collaboration with Fredrik Hellman