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A U

PDE

Given samples of A the goal is to cheaply compute samples of U .
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The model problem

Strong form:

The Poisson Equation with randomly perturbed diffusion coefficient,
As = a+As > 0, a deterministic with multiscale features, As are
assumed to be piecewise constant random perturbation, s ∈ Λ, As are
iid, f ∈ L2(Ω) is deterministic,

−∇ · As∇Us = f in Ω,

Us = 0 on Γ.

Weak form:

Find Us ∈ V = H1
0 (Ω) such that,

(As∇Us,∇v) = (f, v) for all v ∈ V.
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Diffusion coefficient
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A piecewise constant random perturbation is added to a deterministic
diffusion coefficient.
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Motivation

• Field data has in most cases measurement errors.
• A natural way to model these errors are as random perturbations

of the data.
• The sensitivity in the solution to these perturbations is important

to understand if want to be able to rely on the solution.
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• Note that if we want to find a∗ such that −∇ · a∗∇E[Us] = f then
a∗ 6= E[As] in general, in fact if As is constant in space we have
that a∗ = 1/E[1/As]. In general there is no simple expression.
This means that even finding E[Us] for this problem is non-trivial.
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Montecarlo finite element method

We solve one PDE for each sample of As.
for s from 1 to S do
As = a+As

Us = solver(f,As)
end for
E[U ] ≈∑S

s=1 U
s/S for example.

• Positive: We have full access to {Us}S
s=1. It is possible to get a

good picture of how sensitive the solution is to the perturbations.
• Negative: Expensive since we need to solve S PDE’s all with

different operators and multiscale features which means that a
high resolution is necessary.

We would like to find a method for getting this kind of information to a
much lower computational cost.
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The main idea

If As was a constant perturbation we could use a Neumann series to
compute the inverse of the matrix,

Us = (Ka +AsK)−1b = (I + As(Ka)−1K)(Ka)−1b

=

∞
∑

t=0

(−As(Ka)−1K)t(Ka)−1b,

where Ka
i,j = (a∇φi,∇φj), Ki,j = (∇φi,∇φj), and bj = (f, φj), given a

finite element space Vh = span({φi}i∈N ).

• Positive: If the Neumann series convergence quickly we can use a
truncated version using a few terms. We only need to invert the
matrix in the right hand side once.

• Negative: It will be expensive to solve these systems since a has
multiscale features, which means that we will need high resolution
to get an accurate solution.
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The main idea

However, when As (not As = a+As) is piecewise constant we can use
a non-overlapping domain decomposition algorithm with domains that
coincide with the regions where As are constant.

• If the Neumann series convergence quickly we can still compute
samples of the solution by just multiplying and adding random
numbers and vectors, now individually on the domains.

• We only need to invert the matrices on each domain which is
much cheeper.

• Any multiscale problem need to be solved with some kind of
parallel algorithm and Domain Decomposition is one of the most
commonly used so this choice is not a huge limitation.
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Lions non-overlapping domain decomposition method

We use the following non-overlapping domain decomposition algorithm
proposed by Lions, here presented on two domains Ω = Ω1 ∪ Ω2 for
simplicity,

−∇ · As∇Us,1
(i) = f, in Ω1,

Us,1
(i) = 0, on ∂Ω1 ∩ Γ,

Us,1
(i) + λn1 · As∇Us,1

(i) = Us,2
(i−1) − λn2 · As∇Us,2

(i−1), on ∂Ω1 ∩ ∂Ω2,

−∇ · As∇Us,2
(i) = f, in Ω2,

Us,2
(i) = 0, on ∂Ω2 ∩ Γ,

Us,2
(i) + λn2 · As∇Us,2

(i) = Us,1
(i−1) − λn1 · As∇Us,1

(i−1),

where (i) is the iterate in the domain decomposition algorithm.
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Montecarlo with Lions domain decomposition solver

We will derive the method in three steps starting from the montecarlo
finite element method. First we introduce Lions non-overlapping
domain decomposition as the solver.

for s from 1 to S do
for i from 1 to I do

for d from 1 to D do
Compute Us,d

(i) = (Ka +As,dK)−1bs(f,As, Us
(i−1)).

end for
end for

end for

Here d indicates a certain domain in the dd algorithm.

Note that the loop over s is independent of the other loops.
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Montecarlo with domain decomposition: reversed order

Since the loops are independent we can reverse the order,

for i from 1 to I do
for d from 1 to D do

for s from 1 to S do
Compute Us,d

(i) = (Ka +As,dK)−1bs(f,As, Us
(i−1))

end for
end for

end for

Remember that the random perturbation As,d is a constant. This
means that on each domain d we want to solve S problems with very
similar matrices, that can be approximately inverted using a truncated
Neumann series.
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The proposed method

We approximate the inverse
of the perturbed matrix with a truncated Neumann series using T terms,

for i from 1 to I do
for d from 1 to D do

for t from 0 to T do
Compute Ct = (Kt(Ka)−1)t

end for
for s from 1 to S do
Us,d

(i) ≈∑T−1
t=0 (−As,d)tCtbs(f,As, Us

(i−1))

end for
end for

end for
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Convergence of the Neumann series

Let ‖ · ‖ be an operator norm. If we assume As,d < a∗ = minx∈Ωd
a

then,

(i) ‖(As,d(Ka)−1K)t‖ ≤ C

(

As,d

a∗

)t

,

(ii) (I +As,d(Ka)−1K)−1 =
∞
∑

t=0

(−As,d(Ka)−1K)t,

(iii) ‖(I +As,d(Ka)−1K)−1 −
T−1
∑

t=0

(−As,d(Ka)−1K)t‖

≤ C

(

As,d

a∗

)T

‖(I + As,d(Ka)−1K)−1‖.
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Proof of (i)

Let δ = As,d and L = −δ(Ka)−1K : V d
h → V d

h and z = Lx for an
arbitrary x ∈ V d

h . Then z solves the following problem: find z ∈ V d
h such

that,

(
a

δ
∇z,∇v) +

1

δλ
〈z, v〉 = −(∇x,∇v),

for all v ∈ V d
h . If we choose v = z we get,

1
δ ‖

√
a∇z‖2

Ωd
+ 1

δλ‖z‖2
∂Ωd

= −(∇x,∇z). If we use that
a∗ = minx∈Ωd

a ≤ a and use the Cauchy-Schwartz inequality we
further have,

a∗

δ
‖∇z‖2

Ωd
+

1

δλ
‖z‖2

∂Ωd
≤ ‖∇x‖Ωd

‖∇z‖Ωd
.

We define ‖z‖2
V d

h

= ‖∇z‖2
Ωd

+ ǫ‖z‖2
∂Ωd

and choose ǫ = 2/(λa∗),

‖z‖2
V d

h

= ‖∇z‖2
Ωd

+
2

λa∗
‖z‖2

∂Ωd
≤
(

δ

a∗

)2

‖∇x‖2
Ωd

≤
(

δ

a∗

)2

‖x‖2
V d

h

.
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Proof of (i)

This means that,

‖Lx‖V d

h

≤ δ

a∗
‖x‖V d

h

.

Using the same argument on Lz instead of Lx we get,

‖L2x‖V d

h

= ‖Lz‖V d

h

≤ δ

a∗
‖z‖V d

h

≤
(

δ

a∗

)2

‖x‖V d

h

,

and further by induction, ‖Ltx‖V d

h

≤
(

δ
a∗

)t ‖x‖V d

h

. In the corresponding
operator norm,

(i) ‖Lt‖V d

h
,V d

h

= sup
‖w‖

V d
h

=1

‖Ltw‖V d

h

≤
(

δ

a∗

)t

.

Norms on finite dimensional spaces are equivalent, ‖ · ‖ ≤ C‖ · ‖V d

h
,V d

h

.
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Proof of (ii) and (iii)

For part (ii) we start with an identity,

I − LT = (I − L)

T−1
∑

t=0

Lt.

We know from (i) that limt→∞ Lt = 0 since
limt→∞ ‖Lt‖V d

h
,V d

h

≤ limt→∞( δ
a∗

)t = 0. If we take the limit as T tends

to infinity we end up with, I = (I − L)
∑∞

t=0 L
t, or

(ii) (I − L)−1 =

∞
∑

t=0

Lt.

Given (ii) statement (iii) follows easily since,

(iii) (I − L)−1 −
T−1
∑

t=0

Lt =
∞
∑

t=T

Lt = LT
∞
∑

t=0

Lt = LT (I − L)−1.
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Error estimation

We are going to focus on estimating the error of some stochastic
quantity, i.e. the distribution function, of a linear functional of the
solution.

There are five different error contributions in this method:

1. Space discretization error (h).

2. Error committed by not converging in the domain decomposition
algorithm (I).

3. Error committed by truncating the Neumann series (T ).

4. Error committed by only using (S) realizations of the solutions in
order to compute the desired stochastic quantity.

5. Modeling error when assuming the random perturbation to be
piecewise constant (D).

The goal is to equidistribute the error between these components.
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Duality based a posteriori error analysis

We start by studying the first three types of error, (h, I, T ). Let Us be
the exact solution and let Us

h,I,T be the approximate solution for each s.

We construct the corresponding dual problem,

−∇ · As∇Φs = ψ in Ω,

Φs = 0 on Γ,

where ψ is deterministic. We construct this problem in order to get
estimates of (Us − Us

h,I,T , ψ) for each individual sample, s.

Note that Φ is now also stochastic.
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Error representation formula

We introduce some more notations, let
es = Us − Us

h,I,T = Us
0,∞,∞ − Us

h,I,T . We proceed with a standard
calculation,

(es, ψ) = (es,−∇ · As∇Φs)

= (f,Φs) − (As∇Us
h,I,T ,∇Φs)

= (f,Φs) − (As∇Us
h,∞,∞,∇Φs)

− (As∇(Us
h,I,T − Us

h,∞,∞),∇Φs)

= (f,Φs) − (As∇Us
h,∞,∞,∇Φs)

+ (As∇(Us
h,∞,T − Us

h,I,T ),∇Φs)

+ (As∇(Us
h,∞,∞ − Us

h,∞,T ),∇Φs).

Remember that s is fix which means that we can view the problem as
being deterministic which means that the usual approach works.
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Second (I) and third (T ) term

Let ∆I be some positive number. Given an approximation to the dual
solution corresponding to Us, Φs

h′ ,I′ ,T ′ we assume

(As∇(Us
h,∞,T −Us

h,I,T ),∇Φs) ≈ (As∇(Us
h,I+∆I,T −Us

h,I,T ),∇Φs
h′ ,I′ ,T ′ ).

For the third term we use the summation formula,
Us,d

h,∞,∞ =
∑∞

t=0[(−As,d)t((Ka)−1K)t](Ka)−1bs, and,

Us,d
h,∞,T =

∑T−1
t=0 [(−As,d)t((Ka)−1K)t](Ka)−1bs. This means that,

Us
h,∞,∞ − Us

h,∞,T =
∑∞

t=T [(−As,d)t((Ka)−1K)t](Ka)−1bs =

[(−As,d)T ((Ka)−1K)T ]Us
h,∞,∞. To approximate this quantity we

assume, Us
h,∞,∞ − Us

h,∞,T ≈ [(−As,d)T ((Ka)−1K)T ]Us
h,I+∆I,T ,

(As∇(Us
h,∞,∞ − Us

h,∞,T ),∇Φs)

≈ (As∇(−As,d)T ((Ka)−1K)TUs
h,I+∆I,T ,∇Φs

h′ ,I′ ,T ′ ).
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First term (h)

The natural thing would be to say,

(f,Φs) − (As∇Us
0,∞,∞,∇Φs) ≈ (f,Φs

h′ ,T ′ ,I′ ) − (As∇Us
h,I,T ,∇Φs

h′ ,T ′ ,I′ ).

However, (f,Φs) − (As∇Us
h,I,T ,∇Φs) is the entire error i.e. the sum of

the three parts. So instead we let,

(f,Φs) − (As∇Us
0,∞,∞,∇Φs) ≈ (f,Φs

h′ ,T ′ ,I′ ) − (As∇Us
h,I,T ,∇Φs

h′ ,T ′ ,I′ )

− (As∇(Us
h,I+∆I,T − Us

h,I,T ),∇Φs
h′ ,I′ ,T ′ )

− (As∇(−As,d)T ((Ka)−1K)TUs
h,I+∆I,T ,∇Φs

h′ ,I′ ,T ′ ).

This gives us computable approximations to the three first error terms.
Note that ∆I > 0 to get a non-zeros contribution to the second term
and more importantly h

′

< h in order for the approximation of the first
term to make sense.
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Fourth error type (S)

Now we have access to {(Us
h,I,T , ψ)}S

s=1 and estimates of {(es, ψ)}S
s=1.

We want to estimate the error in a stochastic quantity and we choose
the distribution function F (x),

F (x) − F̃s(x) = P ({(Us, ψ)}s∈Λ < x) − P ({(Us
h,I,T , ψ)}S

s=1 < x),

where Λ is the entire distribution of samples. In order to estimate this
error we introduce the notation eM = sups∈Λ |(es, ψ)| and assume that
S is large enough for the Central Limit Theorem to be valid. Then,

|F (x) − F̃s(x)| ≤ τ

√

F̃ (x)(1 − F̃ (x))

S
+ eM max

y∈[x−eM ,x+eM ]
f̃(y),

with probability
∫ τ

−∞ e−t2/2 dt/
√

2π, where

F̃ (x) = P ({(Us
h,I,T )}s∈Λ < x) and F̃ (x) =

∫ x

−∞ f̃(x) dx.
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Proof of the estimate of the stochastic error

We use the triangle inequality,
|F (x) − F̃S(x)| ≤ |F (x) − F̃ (x)| + |F̃ (x) − F̃S(x)|, and start by studying
the second term in the right hand side. Let,

Xs(x) =

{

1 if (Us
h,I,T , ψ) < x,

0 otherwise.

This means that, F̃S(x) = P ({(Us
h,I,T , ψ)}S

s=1 < x) = 1
S

∑S
s=1X

s(x),

and, F̃ (x) = P ({(Us
h,I,T , ψ)}s∈Λ < x) = E[X ](x). For fix x we use CLT

to get the following bound which is valid for large numbers S,

P

(

1

σ(X)
√
S

S
∑

s=1

(Xs −E[X ]) ≤ τ

)

≈ 1

2π

∫ τ

−∞

e−t2/2 dt.

Further since X has binomial distribution we know that,
σ2(X)(x) = F̃ (x)(1 − F̃ (x)).
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Proof of estimate of stochastic error

P



|F̃ (x) − F̃S(x)| ≤ τ

√

F̃ (x)(1 − F̃ (x))

S



 ≈ 1

2π

∫ τ

−∞

e−t2/2 dt.

We now return to the first term (|F (x) − F̃ (x)|). We have,

F (x) − F̃ (x) = P ({(Us, ψ)}s∈Λ < x) − P ({(Us
h,I,T , ψ)}s∈Λ < x)

= P ({(Us
h,I,T , ψ) + (es, ψ)}s∈Λ < x) − P ({(Us

h,I,T , ψ)}s∈Λ < x)

≤ P ({(Us
h,I,T , ψ)}s∈Λ < x+ eM ) − P ({(Us

h,I,T , ψ)}s∈Λ < x)

=

∫ x+eM

x

f̃(y) dy ≤ eM max
y∈[x,x+eM ]

f̃(y).

We also have, F̃ (x) − F (x) ≤ eM maxy∈[x−eM ,x] f̃(y). We finally get,

|F (x) − F̃ (x)| ≤ eM max
y∈[x−eM ,x+eM ]

f̃(y).
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The a posteriori estimate

With probability
∫ τ

−∞ e−t2/2 dt/
√

2π we have,

|F (x) − F̃S(x)| ≤ τ

√

F̃ (x)(1 − F̃s(x))

S
+ eM · max

y∈[x−eM ,x+eM ]
f̃(y),

where eM = sups∈Λ |(es, ψ)|. However, in practise we are going to use
an approximation,

|F (x) − F̃S(x)| ≤ τ

√

F̃S(x)(1 − F̃S(x))

S
+ em · F̃ ′

S(x),

where em = maxs=1,...,S |(es, ψ)|, which we have an estimate of given

our three error indicators for each sample s ∈ 1, . . . , S, and F̃ ′
S(x) will

be computed using a central difference approximation.

Given this estimate we can present an adaptive algorithm.
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Adaptive algorithm

1. Choose h, I, T , S, h
′

, I
′

, and T
′

.

2. Compute {Us
h,I,T }S

s=1 and {Φs
h′ ,I′ ,T ′}S

s=1 given As.

3. Compute F̃S(x) and an approximation to F̃ ′
S(x) using central

differences.

4. Compute approximations to the three first parts of the error
indicator (eI , ψ) that depends on h, (eII , ψ) that depends on I,
and (eIII , ψ) that depends on T , and multiply by maxx F̃

′
S(x).

5. Compute the error indicator associated with the sample size,
(eIV , ψ).

6. If the error is small enough stop.

7. Otherwise improve h, I, T , and S according to the error indicators.

8. Return to 2.
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Numerical examples

We partition the domain into 9 × 9 subdomains for the domain
decomposition algorithm and let As be piecewise constant on the
partition.
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The maximum size of the perturbation As is 10% of the value in a. We
let f = ψ = 1.
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Numerical example: adaptivity

We start with h = 1/18, I = 40, T = 1, and S = 60 and let the adaptive
algorithm choose refine the parameters. Let TOL = 0.15 and τ = 1.645
which means 15% error with 95% probability.
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Numerical example: adaptivity

Here we refine if eI < TOL/2, eII < TOL/8, eIII < TOL/8, and
eIV < TOL/4 since it is cheaper to improve the second and the third
error term compared to the first and the fourth.
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Numerical example: adaptivity

We compare the computed version of F (x) with the reference solution,
i.e. |F̃S(x) − F̃ref(x)| (href = 1/72, Iref = 300, Tref = 5, and Sref = 480)
we get,
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We see that the error goes from almost 100%, which means that we
have missed the critical area completely to an error of around 30% to
finally an error less then 3%.
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Numerical example: oil reservoir data

We now study a more realistic problem using boundary conditions that
arise frequently in simulations of oil reservoirs.

−∇ · As∇Us = f in Ω,

As∂nU
s = 0 on ΓN ,

Us = 0 on ΓD,

where ΓN ∪ ΓD = Γ. Here Us represents the pressure field, and a is
the local permeability.

We have choosen Let f = 1 in the lower left corner, the injector, and
f = −1 in the upper right corner, the producer.

Note that the a posteriori error analysis for this setting is almost
identical to the pure Dirichlet setting.
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Numerical example: oil reservoir data

The permeability is piecewise constant on a 27 × 7 grid and is plotted
in log-scale to the left.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−4

−2

0

2

4

6

8

xy

lo
g(

a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−12

−10

−8

−6

−4

−2

0

x 10
−4

xy

U
s

We add a random perturbation to a (20% of the magnitude of a). To the
right: a typical solution Us.

The band of low permeability at x ≈ 0.2 creates a large pressure drop
parallel to the y-axis at this location.
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Numerical example: oil reservoir data

We assume the mesh is given and can not be refined due to the size of
the problem (common the these applications).

We fix the number of nodes on each of the 27 × 7 domains to be 5 × 5
and let ψ = 1. Let I = 100, T = 1, S = 30, τ = 1.645, and TOL = 0.15.
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Since the mesh size is fix in this example it does not appear in the
figure. The error tolerance is achieved when I = 800, T = 4, and
S = 240.
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Numerical example: oil reservoir data

We plot error bound indicators after each iteration in the adaptive
algorithm and the total error bound.
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We solve the dual problem using the same mesh as the primal since
we are not interested in refining the mesh. The number of iterations,
terms, and samples is the same for the primal and the dual.
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Numerical example: oil reservoir data

We plot the approximation to F (x) after each iteration.
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The fifth type of error

• So far we have neglected the fifth error type arising from the fact
that we approximate the random perturbation as a piecewise
constant function in space.

• Now instead we Assume that we have access to a very refined
version of As but we only want to use a piecewise constant
approximation Ās.

• Using to few domains in the dd algorithm means that the matrix
we need to invert on each domain becomes huge. This can be
avoided by choosing more domains in regions where As is
constant.

• On the other hand since all computation in the inner loop (over s)
are done on the boundary of the domains we want to minimize the
length of the interior boundaries i.e. the number of domains.
Thats why we need to avoid using to more domains, i.e. better
representation of As, then necessary. This is important both for
efficiency and storage.
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Modified a posteriori error representation formula

Let s be fix and assume we use an approximation to the correct
perturbation, Ās ≈ As defined as being piecewise constant on a
partition on Ω, when we compute Us

h,I,T,D. We have,

(es, ψ) = (f,Φs) − (As∇Us
h,I,t,D,∇Φs)

= (f,Φs) − ((a+ Ās)∇Us
h,I,t,D,∇Φs) + ((Ās − As)∇Us

h,I,T,D,∇Φs)

= (f,Φs) − ((a+ Ās)∇Us
h,I,t,D,∇Φs) +

D
∑

d=1

((Ās,d −As,d)∇Us
h,I,T,D,∇Φs)d.

The first term can be approximated with the three error indicators
already discussed, using the approximate perturbation. The sum will
measure the effect of not using the correct random perturbation.

D
∑

d=1

((Ās,d−As,d)∇Us
h,I,T,D,∇Φs)d ≈

D
∑

d=1

((Ās,d−As,d)∇Us
h,I,T,D,∇Φs

h′ ,I′ ,T ′ ,D
)d
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Modified a posteriori error representation formula

By equidistributing the error on the five terms and then equidistribute
the error in the fifth term between the domains we get a local indicator
on how many sub domains we need in each region for the domain
decomposition algorithm.

Remember,

|F (x) − F̃S(x)| ≤ τ

√

F̃S(x)(1 − F̃s(x))

S
+ em · F̃ ′

S(x),

where em = maxs=1,...,S |(es, ψ)|.

Now |(es, ψ)| will have one more contribution.
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Numerical example: stochastic modeling error

We let the random perturbation have 10% of the magnitude of a and
plot a typical sample of As.
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We assume the exact representation of the random perturbation is has
16 × 16 values. The dual load ψ = 1, 0.9 ≤ x, y ≤ 1, and ψ = 0
otherwise, f = 1.
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Numerical example: stochastic modeling error

We use a coarse (4 × 4) representation of the random perturbation by
averaging As over the regions.
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We assume some (weak) correlation in the measurement errors. If we
do not have any correlation only full and none refinement will be
considered.
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Numerical example: stochastic modeling error

We let h = 1/32, I = 40, T = 1, S = 40, TOL = 0.1, and τ = 1.645. We
compute the dual solution using the same mesh as the primal. The
adaptive algorithm chooses the following parameter values.
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The tolerance was reached after three iterations with I = 160, T = 4,
and S = 320.
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Numerical example: stochastic modeling error

We plot a representation of the random perturbation after each step in
the adaptive algorithm.
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Remember ψ = 1 in the upper right corner and a was complicated in
the upper half of the domain.
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Numerical example: stochastic modeling error

We plot error bound indicators after each iteration in the adaptive
algorithm and the total error bound.
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Between iteration 2 and 3 the number of iterations in the domain
decomposition stays the same. At the same time the size of the
smallest domain decreases by a factor two.
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Numerical example: stochastic modeling error

We get the following distribution functions after each of the four
iterations in the adaptive algorithm.

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

A
pp

ro
xi

m
at

io
n 

of
 th

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

A
pp

ro
xi

m
at

io
n 

of
 th

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

A
pp

ro
xi

m
at

io
n 

of
 th

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

A
pp

ro
xi

m
at

io
n 

of
 th

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

CAM Seminar at UCSD, 7 Nov 2006 – p. 44/46



Numerical example: stochastic modeling error

If we let the last iterate in the adaptive algorithm serve as reference
solution we get the following errors after the three first iterations.
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In areas where we use a coarse representation of the random
perturbation we almost replace it by its mean. We know that this is not
ok in general (e.g. for constant perturbation the harmonic mean is
accurate).

However, we only do this in regions with tiny impact on the desired
output quantity. In crucial regions we resolve the perturbation. We
detect these areas in the adaptive algorithm.
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Conclusions and future work

• We present a novel method for cheaply computing samples of the
solution to an elliptic problem with randomly perturbed coefficient

• We prove the Neumann series expansion converges which is a
crucial result for the method

• We present an a posteriori error representation formula and an
adaptive algorithm that tunes all parameters

• We discuss stochastic modeling error and include this in the
adaptive algorithm.

• We apply the method to various problems including a model
problem in oil reservoir simulation
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