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The Model Problem

Poisson Equation.
—V - -aVu=f InQ, wu=0onoa.

where a > 0 bounded, and € is a domain in R?,
d=1,223.

Weak form. Find v € H}(€) such that

(aVu, Vo) = /

Q

CLVU-V”Ud.CC:/fUdZC:(f,U)
0
for all v € Hy(Q).
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Multiscale Problems

Below are three examples of multiscale
problems.

The first one represents difficulties in the domain
(cracks, holes, ...) the second one oscillations in
a and the third one oscillations in f.
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» Very important applications including
materials, flow in porous media, ...

» The problems are very computationally
challenging so error estimation and efficient
algorithms are crucial.

 Attempts on using adaptive algorithms are
not common in literature.




Variational Multiscale Method

We introduce two spaces V. and V; such that
V. V= Hy(Q) i.e. u € Hy(2) can be written as
U — U, Uy.

V. i1s a finite dimensional approximation of
Hy(Q), (hat-functions).

- And V; is the rest i.e. it captures the fine
scale behavior.

We get the following equation

f=-V-aVu=-V-aVu, -V -aVuy.
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Variational Multiscale Method

Figure 1: u., us, and u. + uy.
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Variational Multiscale Method

Find u. € V. and u; € V; such that

(aVue, Vu.) + (aVuyr, Vo) = (f,v.) forallv, €V,
(aVur, Vur) = (f,vr) — (aVue, Vuy)
= (R(u.),vs) forallvy e Vy.

Fine scale information is used to modify the
coarse scale equation: Find u,. € V. such that

(aVue, ch)—l—(anl;lR(uc), Vo) = (f,v.) Y. € V..
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Our Basic Idea

- Discretization of V; (analytical estimates are
more common).

» Solve localized fine scale problems for each
coarse node (or some coarse nodes) in
parallel.

» Error estimation framework.
- Adaptive strategy for this setting.




Decouple Fine Scale Equations

Remember the fine scale equations:
(aVuys, Vur) = (R(ue),ve), forallvy e Vy.

Include a partition of unity,

n

(aVug, Vvg) = (R(uc),vp) =Y (R(uc), pivy),

1=1

let ur = > 7 us; where
(aVuyg;, Vog) = (R(uc), pivy)-




Approximate Solution

Since ¢; has support on a star S} in node ¢ we
solve the fine scale equations approximately on
W with Uf’z' — 0 on Ow;.

Find U. € V.and Uy = > Us; where
Uy € V{{(w;) such that

(aVU., Vu.) + (aVU¢, Vu.) = (f,v.) forallv. eV,
(aVUy, Vuy) = (R(U,), pivy) forall vy € Vi (w).




Refinement and Layers

One and two layer stars.
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L.ocalized Fine Scale Solution

One layer

Two layers
x10° x10°

Three layers
x 10 e
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x 10

0 o0
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Energy Norm Estimate

[VaVe| <) Gl HR(U)|.,

1eC
+ 3 C (IVES U low, + I1BRU) )
1€ F
» The first term Is coarse mesh error.

 The second term is the normal derivative of
the fine scale solutions on dw;.

» The third term is fine scale error.




Adaptive Strategy

IVaVe| <> ClIlHR(U.).,

1eC
+ 3 G (IVHS U)o, + PR (U)o,
e F
- We calculate these for each i € {coarse fine}.

- Large values 7 € coarse — more local
problems.

- Large values i € fine — more layers or
smaller h.
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Numerical Examples

We start with a unit square containing a crack.

We let the coefficient a = 1 and solve, —Au = f
with © = 0 on the boundary including the crack.
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We plot the difference between our solution and

We solve the problem by using the adaptive
a reference solution.
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Numerical Examples

In this example we study a discontinuous
coefficienta in —V - aVu = f. a = 1 (white) and
a = 0.05 (blue).




Numerical Examples

Truth-mesh solution. Galerkin solution.
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Numerical Examples

The number of layers seems to depend on the
fine scale structure rather that the domain size.
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Outlook

» Extended numerical tests in both 2D and 3D.
« Mixed formulation.

» Other equations (convection-diffusion, ...).

» More scales.

- Comparing results with classical
Homogenization theory.
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