# Adaptive variational multiscale methods based on a posteriori error estimation

Mats G. Larson and Axel Målqvist

mgl@math.chalmers.se and axel@math.chalmers.se

**Department of Computational Mathematics Chalmers** 

#### The Model Problem

#### **Poisson Equation.**

$$-\nabla \cdot a\nabla u = f$$
 in  $\Omega$ ,  $u = 0$  on  $\partial\Omega$ .

where a>0 bounded, and  $\Omega$  is a domain in  ${\bf R}^d$ , d=1,2,3.

Weak form. Find  $u \in H_0^1(\Omega)$  such that

$$(a\nabla u,\nabla v)=\int_{\Omega}a\nabla u\cdot\nabla v\,dx=\int_{\Omega}fv\,dx=(f,v)$$
 for all  $v\in H^1_0(\Omega)$ .

#### Multiscale Problems

Below are three examples of multiscale problems.



The first one represents difficulties in the domain (cracks, holes, ...) the second one oscillations in a and the third one oscillations in f.

#### Motivation

- Very important applications including materials, flow in porous media, ...
- The problems are very computationally challenging so error estimation and efficient algorithms are crucial.
- Attempts on using adaptive algorithms are not common in literature.

#### Variational Multiscale Method

We introduce two spaces  $V_c$  and  $V_f$  such that  $V_c \oplus V_f = H_0^1(\Omega)$  i.e.  $u \in H_0^1(\Omega)$  can be written as  $u = u_c + u_f$ .

- $V_c$  is a finite dimensional approximation of  $H_0^1(\Omega)$ , (hat-functions).
- And  $V_f$  is the rest i.e. it captures the fine scale behavior.

We get the following equation

$$f = -\nabla \cdot a\nabla u = -\nabla \cdot a\nabla u_c - \nabla \cdot a\nabla u_f.$$

#### Variational Multiscale Method



Figure 1:  $u_c$ ,  $u_f$ , and  $u_c + u_f$ .

#### Variational Multiscale Method

Find  $u_c \in V_c$  and  $u_f \in V_f$  such that

$$(a\nabla u_c, \nabla v_c) + (a\nabla u_f, \nabla v_c) = (f, v_c)$$
 for all  $v_c \in V_c$ ,  
 $(a\nabla u_f, \nabla v_f) = (f, v_f) - (a\nabla u_c, \nabla v_f)$   
 $:= (R(u_c), v_f)$  for all  $v_f \in V_f$ .

Fine scale information is used to modify the coarse scale equation: Find  $u_c \in V_c$  such that

$$(a\nabla u_c, \nabla v_c) + (a\nabla \hat{A}_f^{-1}R(u_c), \nabla v_c) = (f, v_c) \ \forall v_c \in V_c.$$

#### Our Basic Idea

- Discretization of  $V_f$  (analytical estimates are more common).
- Solve localized fine scale problems for each coarse node (or some coarse nodes) in parallel.
- Error estimation framework.
- Adaptive strategy for this setting.

#### Decouple Fine Scale Equations

Remember the fine scale equations:

$$(a\nabla u_f, \nabla v_f) = (R(u_c), v_f), \text{ for all } v_f \in V_f.$$

Include a partition of unity,

$$(a\nabla u_f, \nabla v_f) = (R(u_c), v_f) = \sum_{i=1}^n (R(u_c), \varphi_i v_f),$$

let 
$$u_f = \sum_{i=1}^{n} u_{f,i}$$
 where  $(a\nabla u_{f,i}, \nabla v_f) = (R(u_c), \varphi_i v_f)$ .

#### **Approximate Solution**

Since  $\varphi_i$  has support on a star  $S_i^1$  in node i we solve the fine scale equations approximately on  $\omega_i$  with  $U_{f,i}=0$  on  $\partial \omega_i$ .

Find 
$$U_c \in V_c$$
 and  $U_f = \sum_i^n U_{f,i}$  where  $U_{f,i} \in V_f^h(\omega_i)$  such that

$$(a\nabla U_c, \nabla v_c) + (a\nabla U_f, \nabla v_c) = (f, v_c)$$
 for all  $v_c \in V_c$ ,  $(a\nabla U_{f,i}, \nabla v_f) = (R(U_c), \varphi_i v_f)$  for all  $v_f \in V_f^h(\omega_i)$ .

#### Refinement and Layers



One and two layer stars.

#### **Localized Fine Scale Solution**









#### **Energy Norm Estimate**

$$\|\sqrt{a}\nabla e\| \leq \sum_{i\in\mathcal{C}} C_i \|H\mathcal{R}(U_c)\|_{\omega_i}$$

$$+ \sum_{i\in\mathcal{F}} C_i \left( \|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_i} + \|h\mathcal{R}_i(U_{f,i})\|_{\omega_i} \right)$$

- The first term is coarse mesh error.
- The second term is the normal derivative of the fine scale solutions on  $\partial \omega_i$ .
- The third term is fine scale error.

### **Adaptive Strategy**

$$\|\sqrt{a}\nabla e\| \leq \sum_{i\in\mathcal{C}} C_i \|H\mathcal{R}(U_c)\|_{\omega_i}$$

$$+ \sum_{i\in\mathcal{F}} C_i \left( \|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_i} + \|h\mathcal{R}_i(U_{f,i})\|_{\omega_i} \right)$$

- We calculate these for each  $i \in \{\text{coarse fine}\}.$
- Large values i ∈ coarse → more local problems.
- Large values  $i \in \text{fine} \to \text{more layers or}$  smaller h.

We start with a unit square containing a crack.



We let the coefficient a=1 and solve,  $-\triangle u=f$  with u=0 on the boundary including the crack.

We solve the problem by using the adaptive algorithm.



We plot the difference between our solution and a reference solution.



In this example we study a discontinuous coefficient a in  $-\nabla \cdot a \nabla u = f$ . a=1 (white) and a=0.05 (blue).







The number of layers seems to depend on the fine scale structure rather that the domain size.

#### Outlook

- Extended numerical tests in both 2D and 3D.
- Mixed formulation.
- Other equations (convection-diffusion, ...).
- More scales.
- Comparing results with classical Homogenization theory.