Adaptive Variational Multiscale Method: Basic A Posteriori Error Estimation Framework

Mats G Larson and Axel Målqvist

mgl@math.chalmers.se and axel@math.chalmers.se

Department of Computational Mathematics Chalmers

Goal

- We want to find computational methods for solving multiscale problems in a Galerkin finite element setting.
- We need an a posteriori estimation framework to measure the reliability of our solution.
- We also want to use the error bounds for adaptivity.
- We start with two scales in two dimensions.

Outline

- Model Problem
- Variational Multiscale Method
- Choice of Coarse and Fine Spaces
- The Basic Idea of our Method
- Error Estimates
- Adaptive Strategy
- Numerical Examples
- Future Work

Model Problem

۲

Poisson Equation. Find $u \in H_0^1(\Omega)$ such that

$$-\nabla \cdot a \nabla u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

where $f \in H^{-1}(\Omega)$, a > 0 bounded, and Ω is a domain in \mathbb{R}^d , d = 1, 2, 3. Weak form. Find $u \in H^1_0(\Omega)$ such that

 $(a\nabla u, \nabla v) = (f, v)$ for all $v \in H_0^1(\Omega)$.

Multiscale Problems

Below are three examples of multiscale problems.

The first one represents difficulties in the domain (cracks, holes, ...) the second one oscillations in a and the third one oscillations in f.

Variational Multiscale Method

- See for instance T.J.R. Hughes (1995).
- $H_0^1 = V_c \oplus V_f$, $u = u_c + u_f$, and $v = v_c + v_f$.

Find $u_c \in V_c$ and $u_f \in V_f$ such that

$$\begin{aligned} (a\nabla u_c, \nabla v_c) + (a\nabla u_f, \nabla v_c) &= (f, v_c) \quad \text{for all } v_c \in V_c, \\ (a\nabla u_f, \nabla v_f) &= (f, v_f) - (a\nabla u_c, \nabla v_f) \\ &:= (R(u_c), v_f) \quad \text{for all } v_f \in V_f. \end{aligned}$$

Variational Multiscale Method

Figure 1: u_c , u_f , and $u_c + u_f$.

Variational Multiscale Method

- The fine scale is driven by the coarse scale residual.
- Approximation to fine scale solution solved on each element analytically (Green's functions).
- Fine scale information is then used to modify the coarse scale equation.

$$(a\nabla u_c, \nabla v_c) + (a\nabla \hat{A}_f^{-1}R(U_c), \nabla v_c) = (f, v_c) \ \forall v_c \in V_c.$$

Choice of V_c and V_f

We use the splits proposed by Vassilevski-Wang (1998) and also used by Aksoylu-Holst (2004).

- Hierarchical basis, HB.
- Wavelet modified hierarchical basis, WHB.

The aim with WHB is to make V_f more $L^2(\Omega)$ orthogonal to V_c than in ordinary HB.

$$(Q_c^a v, w) = (v, w), \text{ for all } w \in V_c.$$

 $\varphi_{WHB} = (I - Q_c^a)\varphi_{HB}.$

Choice of V_c and V_f

Figure 2: HB-function and WHB-function with two Jacobi iterations.

Our Basic Idea

- Discretization of V_f by (W)HB-functions (V_f^h) .
- Solve localized fine scale problems for each coarse node (or some coarse nodes).
- Possibility to do this in parallel.
- A posteriori error estimation framework.
- Adaptive strategy for this setting.

Decouple Fine Scale Equations

Remember the fine scale equations:

$$(a\nabla U_f, \nabla v_f) = (R(U_c), v_f), \text{ for all } v_f \in V_f^h.$$

Include a partition of unity,

$$(a\nabla U_f, \nabla v_f) = (R(U_c), v_f) = \sum_{i=1}^n (R(U_c), \varphi_i v_f),$$

let
$$U_f = \sum_{i=1}^{n} U_{f,i}$$
 where
 $(a\nabla U_{f,i}, \nabla v_f) = (R(U_c), \varphi_i v_f).$

Approximate Solution

Find $U_c \in V_c$ and $U_f = \sum_{i=1}^{n} U_{f,i}$ where $U_{f,i} \in V_f^h(\omega_i)$ such that

 $(a\nabla U_c, \nabla v_c) + (a\nabla U_f, \nabla v_c) = (f, v_c) \text{ for all } v_c \in V_c,$ $(a\nabla U_{f,i}, \nabla v_f) = (R(U_c), \varphi_i v_f) \text{ for all } v_f \in V_f^h(\omega_i).$

Since φ_i has support on a star S¹_i in node i we solve the fine scale equations approximately on ω_i with U_{f,i} = 0 on ∂ω_i.

Refinement and Layers

۲

Figure 3: One, S_i^1 , and two, S_i^2 , layer stars.

Iterative or Direct

Iterative $U_{f,i}^0 = 0$,

•

$$(a\nabla U_c^k, \nabla v_c) = (f, v_c) - (a\nabla U_f^{k-1}, \nabla v_c),$$

$$(a\nabla U_{f,i}^k, \nabla v_f) = (R(U_c^k), \varphi_i v_f),$$

or in matrix form,

$$A_c U_c^k = b_c (U_f^{k-1})$$
$$\hat{A}_f U_{f,i}^k = b_f (U_c^k)$$

Department of Computational Mathematics Chalmers – p. 15

Iterative or Direct

Direct

۲

$$(a\nabla U_c, \nabla v_c) + (\nabla \hat{A}_f^{-1} R(U_c), \nabla v_c) = (f, v_c)$$

or in matrix form,

$$(A_c + T)U_c = b - d,$$

where $b_j = (f, \varphi_j)$, $T_{ij}\varphi_j + d_i = (\nabla \hat{A}_f^{-1}(R(\varphi_i)), \nabla \varphi_j)$.

Algorithm

Error Estimation

۲

We let $e = u - U = u_c + \sum_{i=1}^n u_{f,i} - U_c - \sum_{i=1}^n U_{f,i}$ denote the error. We further let $e_c = u_c - U_c$ and $e_{f,i} = u_{f,i} - U_{f,i}$.

- Energy norm estimate for primal solution, $\|\nabla e\|$, in the case when a = 1.
- Application on the dual problem.

Standard Energy Norm Estimate

Weak form for the exact solution,

۲

 $(\nabla u, \nabla v) = (f, v), \text{ for all } v \in H_0^1(\Omega).$

Weak form for the finite element solution,

$$(\nabla U, \nabla v) = (f, v), \text{ for all } v \in V_h.$$

This gives us the error equation,

 $(\nabla e, \nabla v) = 0$, for all $v \in V_h$.

Standard Energy Norm Estimate

Standard energy estimate

۲

$$\begin{aligned} \|\nabla e\|^2 \\ &= (\nabla e, \nabla e) = (\nabla e, \nabla (e - \pi e)) \\ &= (-\Delta e, e - \pi e) \le C \|hR(U)\| \|\nabla e\|, \end{aligned}$$

where $\pi e \in V_h$. We get

$\|\nabla e\| \le C \|hR(U)\|.$

Energy Norm Estimate

$$\begin{aligned} \|\nabla e\| &\leq C \|hR(U_c + U_f)\| + C \sum_{\text{coarse}} \|HR(U_c)\|_{S_i^1} \\ &+ C\sqrt{H} \sum_{\text{fine}} \|\Sigma_i\|_{\partial\omega_i} \end{aligned}$$

- The first term is referred to as the truth mesh error (reference).
- The third term is the normal derivative of the fine scale solutions on $\partial \omega_i$.

Dual Problem

The standard approach to get a bound of a linear functional of the error is to introduce a dual problem: find $\phi \in H_0^1$ such that

$$-\triangle \phi = \psi.$$

We when get for $\pi\phi \in V_h$,

$$(e,\psi) = (e,-\Delta\phi) = (\nabla e,\nabla\phi) = (\nabla e,\nabla\phi - \pi\phi).$$

And after integration by parts we get

$$(e,\psi) = (R(U),\phi - \pi\phi).$$

Dual Problem

- The dual solution ϕ need to be approximated but not in V.
- Regular refinement or higher order method allocate lots of memory.

Instead we solve the dual problem by local problems in each coarse node,

$$(e,\psi) = \sum_{i=1}^{n} (R(U), \Phi_{f,i}) + (R(U), \phi_f - \Phi_f).$$

Dual Problem

۲

The second term can be estimated in the following way,

$$(\nabla e, \nabla(\phi_f - \Phi_f)) \le \|\nabla e\| \|\nabla(\phi_f - \Phi_f)\|$$
$$\le \|\nabla e\| \|\nabla(\phi - (\Phi_c + \Phi_f))\|.$$

And we get the energy norm of the error in the dual solution which can be estimated.

Adaptive Strategy

$$\begin{aligned} \|\nabla e\| &\leq C \|hR(U_c + U_f)\| + C \sum_{\text{coarse}} \|HR(U_c)\|_{S_i^1} \\ &+ C\sqrt{H} \sum_{\text{fine}} \|\Sigma_i\|_{\partial \omega_i} \end{aligned}$$

- We focus on the last two terms.
- We calculate these for each $i \in \{\text{coarse fine}\}$.
- Big values $i \in \text{coarse} \rightarrow \text{more local problems}$.
- Big values $i \in fine \rightarrow more$ layers.

We start with a unit square containing a crack.

We let the coefficient a = 1 and solve, $-\triangle u = f$ with u = 0 on the boundary including the crack.

We solve the problem by using the adaptive algorithm with a refinement level of 10 % each iteration.

We plot the difference between our solution and a reference solution.

۲

In this example we study a discontinuous coefficient a in $-\nabla \cdot a\nabla u = f$. a = 1 (white) and a = 0.05 (blue).

Future Work

- Error estimates in the case when $a \neq 1$.
- Extended numerical tests in both 2D and 3D.
- More scales.
- Other equations (convection-diffusion, ...).
- Comparing results with classical Homogenization theory.

References

References

- [1] B. Aksoylu and M. Holst *An odyssey into local refinement and multilevel preconditioning II: stabilizing hierarchical basis methods,* SIAM J. Numer. Anal. in review
- [2] T. J.R. Hughes, *Multiscale phenomena:* Green's functions, the Dirichlet-to-Neumann formulation ... Comput. Methods Appl. Mech. Engrg. 127 (1995) 387-401.