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Goal

• We want to find computational methods for
solving multiscale problems in a Galerkin
finite element setting.

• We need an a posteriori estimation framework
to measure the reliability of our solution.

• We also want to use the error bounds for
adaptivity.

• We start with two scales in two dimensions.
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Model Problem

Poisson Equation. Find u ∈ H1

0
(Ω) such that

−∇ · a∇u = f in Ω, u = 0 on ∂Ω.

where f ∈ H−1(Ω), a > 0 bounded, and Ω is a
domain in R

d, d = 1, 2, 3.
Weak form. Find u ∈ H1

0
(Ω) such that

(a∇u,∇v) = (f, v) for all v ∈ H1

0
(Ω).

Department of Computational Mathematics Chalmers – p. 4



Multiscale Problems

Below are three examples of multiscale
problems.
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The first one represents difficulties in the domain
(cracks, holes, ...) the second one oscillations in
a and the third one oscillations in f .
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Variational Multiscale Method

• See for instance T.J.R. Hughes (1995).
• H1

0
= Vc ⊕ Vf , u = uc + uf , and v = vc + vf .

Find uc ∈ Vc and uf ∈ Vf such that

(a∇uc,∇vc) + (a∇uf ,∇vc) = (f, vc) for all vc ∈ Vc,

(a∇uf ,∇vf) = (f, vf ) − (a∇uc,∇vf)

:= (R(uc), vf ) for all vf ∈ Vf .
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Variational Multiscale Method
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Figure 1: uc, uf , and uc + uf .
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Variational Multiscale Method

• The fine scale is driven by the coarse scale
residual.

• Approximation to fine scale solution solved on
each element analytically (Green’s functions).

• Fine scale information is then used to modify
the coarse scale equation.

(a∇uc,∇vc)+(a∇Â−1

f R(Uc),∇vc) = (f, vc) ∀vc ∈ Vc.
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Choice of Vc and Vf

We use the splits proposed by Vassilevski-Wang
(1998) and also used by Aksoylu-Holst (2004).

• Hierarchical basis, HB.
• Wavelet modified hierarchical basis, WHB.

The aim with WHB is to make Vf more L2(Ω)
orthogonal to Vc than in ordinary HB.

(Qa
cv, w) = (v, w), for all w ∈ Vc.

ϕWHB = (I −Qa
c)ϕHB.
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Choice of Vc and Vf
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Figure 2: HB-function and WHB-function with two
Jacobi iterations.
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Our Basic Idea

• Discretization of Vf by (W)HB-functions (V h
f ).

• Solve localized fine scale problems for each
coarse node (or some coarse nodes).

• Possibility to do this in parallel.
• A posteriori error estimation framework.
• Adaptive strategy for this setting.
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Decouple Fine Scale Equations

Remember the fine scale equations:

(a∇Uf ,∇vf ) = (R(Uc), vf ), for all vf ∈ V h
f .

Include a partition of unity,

(a∇Uf ,∇vf) = (R(Uc), vf ) =
n∑

i=1

(R(Uc), ϕivf),

let Uf =
∑n

i Uf,i where
(a∇Uf,i,∇vf) = (R(Uc), ϕivf).

Department of Computational Mathematics Chalmers – p. 12



Approximate Solution

Find Uc ∈ Vc and Uf =
∑n

i Uf,i where
Uf,i ∈ V h

f (ωi) such that

(a∇Uc,∇vc) + (a∇Uf ,∇vc) = (f, vc) for all vc ∈ Vc,

(a∇Uf,i,∇vf) = (R(Uc), ϕivf) for all vf ∈ V h
f (ωi).

• Since ϕi has support on a star S1

i in node i
we solve the fine scale equations
approximately on ωi with Uf,i = 0 on ∂ωi.
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Refinement and Layers
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Figure 3: One, S1

i , and two, S2

i , layer stars.
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Iterative or Direct

Iterative U 0

f,i = 0,

(a∇Uk
c ,∇vc) = (f, vc) − (a∇Uk−1

f ,∇vc),

(a∇Uk
f,i,∇vf ) = (R(Uk

c ), ϕivf),

or in matrix form,

AcU
k
c = bc(U

k−1

f )

ÂfU
k
f,i = bf(U

k
c )
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Iterative or Direct

Direct

(a∇Uc,∇vc) + (∇Â−1

f R(Uc),∇vc) = (f, vc)

or in matrix form,

(Ac + T )Uc = b− d,

where bj = (f, ϕj),
Tijϕj + di = (∇Â−1

f (R(ϕi)),∇ϕj).
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Algorithm

AU=b

T
1

T
2

T
3

...

(A+T)U=b−d

R(U)
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Error Estimation

We let e = u−U = uc +
∑n

i=1
uf,i −Uc −

∑n
i=1

Uf,i

denote the error. We further let ec = uc − Uc and
ef,i = uf,i − Uf,i.

• Energy norm estimate for primal solution,
‖∇e‖, in the case when a = 1.

• Application on the dual problem.
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Standard Energy Norm Estimate

Weak form for the exact solution,

(∇u,∇v) = (f, v), for all v ∈ H1

0
(Ω).

Weak form for the finite element solution,

(∇U,∇v) = (f, v), for all v ∈ Vh.

This gives us the error equation,

(∇e,∇v) = 0, for all v ∈ Vh.
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Standard Energy Norm Estimate

Standard energy estimate

‖∇e‖2

= (∇e,∇e) = (∇e,∇(e− πe))

= (−4e, e− πe) ≤ C‖hR(U)‖ ‖∇e‖,

where πe ∈ Vh. We get

‖∇e‖ ≤ C‖hR(U)‖.

Department of Computational Mathematics Chalmers – p. 20



Energy Norm Estimate

‖∇e‖ ≤ C‖hR(Uc + Uf)‖ + C
∑

coarse

‖HR(Uc)‖S1

i

+ C
√
H

∑

fine

‖Σi‖∂ωi

• The first term is referred to as the truth mesh
error (reference).

• The third term is the normal derivative of the
fine scale solutions on ∂ωi.
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Dual Problem

The standard approach to get a bound of a linear
functional of the error is to introduce a dual
problem: find φ ∈ H1

0
such that

−4φ = ψ.

We when get for πφ ∈ Vh,

(e, ψ) = (e,−4φ) = (∇e,∇φ) = (∇e,∇φ− πφ).

And after integration by parts we get

(e, ψ) = (R(U), φ− πφ).
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Dual Problem

• The dual solution φ need to be approximated
but not in V .

• Regular refinement or higher order method
allocate lots of memory.

Instead we solve the dual problem by local
problems in each coarse node,

(e, ψ) =
n∑

i=1

(R(U),Φf,i) + (R(U), φf − Φf).
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Dual Problem

The second term can be estimated in the
following way,

(∇e,∇(φf − Φf)) ≤ ‖∇e‖ ‖∇(φf − Φf)‖
≤ ‖∇e‖ ‖∇(φ− (Φc + Φf))‖.

And we get the energy norm of the error in the
dual solution which can be estimated.
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Adaptive Strategy

‖∇e‖ ≤ C‖hR(Uc + Uf)‖ + C
∑

coarse

‖HR(Uc)‖S1

i

+ C
√
H

∑

fine

‖Σi‖∂ωi

• We focus on the last two terms.
• We calculate these for each i ∈ {coarse fine}.
• Big values i ∈ coarse → more local problems.
• Big values i ∈ fine → more layers.
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Numerical Examples

We start with a unit square containing a crack.

We let the coefficient a = 1 and solve, −4u = f
with u = 0 on the boundary including the crack.
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Numerical Examples

We solve the problem by using the adaptive
algorithm with a refinement level of 10 % each
iteration.
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We plot the difference between our solution and
a reference solution.
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Numerical Examples

In this example we study a discontinuous
coefficient a in −∇ · a∇u = f . a = 1 (white) and
a = 0.05 (blue).
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Numerical Examples
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Future Work

• Error estimates in the case when a 6= 1.
• Extended numerical tests in both 2D and 3D.
• More scales.
• Other equations (convection-diffusion, ...).
• Comparing results with classical

Homogenization theory.
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