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Outline and Papers

Outline
• Model problem, elliptic linear pde

• The variational multiscale method and related methods

• Derivation of proposed method with example

• A posteriori error estimates

• Adaptivity

• Application to oil reservoir simulation

• Convection dominated problem

• Future work

Papers
• M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A

Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME
2007

• A. Målqvist, Multiscale methods for elliptic problems (in preparation)
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Model Problem

Elliptic equation: Find u such that

Lu = f in Ω,

u = 0 on ∂Ω,

where L(a) is an elliptic differential operator with a coefficient
a(x) that has multiscale features, f is a given function, and Ω is
a polygonal domain.
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Motivation: A priori error bound for periodic case

If we consider the Poisson equation

Lu = −∇ · a∇u = f,

with periodic coefficient a = a(x/ǫ) solved using the finite
element method on a mesh of size H we have (Hou-Wu-Cai),

‖√a∇(u − uh)‖ ≤ C
H

ǫ
‖f‖L2(Ω),

• ǫ < H will give unreliable results even with exact quadrature.
• ǫ > H will be to computationally expensive to solve on a

single mesh.

In this talk we consider a general positive and bounded a.
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Some previous works and related methods

• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98
• Variational multiscale method: Hughes et al. 95, Arbogast

04, Larson-Målqvist 05, Nolen et al. 08, Nordbotten 09
• Multiscale finite element method: Hou-Wu 96,

Efendiev-Ginting 04, Aarnes-Lie 06
• Multiscale finite volume method: Jenny et al. 03
• Heterogeneous multiscale method: Engquist-E 03
• Equation free: Kevrekidis et al. 05
• ...

Local approximations (in parallel) on a fine scale are used to
modified the coarse scale equation.
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Model problem

Convection-diffusion reaction: Find u ∈ V such that

Lu = −∇ · a∇u + ∇ · (bu) + cu = f.

On weak form we have, find u ∈ V such that,

a(u, v) = (Lu, v) = (f, v) = l(v) for all v ∈ V ,

Poisson equation on mixed form: Find {u1, u2} ∈ V such that

−∇ · u2 = f and u2 = a∇u1

or on weak form,

a(u, v) =
(1

a
u2, v2

)

+ (u1,∇ · v2) − (∇ · u2, v1) = (f, v1) = l(v),

for all {v1, v2} ∈ V .
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Variational Multiscale Method: Hughes et. al. 95, 98

We split the space Vc ⊕ Vf = V
(

= H1
0 (Ω)

)
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• Vc is a finite dimensional approximation of V . (finite element
space)

• Vf can be chosen in different ways
◦ Hierarchical basis
◦ L2(Ω)-orthogonal to Vc

◦ Wavelet modified hierarchical basis
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The Proposed Multiscale Method

Starting from the weak form: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V ,

we want to decouple the fine scale part from the rest of the
problem. Let T ,T ∗ : Vc → Vf such that

a(T vc, vf ) = −a(vc, vf ), for all vc ∈ Vc, vf ∈ Vf

a(vf ,T ∗vc) = −a(vf , vc), for all vc ∈ Vc, vf ∈ Vf

Using these operators we plug in u = uc + T uc + uf ∈ Vc ⊕ Vf

and v = vc + T ∗vc + vf in the weak form,

a(uc + T uc, vc + T ∗vc) = l(vc + T ∗vc) for all vc ∈ Vc,

a(uf , vf ) = l(vf ) for all vf ∈ Vf .
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Coarse Scale Equations

Find uc ∈ Vc such that

a(uc + T uc, vc + T ∗vc) = l(vc + T ∗vc)−a(uf , vc + T ∗vc)

for all vc ∈ Vc, note that a(uf , vf ) = l(vf ) for all vf ∈ Vf .

• If a is symmetric we get T ∗vc = T vc i.e. a symmetric
formulation

• In standard VMS T ∗vc = 0 and uf is included in the coarse
scale. The computation of T uc + uf ∈ Vf is decoupled and
done analytically on each coarse element using
homogeneous Dirichlet boundary conditions.

• In MsFEM uf = 0 and therefore not present in the coarse
scale equations. Here the computation of vc + T vc is
decoupled and solved numerically on each element (or
larger domains) using approximate boundary conditions.
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Approximation of Fine Scale Solutions

• Let T̃ , T̃ ∗ be a computable approximations of T ,T ∗

• Let Uf be a computable approximation of uf

We get the method: find Uc ∈ Vc such that

a(Uc + T̃ Uc, vc + T̃ ∗vc) = l(vc + T̃ ∗vc)−a(Uf , vc + T̃ ∗vc)

for all vc ∈ Vc. On matrix form this leads to,

KUc = b

Given Uc, Uf , and T̃ , U can be computed.

When a(Uf , vc + T̃ ∗vc) is included, the error is orthogonal to
vc + T̃ ∗vc i.e. a(u − Uc − T̃ Uc − Uf , vc + T̃ ∗vc) = 0.
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Construction of T̃ and T̃ ∗

Recall that uc =
∑

i u
i
cφi with {φi} a basis in Vc and let

a(T φi, vf ) = −a(φi, vf ) for all vf ∈ Vf ,

a(vf , T ∗φi) = −a(vf , φi) for all vf ∈ Vf .

By linearity T uc =
∑

i u
i
cT φi and T ∗vc =

∑

i v
i
cT ∗φi and

thus we are led to computing T φi and T ∗φi for each coarse
basis function φi.

We compte T̃ φi, T̃ ∗φi approximately by

• Restricting to a localized patches supp(φi) ⊂ ωi

• Discretizing using a fine subgrid on ωi
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Refinement and Layers
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We let H be coarse scale mesh size and h be fine scale mesh
size. Further we let L denote the number of layers of coarse
elements in the patch. Typically homogeneous Dirichlet
boundary condition are used. (Compare over-sampling.)
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Construction of Uf

Recall that uf ∈ Vf solves

a(uf , vf ) = l(vf) for all vf ∈ Vf

Using a partition of unity ψi we can split the right hand side
as follows l(vf) =

∑

i l(ψivf ) to get,

uf =
∑

i

ui
f

a(ui
f , vf ) = l(ψivf ).

Again we find an approximation by restricting to patches
and discretizing the subgrid. Typically ψi = φi.
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Simple Observation About Decay in Vf (Fourier)

Consider,
−∆u = ϕi in Ω, u = 0 on ∂Ω,

where ϕi has local support in Ω. The weak form reads: find
u ∈ W s.t., (∇u,∇v) = (ϕi, v) for all v ∈ W.
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Solution on 3 layers
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Solution using interpolation on 3 layers
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Solution using L2 orthogonality on 3 layers

To the left W = Vc ⊕ Vf , middle W = Vf using hierarchical split,
and right W = Vf using L2-orthogonal split.

Constraints are realized using Lagrangian multipliers.
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Simple Observation About Decay in Vf

Decay of flux integrated over the boundary.
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We see exponential decay with respect distance measured in
number of coarse elements. This effect gives rapid convergence
as the patch size increases.
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Summary of the Method so Far

• The fine scales in the problem are isolated by introducing
splitting operators I + T and I + T ∗ that are orthogonal to
Vf with respect to a(·, ·)

• The fine scale equations are decoupled T φi, T ∗φi, ui
f

• We note rapid decay which allows us to restrict local
solutions to patches ωi

• We use local computations to modify the coarse scale
equation

• Fine scale features can be reconstructed given the coarse
scale solution

We will show a posteriori error estimates and adaptive strategies
later in the talk.

Analysis & applied mathematics seminar, Laramie, WY, USA, 13 Oct. 2009 – p. 16/38



Parallel Structure

One local problem for each coarse dof, minimal communication.

Data a, f, Ω

K1, b1 K2, b2 K3, b3 K4, b4 . . .

(
∑

k Kk
)

Uc =
∑

k bk

U2

f

Data transfer

Local solves

Global solve

Postprocessing
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Application to a Mixed Problem

Poisson equation on mixed form:











1
aσ −∇u = 0 in Ω

−∇ · σ = f in Ω

n · σ = 0 on Γ

where the permeability a is constant, random, or taken from the
SPE data set (upperness in log-scale),

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
max(a)/min(a)=1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
max(a)/min(a)=3e3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
max(a)/min(a)=5e6

Analysis & applied mathematics seminar, Laramie, WY, USA, 13 Oct. 2009 – p. 18/38



Splitting Based on RT-elements

We use lowest order RT basis functions together with piecewise
constants.

• Let Πc be the RT-interpolant onto the space of lowest order
RT functions Vc and Pc be the L2-projection onto the space
of piecewise constants Wc

• We define Wf = (I − Pc)W, W = L2(Ω)

• We define Vf = (I − Πc)V , V = H(div; Ω)

• This means σc = πcσ ∈ Vc uc = Pcu ∈ Wc.
• Thus we are using an L2-orthogonal splitting in the scalar

variable.

Hierarchical split for lagrangian elements leads to nodal
exactness in the coarse solution Uc ≈ πcu while here we get
exactness of average values on coarse elements Uc ≈ Pcu.

Analysis & applied mathematics seminar, Laramie, WY, USA, 13 Oct. 2009 – p. 19/38



Fine Scale Equations for T ∗ = T
We note that T = {Tu,Tσ} has two components, that solves: find
Tu(wc, vc) ∈ Wf and Tσ(wc, vc) ∈ Vf such that,

{

( 1
aTσ(wc, vc), vf ) + (Tu(wc, vc),∇ · vf ) = −( 1

avc, vf )−(wc,∇ · vf )

−(∇ · Tσ(wc, vc), wf ) = (∇ · vc, wf )

for all wf ∈ Wf and vf ∈ Vf . We note that red terms vanish due
to the construction of the spaces, since for coarse elements K

(wf ,∇ · vc) =
∑

K

∇ · vc

∫

K
wf dx = 0,

(wc,∇ · vf ) =
∑

K

wc

∫

K
∇ · vf dx =

∑

K

wc

∫

∂K
n · vf ds = 0.

This means that Tu(wc, vc) = Tuvc and Tσ(wc, vc) = Tσvc.
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Coarse Scale Equation

Find σc ∈ Vc, σf ∈ Vf , uc ∈ Wc, and uf ∈ Wf such that,



















( 1
a(σc + Tσσc), vc + Tσvc) + (uc,∇ · vc) = −( 1

aσf , vc + Tσvc)

−(∇ · σc, wc) = (f,wc)

( 1
aσf , vf ) + (uf ,∇ · vf ) = 0

−(∇ · σf , wf ) = (f,wf )

for all vc ∈ Vc, vf ∈ Vf , wc ∈ Wc, and wf ∈ Wf .

Again we have used
• (wf ,∇ · vc) = (wc,∇ · wf ) = 0

• (∇ · Tσvc, wf ) = 0

• (f,Tuvc) = −( 1
aσf , vc + Tσvc)
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Approximate Fine Scales

{

( 1
aTσvc, vf ) + (Tuvc,∇ · vf ) = −( 1

avc, vf )

−(∇ · Tσvc, wf ) = 0

• We apply the same idea as in the abstract framework

• Note that Tσvc =
∑

i vi
cTσφi, here φi are the Raviart-Thomas

basis functions
• Solve the local problem driven by the basis functions (one

problem for each basis function)
• Localize by restricting the problems to patches, apply

homogeneous Neumann conditions
• Discretize using a suitable subgrid

The same technique is used for {uf , σf}.
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Example of Local Solutions T̃σφi

{

( 1
a T̃σφi, vf ) + (T̃uφi,∇ · vf ) = −( 1

aφi, vf )

−(∇ · T̃σφi, wf ) = 0.
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We use 3 layer patches and plot absolute value of the flux |T̃σφi|.
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Example of Convergence

• Reference mesh has 32 × 32 elements
• The coarse mesh has 8 × 8 elements.
• We let f = 1 lower left corner and f = −1 in upper right,

otherwise f = 0.
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Error compared to reference solution.
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Adaptive Multiscale Method

The adaptive version of the method (sometimes referred to as
AVMS) builds on the following ingredients:

• Error estimation framework
• Adaptive strategy for tuning of critical discretization

parameters

The method is designed so that:

error → 0 when h → 0 and L → ∞

• A priori error estimates in progress.
• To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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A Posteriori Error Estimate (Conv.-Diff.-Reac.)

The following energy norm bound holds

‖u − U‖2
a = ‖√a∇(u − U)‖2 ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

where

R2
ωi

= ‖h(φif − U i
cL(φi + T̃σφi) − LU i

f )‖2
ωi

+
∑

K∈ωi

‖h1/2[a∂n(U i
c(φi + T̃ φi) + U i

f )]‖2
∂K\∂ωi

R2
∂ωi

= ‖h1/2a∂n(Uc,i(φi + T̃ φi) + U i
f )‖2

∂ωi\Γ
,

Similar linear functional estimates have also been derived using
a dual problem. Note that h and the decay of T̃ φi and U i

f

determines the error.
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A Posteriori Error Estimate (Poisson, mixed)

The following energy norm bound holds

‖ 1√
a
(σ − Σ)‖2 ≤ Ca

∑

i

(

R2
ωi

+R2
∂ωi

)

where

R2
ωi

= ‖1

a
(Σi

c(φi + T̃σφi) + Σi
f ) −∇U i,∗

f ‖2
ωi

+ ‖h
a
(fψi + ∇ · (Σi

c(φi + T̃σφi) + Σi
f ))‖2

ωi
+

∑

K∈ωi

‖h−1/2[U i,∗
f ]‖2

∂K

R2
∂ωi

= ‖h−1/2U
i,∗
f ‖2

∂ωi\Γ

U∗ is a post processed version (Lovadina and Stenberg 06)
of U , Ca ∼ ‖√a‖L∞(ωi).
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Adaptive Strategy

We have the error bound

‖σ − Σ‖2
a ≤ Ca

∑

i

(

R2
ωi

+ R2
∂ωi

)

1. Let h = H/2 and L = 1 for all i.

2. Compute the solution {U,Σ}.

3. Calculate residuals for each coarse RT basis functions.

4. Mark large entries.

5. For marked entries R2
ωi

let h := h/2.

6. For marked entries R2
∂ωi

let L := L + 1.

7. Return to 1 or stop if estimators are small enough.
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Application in Oil Reservoir Simulation

We seek the water saturation s (oil is 1 − s) that solves the
system of a pressure and a transport equation,

1
aλ(s)σ −∇u = 0 in Ω,

−∇ · σ = q in Ω,

n · σ = 0 on Γ,

ṡ + σ · ∇f(s) = 0,

f(s) is fractional flow function, λ(s) is total mobility, and q is a
source term.

This is a simple model of two phase flow. Note the two way
coupling, λ(s) is one except at the water front.
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Application in Oil Reservoir Simulation

Layer 1 and 50 in the SPE comparative sol. proj. (log scale).

Plot of the sol. (pressure), q = 1 upper right q = −1 lower left.
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Refinements and layers SPE50

We use 55 × 15 coarse elements and a reference mesh with
440 × 120 elements.
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We start the adaptive algorithm with one refinement and one
layer in all local problems. After three iterations in the algorithm
marking 30%.
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Convergence of Adaptive Algorithm

We compare error in energy norm with reference solution.
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• Critical areas are found
• A majority of the patches uses one layer and one

refinement.
• As the water front travels only local problems at the front

need to be recomputed.
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Convection Dominated Problem

Lu = −ǫ△u + ∇ · (bu) = f in Ω, u = 0 on ∂Ω,

where ǫ = 0.01, f = 1 lower left corner, b = [bx, bx], bx oscillates
between 0.01 and 1.
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Split Between Coarse and Fine Scales

• We let πc be the interpolant and let Vf = (1 − πc)V , i.e. an
hierarchical split

• Let a(v,w) = (Lv,w) for all v,w ∈ V . Then we can define
the fine scale equations as,

a(T φi, vf ) = −a(φi, vf ),

a(vf ,T ∗φi) = −a(vf , φi),

a(ui
f , vf ) = l(φivf ),

for all vf ∈ Vf and i ∈ N (coarse nodes).

• In numerics we so far only have tested T ∗ = 0.
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Solutions to Local Problems U i
cT̃ φi +U i

f (note angle)
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Error in Multiscale Solution

Let H = 1/24, h = H/4 and study relative error
(U − Uref, 1)/(Uref, 1) compared to reference solution.
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We observe exponential decay (slower). Note that the error
using standard Galerkin on the coarse mesh is very high.
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Summary

The adaptive variational multiscale method (AVMS) provides:
• Systematic technique for construction of a computable

approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

• A posteriori error estimation framework (also for goal
functionals)

• Adaptive algorithms for automatic tuning of critical
discretization parameters

• Its applicable to a range of equations (only linear at this
point)

The decay in Vf together with the adaptive strategy makes the
method efficient.
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Future Work

• Scale up numerics, parallel code, 3D.
• A priori error analysis, capture decay.
• More then two scales.
• Use Discontinuous Galerkin with L2 orthogonal split

between the scales.
• Multiscale approach to the coupled transport-pressure

equation. (Time dependent problems Nordbotten 09)
• Tests on more realistic data, compare with other methods.
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