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Preface 

The works of Jaak Peetre constitute the main body of this treatise. Important 
contributors are also J. L. Lions and A. P. Calderon, not to mention several 
others. We, the present authors, have thus merely compiled and explained the 
works of others (with the exception of a few minor contributions of our own). 

Let us mention the origin of this treatise. A couple of years ago, J. Peetre 
suggested to the second author, J. Lofstrom, writing a book on interpolation 
theory and he most generously put at Lofstrom's disposal an unfinished manu
script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom 
prepared a first rough, but relatively complete manuscript of lecture notes. This 
was then partly rewritten and thouroughly revised by the first author, J. Bergh, 
who also prepared the notes and comment and most of the exercises. 

Throughout the work, we have had the good fortune of enjoying Jaak Peetre's 
kind patronage and invaluable counsel. We want to express our deep gratitude 
to him. Thanks are also due to our colleagues for their support and help. Finally, 
we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund 
for their expert typing of our manuscript. 

This is the first attempt, as far as we know, to treat interpolation theory fairly 
comprehensively in book form. Perhaps this fact could partly excuse the many 
shortcomings, omissions and inconsistencies of which we may be guilty. We beg 
for all information about such insufficiencies and for any constructive criticism. 

Lund and Goteborg, January 1976 

Joran Bergh Jorgen Lofstrom 



Introduction 

In recent years, there has emerged a new field of study in functional analysis: 
the theory of interpolation spaces. Interpolation theory has been applied to other 
branches of analysis (e.g. partial differential equations, numerical analysis, 
approximation theory), but it has also attracted considerable interest in itself. 
We intend to give an introduction to the theory, thereby covering the main 
elementary results. 

In Chapter 1, we present the classical interpolation theorems of Riesz-Thorin 
and Marcinkiewicz with direct proofs, and also a few applications. The notation 
and the basic concepts are introduced in Chapter 2, where we also discuss some 
general results, e. g. the Aronszajn-Gagliardo theorem. 

We treat two essentially different interpolation methods: the real method and 
the complex method. These two methods are modelled on the proofs of the 
Marcinkiewicz theorem and the Riesz-Thorin theorem respectively, as they are 
given in Chapter 1. The real method is presented, following Peetre, in Chapter 3; 
the complex method, following Calder6n, in Chapter 4. 

Chapter 5-7 contain applications of the general methods expounded in 
Chapter 3 and 4. 

In Chapter 5, we consider interpolation of Lp-spaces, including general 
versions of the interpolation theorems of Riesz-Thorin, and of Marcinkiewicz, 
as well as other results, for instance, the theorem of Stein-Weiss concerning the 
interpolation of Lp-spaces with weights. 

Chapter 6 contains the interpolation of Besov spaces and generalized Sobolev 
spaces (defined by means of Bessel potentials). We use the definition of the Besov 
spaces given by Peetre. We list the most important interpolation results for these 
spaces, and present various inclusion theorems, a general version of Sobolev's 
embedding theorem and a trace theorem. We also touch upon the theory of semi
groups of operators. 

In Chapter 7 we discuss the close relation between interpolation theory and 
approximation theory (in a wide sense). We give some applications to classical 
approximation theory and theoretical numerical analysis. 

We have emphasized the real method at the expense of a balance (with respect 
to applicability) between the real and the complex method. A reason for this is 
that the real interpolation theory, in contrast to the case of the complex theory, 
has not been treated comprehensively in one work. As a consequence, whenever 
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it is possible to use both the real and the complex method, we have preferred to 
apply the real method. 

In each chapter the penultimate section contains exercises. These are meant 
to extend and complement the results of the previous sections. Occasionally, 
we use the content of an exercise in the subsequent main text. We have tried to 
give references for the exercises. Moreover, many important results and most of 
the applications can be found only as exercises. 

Concluding each chapter, we have a section with notes and comment. These 
include historical sketches, various generalizations, related questioij.s and refer
ences. However, we have not aimed at completeness: the historical references 
are not necessarily the first ones; many papers worth mention have been left out. 
By giving a few key references, i. e. those which are pertinent to the reader's own 
further study, we hope to compensate partly for this. 

The potential reader we have had in mind is conversant with the elements 
of real (several variables) and complex ( one variable) analysis, of Fourier analysis, 
and of functional analysis. Beyond an elementary level, we have tried to supply 
proofs of the statements in the main text. Our general reference for elementary 
results is Dunford-Schwartz [1]. 

We use some symbols with a special convention or meaning. For other notation, 
see the Index of Symbols. 

f(x)~g(x) "There are positive constants C1 and C2 such that Clg(x)~f(x) ~ 
C2 g(x) (fand g being non-negative functions)." 
Read: f and g are equivalent. 

T:A-+B "T is a continuous mapping from A to B." 

AcB "A is continuously embedded in B." 



Table of Contents 

Chapter 1. Some Classical Theorems. . . . . . 

1.1. The Riesz-Thorin Theorem. . . . . . . 
1.2. Applications of the Riesz-Thorin Theorem 
1.3. The Marcinkiewicz Theorem. . . . . . 
1.4. An Application of the Marcinkiewicz Theorem 
1.5. Two Classical Approximation Results 
1.6. Exercises . . . . . 
1.7. Notes and Comment . . . . . . . 

Chapter 2. General Properties of Interpolation Spaces 

2.1. Categories and Functors. 
2.2. Normed Vector Spaces . . . .. 
2.3. Couples of Spaces . . . . . . . 
2.4. Definition of Interpolation Spaces. 
2.5. The Aronszajn-Gagliardo Theorem 
2.6. A Necessary Condition for Interpolation. 
2.7. A Duality Theorem. 
2.8. Exercises . . . . . 
2.9. Notes and Comment 

1 

1 
5 
6 

11 
12 
13 
19 

22 

22 
23 
24 
26 
29 
31 
32 
33 
36 

Chapter 3. The Real Interpolation Method 38 

3.1. The K-Method. . . . . 38 
3.2. The J-Method . . . . . 42 
3.3. The Equivalence Theorem 44 
3.4. Simple Properties of Ao,q' 46 
3.5. The Reiteration Theorem 48 
3.6. A Formula for the K-Functional 52 
3.7. The Duality Theorem. . . . . 53 
3.8. A Compactness Theorem . . . 55 
3.9. An Extremal Property of the Real Method 57 
3.10. Quasi-Normed Abelian Groups. . . . . 59 
3.11. The Real Interpolation Method for Quasi-Normed Abelian Groups 63 
3.12. Some Other Equivalent Real Interpolation Methods. . . . . . . 70 



x 

3.13. Exercises . . . . . 
3.14. Notes and Comment 

Table of Contents 

75 
82 

Chapter 4. The Complex Interpolation Method 

4.1. Definition of the Complex Method 

87 

87 
91 
93 
96 
98 

4.2. Simple Properties of A[ 0 j. 

4.3. The Equivalence Theorem 
4.4. Multilinear Interpolation 
4.5. The Duality Theorem. . 
4.6. The Reiteration Theorem 
4.7. On the Connection with the Real Method 
4.8. Exercises . . . . . 
4.9. Notes and Comment .... 

101 
102 
104 
105 

Chapter 5. Interpolation of Lp-Spaces 106 

5.1. Interpolation of Lp-Spaces: the Complex Method 106 
5.2. Interpolation of Lp-Spaces: the Real Method . . 108 
5.3. Interpolation of Lorentz Spaces. . . . . . . . 113 
5.4. Interpolation of Lp-Spaces with Change of Measure: PO=Pl. 114 
5.5. Interpolation of Lp-Spaces with Change of Measure: Po"# Pl. 119 
5.6. Interpolation of Lp-Spaces of Vector-Valued Sequences. 121 
5.7. Exercises . . . . . 124 
5.8. Notes and Comment . . . . . . . . . . . 128 

Chapter 6. Interpolation of Sobolev and Besov Spaces 131 

6.1. Fourier Multipliers . . . . . . . . . . . . 
6.2. Definition of the Sobolev and Besov Spaces. . 
6.3. The Homogeneous Sobolev and Besov Spaces 
6.4. Interpolation of Sobolev and Besov Spaces. 
6.5. An Embedding Theorem. . . . . . . . . 
6.6. A Trace Theorem. . . . . . . . . . . . 
6.7. Interpolation of Semi-Groups of Operators. 
6.8. Exercises . . . . . 
6.9. Notes and Comment ......... . 

Chapter 7. Applications to Approximation Theory. 

7.1. Approximation Spaces 
7.2. Approximation of Functions. . . . . 
7.3. Approximation of Operators. . . . . 
7.4. Approximation by Difference Operators 
7.5. Exercises . . . . . 
7.6. Notes and Comment 

References . . 

List of Symbols 

Subject Index . 

131 
139 
146 
149 
153 
155 
156 
161 
169 

174 

174 
179 
181 
182 
186 
193 

196 

205 

206 



Chapter 1 

Some Classical Theorems 

The classical results which provided the main impetus for the study of inter
polation in se are the theorems of M. Riesz, with Thorin's proof, and of 
Marcinkiewicz. Thorin's proof of the Riesz-Thorin theorem contains the idea 
behind the complex interpolation method. Analogously, the way of proving 
the Marcinkiewicz theorem resembles the construction of the real interpolation 
method. We give direct proofs of these theorems (Section 1.1 and Section 1.3), 
and a few of their applications (Section 1.2 and Section 1.4). More recently, 
interpolation methods have been used in approximation theory. In Section 1.5 
we rewrite the classical Bernstein and Jackson inequalities to indicate the con
nection with approximation theory. 

The purpose of this chapter is to introduce the type of theorems which will 
be proved later, and also to give a first hint of the techniques used in their proofs. 
Note that, in this introductory chapter, we are not stating the results in the more 
general form they will have in later chapters. 

1.1. The Riesz-Thorin Theorem 

Let (U, 11) be a measure space, 11 always being a positive measure. We adopt the 
usual convention that two functions are considered equal if they agree except on 
a set of Il-measure zero. Then we denote by LiU, dll) (or simply Lp(dll), LiU) or 
even Lp) the Lebesgue-space of (all equivalence classes of) scalar-valued Il-meas
urable functions f on U, such that 

is finite. Here we have 1 :;::;p< 00. In the limiting case, p= 00, Lp consists of all 
Il-measurable and bounded functions. Then we write 

(2) IlfIILoo=suPulf(x)l. 

In this section and the next, scalars are supposed to be complex numbers. 
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Let T be a linear mapping from Lp=Lp(U, dJl) to Lq=Lq(V, dv). This means 
that T(rx.f + pg)= rx.T(f) + PT(g). We shall write 

if in addition T is bounded, i. e. if 

is finite. The number M is called the norm of the mapping T. 
Now we have the following well-known theorem. 

1.1.1. Theorem (The Riesz-Thorin interpolation theorem). Assume that Po'" Pl' 
qO"'ql and that 

with norm M o, and that 

with norm M l' Then 

with norm 

provided that 0 < 0 < 1 and 

(4) 
1 1-0 0 
-=--+-, 
P Po Pl 

1 1-0 0 
-=--+-. 
q qo ql 

Note that (3) means that M is logarithmically convex, i. e. logM is convex. 
Note also the geometrical meaning of (4). The points (1Ip,1Iq) described by (4) 

1 

q 1----------. (l,ll 

Fig. 1 
1-
p 
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are the points on the line segment between (1IPo,1lqo) and (1IPI,1lql)' (Ob
viously one should think of Lp as a "function" of 1lp rather than of p.) 

Later on we shall prove the Riesz-Thorin interpolation (or convexity) theo
rem by means of abstract methods. Here we shall reproduce the elementary 
proof which was given by Thorin. 

Proof: Let us write 

(h, g) = Jvh(y)g(y)dv 

and 1lq' = 1-1lq. Then we have, by HOlder's inequality, 

IlhllLq = sup {I(h, g)l: IlgllLq' = 1} . 

and 

Since P < 00, q' < 00 we can assume that f and g are bounded with compact 
supports. 

and 

For O~Rez~1 we put 

1 1-z Z 
-=--+-
p(z) Po PI' 

1 1-z Z 
-=--+-
q'(z) q~ q'l ' 

</J(Z) = </J(x, z)=lf(x)lplp(z) f(x)!lf(x)l, XE U , 

I/I(z) = I/I(y, z)= Ig(y)lq'lq'(z) g(y)/lg(y)l, YE V. 

It follows that </J(z)ELpj and I/I(z)ELqj and hence that T</J(Z)ELqj , j=O,1. It 
is also easy to see that </J'(z)ELpj , I/I'(z)ELqj and thus also that (T</J)'(Z)ELqj , 
(O<Rez<1). This implies the existence of 

F(z) = (T</J(z), 1/1 (z) , O~Rez~1. 

Moreover it follows that F(z) is analytic on the open strip 0 < Rez < 1, and 
bounded and continuous on the closed strip O~Rez~1. 

Next we note that 

and similarly 

11I/I(it)IIL ,= 111/1(1 + it)IIL ,= 1. 
40 q1 
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By the assumptions, we therefore have 

(3) 
IF(1+it)I::;;;IITcp(1+it)IIL . 11t/I(1 +it)IIL ,::;;;M1 · 

41 41 

We also note that 

cp(O) = f, t/I(O)=g, 

and thus 

(4) F(O) = (Tf,g) . 

Using now the three line theorem (a variant of the well-known Hadamard three 
circle theorem), reproduced as Lemma 1.1.2 below, we get the conclusion 

or equivalently 

1.1.2. Lemma (The three line theorem). Assume that F(z) is analytic on the open 
strip O<Rez<1 and bounded and continuous on the closed strip O::;;;Rez::;;;1. If 

IF(it)I::;;;Mo, 1F(1+it)I::;;;M1 , -oo<t<oo, 

we then have 

IF(O+it)I::;;;M~-6M~, -oo<t<oo. 

Proof: Let e be a positive and A. an arbitrary real number. Put 

F.(z) =exp(ez2 + A.z) F(z) . 

Then it follows that 

F.(z)-+O as Imz-+ ± 00 , 

and 

By the Phragmen-Lindelof principle we therefore obtain 

IF.(z)1 ::;;;max(Mo, M1e·+J.) , 

i.e., 
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This holds for any fixed lJ and t. Letting e~O we conclude that 

where p =expA.. The right hand side is as small as possible when Mop -9 = M1pl - 9, 

i.e. when p=Mo/M1 • With this choice of p we get 

1.2. Applications of the Riesz-Thorin Theorem 

In this section we shall give two rather simple applications of the Riesz-Thorin 
interpolation theorem. We include them here in order to illustrate the role of 
interpolation theorems of which the Riesz-Thorin theorem is just one (albeit 
important) example. 

We shall consider the case U = V = 1R. nand dJl = dv = dx (Lebesgue-measure). 
We let T be the Fourier transform :F defined by 

(:F f)(e) =! (e) = J f(x)exp( - i (x, 0 )dx , 

where (x,O=X1el+"·+Xnen. Here X=(Xl,,,.,XJ and e=(el'''''~n)' Then 
we have 

l:Ffml ~J I f(x)1dx 

and by ParsevaI's formula 

This means that 

:F:Ll~Loo' norm 1, 

:F: L2~L2' norm (2n)n/2. 

Using the Riesz-Thorin theorem, we conclude that 

with 

1 1-lJ lJ 
-=--+-
p 1 2' 

1 1-lJ lJ 
-=--+-, 
q 00 2 

O<lJ<1. 

Eliminating lJ, we see that 1/p=1-1/q, i.e., q=p', where 1 <p<2. The norm 
of the mapping (1) is bounded by (2n)n9/2 = (2n)n/p'. We have proved the follow
ing result. 
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1.2.1. Theorem (The Hausdorff-Young inequality). If 1 ~p~2 we have 

As a second application of the Riesz-Thorin theorem we consider the con
volution operator 

Tf(x) = J k(x- y)f(y)dy=h f(x) 

where k is a given function in Lp. By Minkowski's inequality we have 

and, by Holder's inequality, 

Thus 

T: L1-+Lp, 

T: Lp,-+L oo ' 

and therefore 

where 

1 1-e e 
-=--+-
p 1 p" 

1 1-e e 
-=--+-. 
q p co 

Elimination of e yields 1/q=1/p-1/p' and 1~p~p'. This gives the following 
result. 

1.2.2. Theorem (Young's inequality). If kELp and fELp where 1 <p<p' then 
k*fELq for 1/q=1/p-1/p' and 

1.3. The Marcinkiewicz Theorem 

Consider again the measure space (U, fl). In this section the scalars may be real 
or complex. If f is a scalar-valued fl-measurable function which is finite almost 
everywhere, we introduce the distribution function m(u,f) defined by 

m(u,f)=fl({X: If(x)1 >u}). 
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Since we have assumed that Ii is positive, we have that m(a,f) is a real-valued 
or extended real-valued function of a, defined on the positive real axis 1R.+ = (0, 00). 
Clearly m(a,f) is non-increasing and continuous on the right. Moreover, we have 

and 

(2) IlfllLoc =inf{a; m(a,f)=O}. 

Using the distribution function m(a,f), we now introduce the weak Lp-spaces 
denoted by L;. The space L;, 1 ~p < 00, consists of all f such that 

Ilfll£O =suPaam(a,f)l/p< 00. 
p 

In the limiting case p=oo we put L!=Loo. Note that IlflIL* is not a norm if 
p 

1 ~ p < 72. In fact. it is clear that 

(3) m(a,f +g)~m(a/2,j)+m(a/2,g). 

Using the inequality (a + b)l/p ~ al /p + bliP, we conclude that 

Ilf +glb ~2(llfll£O + Ilgll£O)· p p p 

This means that L; is a so called quasi-normed vector space. (In a normed space 
we have the triangle inequality Ilf +gll ~ Ilfll + Ilgll, but in a quasi-normed 
space we only have the quasi-triangle inequality Ilf +gll ~k(llfll + Ilgll) for some 
k ~ 1.) If p> 1 one can, however, as will be seen later on, find a norm on L; and, 
with this norm, L; becomes a Banach space. One can show that Li is complete 
but not anormable space. (See Section 1.6.) 

The spaces L; are special cases of the more general Lorentz spaces Lpr' In their 
definition we use yet another concept. If f is a Ii-measurable function we denote 
by f* its decreasing rearrangement 

(4) f*(t)=inf{a: m(a,f)~t}. 

This is a non-negative and non-increasing function on (0, 00) which is con
tinuous on the right and has the property 

(5) m(p,f*) = m(p,f)' p ~ 0. 

(See Figure 2.) Thus f* is equimeasurable with f. In fact, by (4) we have 
f*(m(p,f))~p and thus m(p,f*)~m(p,f). Moreover, since f* is continuous on 
the right, f*(m(p,f*))~p and hence m(p,f)~m(p,f*). 

Note that at all points t where f*(t) is continuous the relation a= f*(t) is 
equivalent to t=m(a,j). 
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m (O",f) 

T~----~-----------------------------

f *( t ) 
Fig. 2 

Now the Lorentz space Lpr is defined as follows. We have fELpr' 1 ";;p";; co, 
if and only if 

IlfllLpoo =suptt1/p f*(t}< co when r= co. 

We have the following, with equality of norms, 

These statements are implied by (1), (2), (4) and (5); only the last one is not im
mediate when 1,,;;p<00. If for a given (J there is a t such that f*(t}=(J then by (4) 
we have m((J,f}";;t. Thus (Jm(f, (J}1/p,,;;t 1/p f*(t) which implies Ilfllq,";; IlfllLpoo. 
On the other hand, given e > 0, we can choose t as a point of continuity of f*(t) 
such that IlfllLpoo ,,;;t1/p f*(t}+e. Put (J= f*(t). Then m((J,f)=t and IlfllLpoo";; 
t l /p f*(t) + e = (Jm((J,f}l/p + e";; II filL' + e, which completes the proof. 0 

p 

In general Lpr is a quasi-normed space, but when p> 1 it is possible to re
place the quasi-norm with a norm, which makes Lpr a Banach space. (See Sec
tion 1.6.) 

It is possible to prove that Lpr, cLpr2 if rl,,;;rZ • (See Section 1.6.) Taking 
r I = P and r z = 00 we obtain, in particular, 

This also follows directly from the definition (3) of L;. In fact, 
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We shall consider linear mappings T from Lp to L:' Such a mapping is said 
to be bounded if II TfIIL* ~ C IIfIIL , and the infimum over all possible numbers 

q p 

C is called the norm of T. We then write T: Lp-'>L:. We are ready to state and 
prove the following important interpolation theorem. 

1.3.1. Theorem (The Marcinkiewicz interpolation theorem). Assume that Po =f. PI 
and that 

Put 

T: Lpo(U, d/l)-,>L:o(V' dv) with norm M?;, 

T: Lp,(U, d/l)-,>L:1(V, dv) with norm Mt. 

1 1-0 0 1 1-0 0 
-=--+-, -=--+-, 
P Po PI q qo ql 

and assume that 

(7) p~q. 

Then 

with norm M satisfying 

This theorem, although certainly reminiscent of the Riesz-Thorin theorem, 
differs from it in several important respects. Among other things, we note that 
scalars may be real or complex numbers, but in the Riesz-Thorin theorem we 
must insist on complex scalars. (Otherwise we can only prove the convexity 
inequality M ~ CM6 -8 Mf.) On the other hand, there is the restriction (7). The 
most important feature is, however, that we have replaced the spaces LqO and 
Lql by the larger spaces L:o and L:1 in the assumption. Therefore the Marcin
kiewicz theorem can be used in cases where the Riesz-Thorin theorem fails. 

Proof: We shall give a complete proof of this theorem in Chapter 5 (see Theo
rem 5.3.2). Here we shall consider only the case Po =qo, PI =ql' and 1 ~PO<PI <00, 
and non-atomic measure on, say, JR". 

Moreover, we shall prove only the estimate 

M ~Cmax(M?;, Mt). 

In order to prove this, it will clearly be sufficient to assume that M?; ~ 1 and 
Mt~1. 

Put 

{
f(X) 

fo(x) = fo(t, x) = 0 
if xEE, 

otherwise, 
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and 

where Ec{x:lf(x)l~f*(t)} is chosen with JL(E)=min(t,JL(U)). 
Using (3) and the linearity of T, we see that 

(Tf)*(t) ~ (Tfo)*(t/2) + (Tf1)*(t/2). 

By the assumptions on T we have 

(Tfi)*(t/2)~ Ct- 1/p; IlnlL p, ' i =0, 1. 

It follows that 

II T fIILp = (S~(t-1(T f)*(tW dt)1/p ~ C(lo + 11) , 

where 

and 

In order to estimate 10 we use Minkowski's inequality to obtain 

In order to estimate 11 , we use the inequality 

Using this estimate with () = P/P1 and cp = IfI P" we obtain, noting also that 
cp* = (f*)Pl , 

If ~ CII flit· 
Thus 

which concludes the proof. It remains, however, to prove (8). 
In order to prove (8) we put all = cp*(21l). Since cp*(t) and t- 1 Sr' cp*(s)ds are 

decreasing functions of t, we have 

Since (x + y)O ~ XO + l for 0 < () < 1, we can estimate the right hand side by a 
constant multiplied by 
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It follows that 

1.4. An Application of the Marcinkiewicz Theorem 

We shall prove a generalization of the Hausdorff-Young inequality due to 
Payley. We consider the measure space (IRn, /1), /1 Lebesgue measure. Let w be a 
weight function on IRn, i.e. a positive and measurable function on IRn. Then we 
denote by Lp(w) the Lp-space with respect to wdx. The norm on Liw) is 

II f IILp(w) = (JR" If(x)IPw(x)dx)i/p . 

With this notation we have the following theorem. 

1.4.1. Theorem. Assume that 1 ~p~2. Then 

Proof: We consider the mapping 

(Tf)(~)= 1~ln J (~). 

By Parseval's formula, we have 

We now claim that 

Applying the Marcinkiewicz interpolation theorem we obtain 

which implies the theorem. 
In order to prove (3) we consider the set 
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Let us write v for the measure 1~1-2nd~ and assume that IIfIIL! =1. Then 
1!(~)I~1. For ~EE(1 we therefore have a~I~ln. Consequently 

This proves that 

am(a, Tf)~CllfIIL! ' 

i. e. (3) holds. 0 

1.5. Two Classical Approximation Results 

A characteristic feature of interpolation theory is the convexity inequality 
M ~M~ -eMf. When an inequality of this form appears there is often a connec
tion with interpolation theory. In this section we rewrite the classical Bernstein 
inequality as a convexity inequality, thereby indicating a connection between 
classical approximation theory and interpolation theory. Also, the converse 
inequality, the Jackson inequality, is reformulated as an inequality which is 
"dual" to the convexity inequality above. These topics will be discussed in greater 
detail in Chapter 7. 

Let If be the one-dimensional torus. Then we may write Bernstein's ine
quality as follows: 

where a is a trigonometric polynomial of degree at most n. In order to reform
ulate (1), put 

Ao = {trigonometric polynomials}, 
Al = {continuous 2n-periodic functions}, 
Ae={2n-periodic functions a with DiaEA 1 }, 8=1/U+1), 

IlaIIAo=(the degree of a)I/(j+l), 

IlalI A! = sUPlr la(x)I1j(j+ I), 

II all A. = supn IDia(x)II/(j+ I). 

Note that the last three expressions are not norms. In addition, scalar multi
plication is not continuous in 11·IIAo. With this notation, (1) may be rewritten as 

Clearly, (1') resembles, at least formally, the convexity inequalities in the theo
rems of Riesz-Thorin and Marcinkiewicz. The other classical inequality is of 
Jackson type: 
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where "inf" is taken over all trigonometric polynomicals ao of degree at most n, 
and a is a j-times continuously differentiable 2n-periodic function. Using the 
notation introduced above and writing a l = a - ao, we have the following 
version of (2): 

for each aEAo and for each n there exist aoEAo and a l EAl' with aO+a l =a 
(EAo+Al)' such that 

Ilaoil AO ~ CnoilallA8 
(2') (0< e ~ 1) 

IIalll A1 ~ Cno- l llall A8 

Evidently, (2') is, in a sense, dual to (1'). 

1.6. Exercises 

1. (a) (Schur [1]). Let Ip= {x = (xi)t: l; XiE<C, (2:t:llxiIP)1/p<CO}, 1~p~oo, with 
the norm Ilxll'p=(2:t:llxiIP)l/P, Ilxll,.,=max;lx;l. Let A=(ai)i~j=l' aijE<C, be a 
matrix. Show (without using Riesz-Thorin) that 

and that 

holds for the norms of A. 

Hint: Write laijl = laijl1/2 'laijll/2 and use the Cauchy-Schwarz inequality. 

(b) Show that if 

nlanjl ~Mo, 

2:j lanjl ~Ml 

then A: Ip~lp (1<p~co) and 

II AII :<CM1/PMl/p' 
lp"'" 0 1 . 

Hint: Prove that A: 11 ~It. 

(c) Show that the conclusion in (a) may be strengthened to A: Ip~lp and 
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2. (F. Riesz [1 ]). In the notation of the previous exercise, show that if A is uni
tary, i.e. 

and sUPi,jlaijl is finite then 

Moreover, prove that for the norms 

(Cf. the Hausdorff-Young theorem.) 
Hint: Show that A:1I~100 and A:12~12' 

3. Let fEL/Ir), 1f being the one dimensional torus, 1 ~P~ 00, and assume 
that f has the Fourier series 

For a given sequence .II. = (.II.n);'= -00' let.ll.f be defined by the Fourier series 

Put 

and let 11.11. limp denote the norm of the mapping f ~.II.f. Show that, with 1jp +1jp' = 1, 
(i) mp=mp" 1~p~oo; 

(ii) .II.Eml ¢> I.. IAn I < 00; 
(iii) .II.E m2 ¢> SUPn IAn I < 00 ; 
(iv) if .II.EmpO nmp" 1~po, PI~oo then .II.Emp, 

and 

where 

1 1-e e 
-=--+-, O<e<1. 
P Po PI 

Hint: Apply Holder's inequality to the integral g" .II.f(x) g(x) dx. 

4. (M. Riesz [2]). Prove that if 1 <P< 00 and fELp, with 
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then the conjugate function IE L p , with 

and 

Show that this result is equivalent to .Ie E mp ' 1 < p < 00, where 

.Ie = {1' 
n 0, 

n>O 

n~O. 

15 

Hint: (i) Apply Cauchy's integral theorem to show that, for p = 2,4,6, ... , 
S~,,(f(x)+il(x))pdx=lr;ao_' Consider the real part. 
(ii) Note that AI = f + if, in some sense. 

(iii) Use Exercise 3 to get the whole result. 

5. (a) (M. Riesz [2]). With fELlJf) (1 <p< 00) as in Exercise 3, define the 
Hilbert transform of f on 1I' by 

fey) 
Jf f(x) = h 1 C( )) dy, -explx-y 

where the integral denotes the Cauchy principal value. Show that, with .Ie as in 
Exercise 4, .Ie-t=X. Use this to establish that 

Hint: Apply the residue theorem of complex function theory. 

(b) (O'Neil-Weiss [1]). Consider now the real line IR and define the Hilbert 
transform Jf by 

fey) 
Jf f(x) = SIR-dy, 

x-y 

where the integral is the Cauchy principal value. Let E be a Lebesgue-measurable 
subset of IR with finite measure lEI. Then 

Prove that this implies that if the integral 

SO' f*(t) sinh -l(1/t)dt 

is finite then 

ft(Jff)*(s)ds~21l:-1 SO' f*(t)sinh- 1(s/t)dt (s>O). 
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Use this inequality to obtain 

6. Show that Lpr defined in Section 1.3 is complete if 1 < p < 00 and 1::::;; r::::;; 00 
or if p=r=1,00; and that Ilf+gIILpr::::;;llfIILpr+llgIILpr iff 1::::;;n:,;;p<00 or 
p=r= 00. For which p and r is Lpr a Banach space? 

Hint: For the completeness, prove and apply the Fatou property: if O::::;;fnif 
and supn II fnllLpr is finite then f E Lpr and limn~ 00 II fnllL pr = II f IIL pr ' 

To prove the triangle inequality, note that formula (5) in Section 1.3 is equiv
alent to the formula 

and thus, with hELoo non-negative and decreasing, that 

S~h(x)(f + g)*(x) dx ::::;; S~h(x)f*(x)dx+ S~h(x)g*(x)dx, t>O, 

holds. 

7. (O'Neil [1]). Prove that if 1 <p< 00,1 <r< 00, and fELpr then, with 

f**(t)=t- 1 S~f*(s)ds, t>O, 

Ilfll~pr = Ilf**IIL pr ' 

11'II~pr is a norm on Lpr and Ilfll~pr""'llfIILpr (i.e., there exist positive constants 
CI, C2 such that the inequalities CIII f IIL pr ::::;; II f II~pr::::;; C2 11 f IIL pr hold for all f E Lpr)' 

Hint: Apply Hardy's inequality (see Hardy et al. [1]) 

S(;'(t 1/p. t- 1 Shf*(s)ds)' dt/t::::;; Cpr S(;'(t 1 /p f*(t))' dt/t . 

8. (Lorentz [2]). Show that if 1::::;;r1 <r2 ::::;;00 and 1<p<00 then 

Hint: Prove first the result for r2 = 00. To this end, note that 

9. (Hunt [1]). Prove that the restriction p::::;;q in the Marcinkiewicz theorem is 
indispensable. 

Hint: Consider (0, (0) with Lebesgue measure. Put 

Tf(x)=x- a- 1 S~f(t)dt, IX>O, 
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and verify that 

(Tf)*(x)~x-a I**(x) , 

(Tf)*(x)~x-a f*(x) if 1=1*. 

17 

Choose (f. = 1/qi-1/Pi' i=O,l, and use the results in the two previous 
exercises to show that there is a function IE Lp for which T 1 ¢: Lq, where P> q 
are chosen as in the Marcinkiewicz theorem. 

10. Prove that if 1~p~2, l/p'=l-l/p and p~q~p' then 

where p=l-q/p'. 

Hint: Apply 1.2.1 and 1.4.1. 

11. (Stein [1]). Consider a family of operators Tz, such that Tzi is a vector
valued analytic function of z for O<Rez<l and continuous for O~Rez~l 
for each fixed 1 in the domain. Prove that if 

Tiy : Lpo -+ LqO ' 

Tl +iy: Lp,-+Lq, ' 

with II Toll ~ h(8, II T;.II, II Tl+i.11) where l/p=(l- 8)/po + 8/Pl' l/q =(1- 8)/qo + 8/ql' 
o ~ 8 ~ 1, and h is bounded in 0 < 8 < 1 for fixed Tz . (II T;.II denotes the function.) 

Hint: Adapt the proof of Theorem 1.1.1, using a conformal mapping. 

12. (Stein-Weiss [1 ]). Assume that 

T: Lpo(U, dPo)-+Lqo(V' dvo), 

T: LpJU, dpl)-+Lq,(V, dv 1). 

Then show that 

with norm 

M~M6-oM~ , 

provided that 

1/p=(1-8)/Po+8/Pl' 1/q=(1-8)/qo +8/ql 
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and 

The last two equations mean that 110 and III are both absolutely continuous 
with respect to a measure (J, i.e., llo=wo(J, 111 =w1(J and ll=wg(I-0)/p0wf.0/P '(J. 

Similarly for vo, VI and v. 

Hint: Use the proof of the Riesz-Thorin theorem, and put 

and choose I/I(z) analogously. 

13. (Thorin [2J). Assume that (with Lp = LiU, dll)) 

T: Lp\o) x LpSo) X ••• x Lp~,o) ...... LqO' 

T: Lp\l) x L1,S') X ... X Lp~')""" Lq,. 

Then show that 

with norm 

where 1/Pi=(1-8)/p~O)+8/p~1), 1/q=(1-8)/qo+8/ql> and O~8~1. 

Hint: Adapt the proof of Theorem 1.1.1. 

14. (Salem and Zygmund [1 J). Let f be holomorphic in the open unit disc and 
O<P~oo. 

Then we write f E Hp (Hardy class) if the expression 

is finite. Show that if 

T: Hpo ...... LqO , 

T:Hp, ...... Lq, 

then 

with norm 
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where 1/p=(1-0)jPo+O/PI' 1/q=(1-0)/qO+O/ql' O~O~ 1, O<po, PI ~oo, 1~qo, 
ql~OO. 

Hint: Note the fact, due to F. Riesz, that every fEHp admits a factorization 
f = Bg, where B is a Blaschke product with the same zeros as f, and g E H p has 
no zeros in the disc. Moreover, reformulate Exercise 4 as follows: If P> 1 then 
Hp is a complemented subspace of Lp. Write 7r for the corresponding projection 
and consider the mapping 

where 1/p = L7= 11/Pi and Pi> 1, i= 1, 2, ... , n, defined by 

Obviously, by F. Riesz, f =({JI· ... ·({In' ({JiEHpi' and so f =F({JI' ... , ({In). Apply 
Exercise 12 to the mapping M = To F. 

15. Write Kolmogorov's [1] inequality 

where a is m-times continuously differentiable, in the form indicated in Section 1.5. 

1.7. Notes and Comment 

1.7.1. An early instance of interpolation of linear operators, due to I. Schur [1] 
in 1911, is reproduced as Exercise 1. He stated his result for bilinear forms, or 
rather, for the matrices corresponding to the forms. 

In 1926, M. Riesz [1] proved the first version of the Riesz-Thorin theorem 
with the restriction P ~ q, which he showed is essential when the scalars are real. 
Riesz's main tool was the Holder inequality. These early results were given for 
bilinear forms and ip ' but they have equivalent versions in the form of the theo
rems in the text, cf. Hardy, Littlewood and Polya [1]. Giving an entirely new 
proof, G. O. Thorin [1] in 1938 was able to remove the restriction p~q. Thorin 
used complex scalars and the maximum principle whereas Riesz had real scalars 
and Holder's inequality. Moreover, Thorin gave a multilinear version of the 
theorem (see Exercise 13). A generalization to sublinear operators was given by 
Calderon and Zygmund [1], another by Stein [1], and yet another with change 
of measures by Stein and Weiss [1]. The latter two generalizations are found in 
Exercises 11 and 12. Finally, Kree [1] has given an extension to p<1, q<1, 
i. e., the quasi-normed case. Other proofs and extensions have been given by 
several authors (for references see Zygmund [1]). 

We reconsider the Riesz-Thorin theorem in Chapter 4 and Chapter 5, and 
then in a general framework. 
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1.7.2. The Hausdorff-Young inequality (Theorem 1.2.1) is a generalization of 
Parseval's theorem and the Riemann-Lebesgue lemma. (There is also an inverse 
version using the Riesz-Fischer theorem; see Zygmund [1].) It was first obtained 
on the torus If by W.H. Young [1] in 1912 for p' even, and then, in 1923, for 
general p by F. Hausdorff [1]. Young employed his inequality, Theorem 1.2.2, 
given for bilinear forms, which he proved by a repeated application of Holder's 
inequality. There are examples (e.g., in Zygmund [1] for the torus If) which 
show that the condition p:::;,2 is essential in the Hausdorff-Young theorem. 
F. Riesz [1] in 1923 proved an analogue of the Hausdorff-Young theorem for 
any orthogonal system. This is Exercise 2, where the idea to use interpolation 
for the proof appeared in M. Riesz [1]. A further extension of the Hausdorff
Young inequality to locally compact Abelian groups has been made by Weil [1]. 
His proof is quite analogous to the one given in the text. This proof, using inter
polation directly, is due to M. Riesz [1]. Another generalization is discussed in 
the Notes and Comment pertaining to Section 1.4. 

The space mp of Fourier multipliers (Exercise 3-5) has been treated in 
Hormander [1] and Larsen [1]. The Fourier multipliers are our main tools in 
Chapter 6, treating the Sobolev and Besov spaces. 

The use of the Riesz-Thorin theorem to obtain results about the Hardy 
classes Hp (Exercise 14) was introduced by Thorin [2] and Salem and Zygmund [1]. 
We return to H p in Chapter 6. 

Results for the trace classes 6 p of compact operators in a Hilbert space have 
been proved analogously to the Lp case by an extension of the results to non
commutative integration, compare, for example, Gohberg-Krein [1] and Peetre
Sparr [2]. 

1.7.3. The Marcinkiewicz theorem appeared in a note by J. Marcinkiewicz [1] 
in 1939, without proof. A. Zygmund [2] in 1956 gave a proof (using distribution 
functions) and also applications of the theorem, which can not be obtained by 
the Riesz-Thorin result. Independently, Cotlar [1] has given a similar proof. 
The condition p:::;'q is essential; this was shown by RA. Hunt [1] in 1964, cf. 
Exercise 9. Several extensions have been given. A. P. Calderon [3] gave a version 
for general Lorentz spaces and quasi-linear operators, viz., 

IT(Af)(x)1 :::;,klIAII Tf(x)l , 

I T(f + g)(x)l:::;' kz(1 T f(x)1 + IT f(x)l) , 

where kl and kz are constants. It is not hard to see that the proof given in the 
text works for quasi-linear operators too. Calderon's version has been com
plemented by Hunt [1]. We return to this topic in Chapter 5. See also Sargent [1], 
Steigerwalt-White [1], Krein-Semenov [1] and Berenstein et al. [1]. 

Cotlar and Bruschi [1] have shown that the Riesz-Thorin theorem, with the 
restriction p:::;' q, follows from the Marcinkiewicz theorem, although without the 
sharp norm inequality. 

The proof in the text of the Marcinkiewicz theorem is due to Bergh. The 
inequality (8) seems to be new. The present proof of this inequality, using dis
cretization, is due to Peetre (personal communication). 
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The Lorentz spaces were introduced by G. G. Lorentz [1] in 1950. Later he 
generalized his ideas, e. g. in [2], where the present definition may be found. 
Our notation is due to R. O'Neil [1] and Calderon [3]. In general, the Lorentz 
spaces are only quasi-normed, but they may be equipped with equivalent norms. 
F or the details, see Exercises 6-8. A still more general type of spaces, Banach 
function spaces, has been treated by W.A.J. Luxemburg [1] and by Luxemburg 
and Zaanen [1]. More about the Lorentz spaces is found in the Notes and Com
ment in Chapter 5. 

1.7.4. R. E. A. C. Paley's [1] sharpening of the Hausdorff-Young theorem appeared 
in 1931. It has been complemented by a sharpening of Young's inequality due 
to O'Neil [1]. We deal with these questions in Chapter 5. Some of the most 
important applications of the Marcinkiewicz theorem are those concerning the 
Hilbert transform and the potential operator. These applications are treated in 
Chapter 6 and Chapter 5 respectively. 

1.7.5. The Bernstein inequality was obtained by Bernstein [1] in 1912, and the 
Jackson inequality by Jackson [1] in 1912. Cf. Lorentz [3]. 

Interpolation of linear operators has been used to prove results about ap
proximation of functions, of operators and, in particular, of differential operators 
by difference operators. (See Peetre-Sparr [1] and LOfstrom [1] as general ref
erences.) Chapter 7 is devoted to these questions, and we refer to this chapter 
for precise statements and references. 



Chapter 2 

General Properties of Interpolation Spaces 

In this chapter we introduce some basic notation and definitions. We discuss a 
few general results on interpolation spaces. The most important one is the 
Aronszajn-Gagliardo theorem. 

This theorem says, loosely speaking, that if a Banach space A is an interpolation 
space with respect to a Banach couple (Ao,A 1) (of Banach spaces), then there is an 
interpolation method (functor), which assigns the space A to the couple (Ao,Al)' 

2.1. Categories and Functors 

In this section we summarize some general notions, which will be used in what 
follows. A more detailed account can be found, for instance, in MacLane [1]. 

A category rtf consists of objects A, B, C, ... and morphisms R, S, T, .... Between 
objects and morphisms a three place relation is defined, T: A nrB. If T: A nrB and 
S: B nrC then there is a morphism S T, the product of Sand T, such that S T: A nrC. 
The product of morphisms satisfies the associative law 

(1) T(SR)=(TS)R. 

Moreover, for any object A in rtf, there is a morphism I = I A' such that for all 
morphisms T: AnrA we have 

(2) TI=IT=T. 

In this book we shall frequently work with categories of topological spaces. 
Thus the objects are certain topological spaces. The morphisms are continuous 
mappings, ST is the composite mapping, I is the identity. Usually, morphisms 
are structure preserving mappings. For instance, in the category of all topological 
vector spaces we take as morphisms all continuous linear operators. 

Let rtf 1 and rtf be any two categories. By a Junctor F from rtf 1 into rtf, we mean 
a rule which to every object A in rtf 1 assigns an object F(A) in rtf, to every morphism 
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Tin ~1 there corresponds a morphism F(T) in~. If T: A~B then F(T): F(A)~F(B) 
and 

(3) F(ST)=F(S)F(T) , 

Note that our concept "functor" is usually called "covariant functor". 
As a simple example, let ~ be the category of all topological vector spaces and 

~ 1 the category of all finite dimensional Euclidean spaces. The morphisms are the 
continuous linear operators. Now define F(A)=A and F(T)= T. Then F is of 
course a functor from ~ 1 into ~. 

In general, let ~ and ~ 1 be two categories, such that every object in ~ 1 is an 
object in ~ and every morphism in ~ 1 is a morphism in ~. Then we say that ~ 1 

is a sub-category of ~ if F(A)=A and F(T)= T defines a functor from ~1 to ~. 

2.2. Normed Vector Spaces 

In this section we introduce some of the categories of topological vector spaces 
which we shall use frequently. 

Let A be a vector space over the real or complex field. Then A is called a 
normed vector space if there is a real-valued function (a norm) 11'11 A defined on A 
such that 

(1) Ilaii A ;;::0, and Ilaii A =0 iff a=O, 

(2) IIAaII A = IAlllall A , A a scalar, 

If A is a normed vector space there is a natural topology on A. A neighbourhood 
of a consists of all b in A such that lib - a II A < e for some fixed e > 0. 

Let A and B be two normed vector spaces. Then a mapping T from A to B 
is called a bounded linear operator if T(Aa) = AT(a), T(a+b)=T(a)+T(b) and if 

Clearly any bounded linear operator is continuous. The space of all bounded 
linear operators from A to B is a new normed vector space with norm 11-11 A,B' 

We shall reserve the letter .K to denote the category of all normed vector 
spaces. The objects of .AI are normed vector spaces and the morphisms are the 
bounded linear operators. Thus ;fI is a sub-category of the category of all topo
logical vector spaces. 
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A natural sub-category of% is the category of complete normed vector 
spaces or Banach spaces. Recall that a normed vector space A is called complete 
if every Cauchy sequence (an)f in A has a limit in A, i. e. if the condition 

implies the existence of an element a E A, such that 

In many cases it is preferable to prove completeness by means of the following 
"absolute convergence implies convergence" test. 

2.2.1. Lemma. Suppose that A is a normed vector space. Then A is complete if and 
only if 

implies that there is an element a E A such that 

Proof: Suppose first that A is complete and that IIIanii A converges. Clearly 
(L~ ~ t an) is then a Cauchy sequence in A and thus a = If an with convergence in 
A. For the other implication, suppose that (av) is a Cauchy sequence in A. It is 
easy to see that we may choose a subsequence (av) with L~tllavj-aVj_lIIA 
finite. Then it follows that I~ t (aVj -aVj _,) converges in A and thus (av) converges 
in A too. But then (a.) also converges in A since it is a Cauchy sequence. 0 

We shall use the letter flJ to denote the category of all Banach spaces. Thus flJ 
is a sub-category of%. Other familiar sub-categories of % are the category of all 
Hilbert spaces (which is also a sub-category of flJ) and the category of all finite 
dimensional Euclidean spaces. 

2.3. Couples of Spaces 

Let Ao and At be two topological vector spaces. Then we shall say that Ao and At 
are compatible if there is a Hausdorff topological vector space 21 such that Ao 
and At are sub-spaces of 21. Then we can form their sum Ao + At and their 
intersection Ao nAt. The sum consists of all a E 21 such that we can write 
a=ao+at for some aoEAo and atEA t . 

2.3.1. Lemma. Suppose that Ao and At are compatible normed vector spaces. Then 
AOnAt is a normed vector space with norm defined by 
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Moreover, Ao + Al is also a normed vector space with norm 

If Ao and Al are complete then AonAI and Ao+AI are also complete. 

Proof: The proof is straightforward. We shall only give the proof of the com
pleteness of Ao + AI' We use Lemma 2.2.1. Assume that 

Then we can find a decomposition an = a~ + a;, such that 

Ila~IIAo + Ila; IIAI ~ 21I anIIAo+AI' 

It follows that 

If Ao and Al are complete we obtain from Lemma 2.2.1. that Ia~ converges in 
Ao and Ia; converges in AI' Put aO=Ia~ and al=Ia; and a=aO+a l . 
Then a E Ao + A I and since 

we conclude that In an converges in Ao + Al to a. D 

Let C(} denote any sub-category of the category .K of all normed vector spaces. 
We assume that the mappings T: A-4B are all bounded linear operators from A 
to B. We let C(} I stand for a category of compatible couples A = (Ao, AI)' i. e. 
such that Ao and A I are compatible and such that Ao + A I and Ao n A I are 
spaces in C(}. The morphisms T: (Ao,A 1)-4(Bo,B1 ) in C(} I are all bounded linear 
mappings from Ao + Al to Bo + BI such that 

are morphisms in C(}. Here TA denotes the restriction of T to A. With the natural 
definitions of composite morphism and identity, it is easy to see that C(} I is in fact a 
category. In the sequel, T will stand for the restrictions to the various subspaces of 
Ao+AI' We have, with a=aO+al , 

Writing IITIIA,B for the norm of the mapping T:A-4B, we conclude 
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and 

We can define two basic functors 1: (sum) and A (intersection) from '6'1 to '6'. 
We write1:(T) = A(T) = T and 

(5) A(A)=AonAl' 

(6) 1:(A)=Ao+Al' 

As a simple example we take '6' = f!4. By Lemma 2.3.1 we can take as '6'1 
all compatible couples (A o,A1) of Banach spaces. In fact, Lemma 2.3.1 implies 
that if Ao and Al are compatible, then Ao+Al and AonAI are Banach spaces. 
As a second example we take the category '6' of all spaces L 1•w defined by the norms 

IlfIIL,.w = f If(x) I w(x)dx 

where w(x»O. Since Ll.WonLl.W, =L 1•w, where w'(x) = max (wo(x), w1(x)), and 
since Ll.wo+L1.w,=Ll.w" where wl/(x)=min(wO(x),w1(x)), we can let '6'1 consist 
of all couples (Ll.wo,Ll.wJ 

As a third example we consider the category '6' of all Banach algebras (Banach 
spaces with a continuous multiplication). '6'1 consists of all compatible couples 
(Ao, AI) such that Ao and Al are Banach algebras with the same multiplication 
and such that Ao + Al is a Banach algebra with that multiplication. Since it 
is easily seen that Ao n Al is also a Banach algebra, we conclude that '6'1 satis
fies the requirements listed above. (Note that Ao + Al is not in general a Banach 
algebra.) 

In most cases we shall deal with the categories '6' = % or '6' = f!4. Then '6'1 
will denote the category of all compatible couples of spaces in '6'. This will be our 
general convention. If '6' is any given category, which is closed under the operations 
1: and A, then '6' I denotes the category of all compatible couples. 

2.4. Definition of Interpolation Spaces 

In this section '6' denotes any sub-category of the category %, such that '6' is 
closed under the operations sum and intersection. We let '6'1 stand for the category 
of all compatible couples A of spaces in '6'. 

2.4.1. Definition. Let A=(Ao,A1 ) be a given couple in '6'1' Then a space A in '6' 
will be called an intermediate space between Ao and Al (or with respect to A) if 

(1) A(A)cAc1:(A) 
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with continuous inclusions. The space A is called an interpolation space between 
Ao and Al (or with respect to A) if in addition 

(2) T: A ---> A implies T: A ---> A . 

More generally, let A and B be two couples in C(j I' Then we say that two 
spaces A and B in C(j are interpolation spaces with respect to A and B if A and Bare 
intermediate spaces with respect to A and B respectively, and if 

(3) T: A ---> B implies T: A ---> B. 0 

To avoid a possible misunderstanding, we remark here that if A and Bare 
interpolation spaces with respect to A and B, then it does not, in general, follow 
that A is an interpolation space with respect to A, or that B is an interpolation 
space with respect to B. (See Section 2.9.) 

Note that (3) means that if T:Ao--->Bo and T:AI--->BI then T:A--->B. Thus 
(2) and (3) are the interpolation properties we have already met in Chapter 1. 
As an example, the Riesz-Thorin theorem shows that Lp is an interpolation 
space between Lpo and Lpt if Po < p < PI' _ _ 

Clearly A(A) and A(B) are interpolation spaces with respect to A and B. 
The same is true for 1:(A) and 1:(B). If A = A(A) (or 1:(A)) and B = A (B) (or 1:(B)), 
then we have 

(See Section 2.3, Formula (3) and (4).) 
In general, if (4) holds we shall say that A and B are exact interpolation spaces. 

In many cases it is only possible to prove 

(5) II TIIA,B::::;Cmax(11 TIIAo,Bo' II TIl At,B,). 

Then we shall say that A and B are uniform interpolation spaces. In fact, it follows 
from Theorem 2.4.2 below that, when B, Bi, i =0,1, are complete, A and Bare 
interpolation spaces iff (5) holds, i. e., (3) and (5) are then equivalent. Also, (2) and 
(5) are equivalent for B=A, Bi=Ai' i=O, 1, when all the spaces are complete. 

The interpolation spaces A and B are of exponent (), (0::::; ()::::; 1) if 

If C = 1 we say that A and B are exact of exponent (). 
Note that (6) is a convexity result of the type we have met in Chapter 1. By 

the Riesz-Thorin theorem, Lp is an interpolation space between Lpo and L pt 
which is exact of exponent (), if 

1 1-() () 
- = - + -, (O<()<1). 
p Po PI 
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Similarly the Marcinkiewicz theorem implies that Lp and Lq are interpolation 
spaces with respect to (Lpo,Lp,) and (L:o,L:J Here Lp and Lq are interpolation 
spaces of exponent 8 (not exact), if 

1 1-8 8 
-=--+-, 

1 1-8 8 
-=--+-, (0<8< 1). 

p Po PI q qo qI 

We shall now discuss some simple properties of interpolation spaces. 

2.4.2. Theorem. Consider the category fJ6. Suppose that A and B are interpolation 
spaces with respect to the couples A and E. Then A and B are uniform interpolation 
spaces. 

Proof: Consider the set of all morphisms T in <c I such that T: A --+ E. Thus 
T is also bounded and linear from A to B. Denote this set equipped with the 
norm max(11 TIIA,B' II TIIAo,Bo' II TIl AloB,) by L I, and equipped with the norm 
max (II TIIAo,Bo' II TIIA"B') by Lz. It is easily verified that LI and Lz are Banach 
spaces. (Use the intermediate space properties.) The identity mapping i: L I --+ L z 
is clearly linear, bounded and bijective. By the Banach theorem i-I: L z --+ LI 
is also bounded. This means that we have II TIIA,B~max(11 TIIA,B' II TIIAo,Bo' 
II TIIAl,B,)~ Cmax (II TIIAo,Bo' II TIl Al,B)' with C independent of T, i. e. (5) holds. 0 

A major objective in interpolation theory is the actual construction of inter
polation spaces. A method of constructing such a space will be called an inter
polation functor according to the following definition. 

2.4.3. Definition. By an interpolation functor (or interpolation method) on <c we 
mean a functor F from <c 1 into <c such that if A and E are couples in <c I' then 
F(A) and F(B) are interpolation spaces with respect to A and E. Moreover we shall 
have 

F(T) = T for all T: A --+ E. 0 

We shall say that F is a uniform (exact) interpolation functor if F(A) and F(B) 
are uniform (exact) interpolation spaces with respect to A and E. Similarly we say 
that F is (exact) of exponent 8 if F(A) and F(E) are (exact) of exponent 8. 

By Theorem 2.4.2, any interpolation functor F on fJ6 is uniform. Note that 
this means that 

II TIIF(.4),F(B) ~C max(11 TIl Ao,Bo' II TIIA"B,)' 

for some constant C depending on the couples A and E. If we can choose C inde
pendent of A and E, we speak of a bounded interpolation functor. Note that F is 
exact if we can take C = 1. 

The simplest interpolation functors are the functors Ll and 1:. These functors 
are exact interpolation functors on any admissible sub-category <c of the category 
.K of normed vector spaces. 
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2.5. The Aronszajn-Gagliardo Theorem 

Let A be an interpolation space with respect to A. It is natural to ask if there is an 
interpolation functor F, such that F(A) = A. This question is considered in the 
following theorem. 

2.5.1. Theorem (The Aronszajn-Gagliardo theorem). Consider the category fJI 
of all Banach spaces. Let A be an interpolation space with respect to the couple A. 
Then there exists an exact interpolation Junctor F 0 on f!4 such that F o(A) = A. 

Note that Fo(A)=A means that the spaces Fo(A) and A have the same 
elements and equivalent norms. Thus it follows from the theorem that any inter
polation space can be renormed in such a way that the renormed space becomes an 
exact interpolation space. 

Proof: Let X = (X 0' Xl) be a given couple in f!41' If T: A -> X we write 

Then X = F o(X) consists of those x E 17(X), which admit a representation 

x = Lj ~aj (convergence in 17(X)), 

The norm in X is the infimum of N x(x) over all admissible representations of x. 
First we prove that X is an intermediate space with respect to X. In order to 

prove that ,1 (X) c X we let <p be a bounded linear functional on 17(A) such that 
<p(a1)=1 for some fixed a1EA. Let xE,1(X) be fixed and put T1a=<p(a)x. Then 

II T111 A.X ~ C II xIILl(x)' 

Put ~=O and aj=O if j>1. Since ~a1=x we then have x=Lj~aj and 

This implies ,1(X)cX. The inclusion Xc17(X) follows easily from the fact that 
A c17(A). For if x = Lj ~aj is an admissible representation of XEX, then 
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Thus 

which implies X cI'(X). 
We now turn to the completeness of X, using Lemma 2.2.1 repeatedly. Suppose 

that L:."=o Ilx(V)llx converges. Then Lv II x(v) II r(X") converges too, since XC I'(X). 
Thus x = LX(V) with convergence in I'(X), I'(X) being complete. Let 
xlv) = L Tj') alv) be admissible representations such that L II T}V)IIA.X II alV) II A < 
IIx(V)lIx+2-v, v=0,i,2, .... Then x = LvLT}V)alv) is in X because 
LvLj II Tj(V) II A,X II ajV) II A < 00. Finally, with these representations, we have 

IIx - L~x(V)lIx::;; L:."=n+ 1 L1'=o II Tj(v)IIA,X II aJV) II A 

::;; L:."=n+ 1 (lIx(v)lIx + 2-V)~0 (n~ (0). 

Thus X= LX(v) with convergence in X, and X is complete. 
Next we prove that Fo is an exact interpolation functor. Assume that S: X ~ Y. 

If X=(XO,X1 ) and Y=(YO,Y1 ) we write 

Mj= IISlIxj'Yj' j=O, i . 

Put X = F(X) and Y = F(Y) and suppose that x E X. If x = Lj Tjaj is an admis
sible representation of x, then S x = Lj S Tj aj is an admissible representation of 
Sx. In fact, 

and therefore 

This proves that IISxlly::;;max(Mo,M1)lIxllx,i.e., that Fo is an exact inter
polation functor. 

It remains to prove that F 0(,4) = A. If a E F o(A) has the admissible represen
tation a = Lj Tjaj where Tj: A~A then 

This follows from the fact that A is an interpolation space with respect to A 
and that A is uniform according to Theorem 2.4.2. Thus 

which gives Fo(A)cA. The converse inclusion is immediate. For a given aEA, 
we write a= Lj Tjaj, where Tj=O and aj=O for j>i and Tl =1, a1 =a. Then 
lIaIlFo(A) ::;;Lj II TjIlA,A lIa)IA = lIall A· 0 
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Let us look back at the proof. Where did we use that A was an interpolation 
space? Obviously only when proving that Fo(A)cA. Thus we conclude that if A 
is any intermediate space with respect to A, then there exists an exact inter
polation space B with respect to A, such that A cB. 

Of greater interest is the following corollary of the Aronszajn-Gagliardo 
theorem. It states that the functor F 0 is minimal among all functors G such that 
G(A)=A. 

2.5.2. Corollary. Consider the category f!4. Let A be an interpolation space with 
respect to A and let Fo be the interpolation functor constructed in the proof of Theo
rem 2.5.1. Then Fo(.X)cG(X) for all interpolation functors G such that G(A)=A. 

Proof' If X= Lj ~aj is an admissible representation for XEX = Fo(X), then 
1j:A-+X. Put Y=G(X). Since A and Yare uniform interpolation spaces with 
respect to A and X it follows that 

where 

Thus 

By the definition of X it follows that Xc Y, i. e., F 0 (X) c G(X). 0 

2.6. A Necessary Condition for Interpolation 

In this section we consider the category C(j =.AI of all normed linear spaces. 
C(j 1 is the category of all compatible couples. 

With t>O fixed, put 

K(t,a) = K(t,a;A) = infa =ao+al (II ao II Ao + t II alii A,)' aE 1'(A) , 

J(t,a)=J(t,a;A) = max(llaIIAo,tllaIIA,), aEA(A). 

These functionals will be used frequently in the sequel. It is easy to see that K(t, a) 
and J(t, a), t> 0, are equivalent norms on l' (A) and A (A) respectively. (Cf. 
Chapter 3.) 

2.6.1. Theorem. Let A and B be uniform interpolation spaces with respect to the 
couples A and B. Then 

J(t,b)~K(t,a) for some t, aEA, 
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implies 

If A and B are exact interpolation spaces the conclusion holds with C = 1. 

The theorem gives a condition on the norms of the interpolation spaces A and 
B in terms of the norms of the "endpoint" spaces in .4 and B. 

Proof: Let a, band t be as in the assumption. Consider the linear operator 
Tx=f(x)·b, where f is a linear functional on L(..4) with f(a)=1 and If(x)l~ 
K(t, x)/K(t, a). The existence of f follows from the Hahn-Banach theorem. If 
xEAi we have 

i = 0,1. Hence, since A and B are uniform interpolation spaces, II Tx II B ~ Cli x II A' 

xEA. Putting x=a we have IlbIIB~CllaIIA since Ta=b. Finally, if A and B 
are exact, obviously C = 1. The proof is complete. 0 

2.7. A Duality Theorem 

Considering the category fJl of all Banach spaces we have the following. 

2.7.1. Theorem. Suppose that ,1(.4) is dense in both Ao and A1. Then ,1(..4)' =L(.4') 
and L(..4)' = ,1(.4'), where .4'=(A~,A~) and A' denotes the dual of A. More 
precisely 

and 

, 1<a',a)1 
Iia Ilr(4')= SUPaELI(A) II II _ 

a LI(A) 

where <.,.) denotes the duality between ,1 (.4) and ,1 (.4),. 

Proof: We prove only the first formula. The proof of the second one is quite 
similar. 

First,let a'EL(.4') and a'=a~+a~,a;EA;. Then 
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Consequently, a' eLl (A)' and 11a'II<I(A)' ~ Ila'II1"(A')' 
Conversely, let leLl(A)', i.e., 

II(a)1 ~ III II <I(A), Ilall<l(A)' aeLl(A). 

Then the linear form 
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on E = {(ao,ai )eAo EB Ai: ao =ai } is continuous in the norm max(llaoII Ao' lIa i llA,) 
on AoEBAi' E is a subspace of AoEBA i . Then, by the Hahn-Banach theorem, 
there is (a~,a~)eA~EBA~ such that 

Ila~IIAO + Ila~ IIAi ~ IIIII<I(A)' 

and 

Thus, taking aO=ai =a, we obtain 

I(a) = <a~,a> + <a~,a> = <a~ +a~,a>, aeLl(A). 

By the density assumption, a~ and a'i are determined by their values on Ll(A). 
Putting I = a~ + a~, 11111 1"(A') ~ 11111 <I (A)' follows. 

This completes the proof of the first formula. 0 

2.8. Exercises 

1. Prove Lemma 2.3.1 in detail. In particular, use the Hausdorff property of 21 
to show that Ao n A 1 is complete if Ao and Ai are complete. 

2. Use Lemma 2.2.1 to prove that the space of all bounded linear operators 
from a normed linear space to a Banach space is complete. 

3. Let Xi' i = 0, 1, and X be Banach spaces, Xi closed in X and Xi C X, i = 0, 1. 
Show that the following two conditions are equivalent: 
(i) XO+Xi is closed in X; 

(ii) Ilxllxo+XI~Cllxllx for xeXO+X i . 

4. (Aronszajn and Gagliardo [1 ]). Let A be an interpolation space of exponent e 
with respect to A. Prove that there is a minimal interpolation functor Fe, which is 
exact and of exponent e, such that Fe(A)=A. 

Hint: Use the functional Ne(x) = Lj 111j11~~~o 111j1l~"xl Ilajll A· 
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5. (Aronszajn-Gagliardo [1 ]). Consider the category fJI of all Banach spaces and 
let A be an interpolation space with respect to the couple A. Prove that there 
exists a maximal exact interpolation functor Fl on 81, such that Fj(A)=A. 

Hint: Define X=F1(A) as the space of all xEl'(X) such that TXEA for all 
T:X --+.4. The norm on X is M(x)=sup {II TxIIA: max (II Tllxo,Ao' II TIIXJ.AJ~ 1}. 

6. (Gustavsson [1]). Let Ai' i=O,l, be seminormed linear spaces, i.e., the norms 
are now only semidefinite. Moreover, let Ai c m:, i = 0,1, m: being a linear space. 
Put A={Ao,Ad and 

the null space of the couple A. Show that N(A) is a closed linear subspace of 
Ao+Aj equipped with the seminorm in the definition of N(A). If AonAl is 
complete in the seminorm max(II·IIAo,II·II A) and aEN(A) then prove that 
there exist aiEAi with aO+a 1 =a and Ila;!lA, =0, i=O,1. 

7. (Gagliardo [2]). Let A and B be (semi-)normed linear spaces and AcB. 
The Gagliardo completion of A relative to B, written AB,\ is the set of all bEB 
for which there exists a sequence (an) bounded in A and with the limit b in B. 

(a) Show that AB,c with 

is a (semi-)normed linear space, and that IlbIIAB,C ~ Ilbii A for bEA. 

(b) Show that AB,c is an exact interpolation space with respect to (A,B). 

(c) Show that if A and B are Banach spaces, such that A is dense in B and A 
is reflexive, then AB,c=A. 

8. Let A and B be as in the previous exercise. The Cauchy completion of A relative 
to B, written AC, is the set of all bEB for which there exists a sequence (an), Cauchy 
in A and with the limit b in B. Prove that AC is a semi-normed linear space with 

IlbllAc =inf(an)suPn Ilanll A, 

and that IlbllAc ~ IIbll A for bEA. 

(As the notation indicates, AC may be constructed without reference to a set B. 
ef. Dunford-Schwartz [1].) 

9. Show that ACcAB,c with AC and AB,c as in Exercise 7 and Exercise 8. 
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10. Prove the following dual corollaries to Theorem 2.6.1 : 

(a) If a and b satisfy 

{J(t,b)~J(t,a) all t>O 

K(t, a) = min(llallo,t IlalI I) all t>O 

then (1) implies IlblIB~ IlalIA· 

(b) If a and b satisfy 

{K(t,b)~K(t,a) all t>O 

K(t,b)=min(llbllo,tllbII I ) all t>O 

then (1) implies IlblIB~ IlallA-
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11. (Weak reiteration theorem). Let X =(Xo, XI) and A =(Ao, AI) be given 
couples. 

(a) Suppose that Xo and Xl are (exact) interpolation spaces with respect to 
A and let X be an (exact) interpolation space with respect to X. Then X is an 
(exact) interpolation space with respect to A. 

(b) Suppose that X 0 and Xl are (exact) interpolation spaces of exponents 00 

and 0l respectively with respect to A and thatX is an (exact) interpolation space of 
exponent 1] with respect to X. Then X is an (exact) interpolation space of exponent ° with respect to A provided that 

12. Show that if Ao is contained in Al as a set, and A is a compatible couple in 
.K, then 

13. (Aronszajn-Gagliardo [1]). Let Ao and Al be normed linear subspaces of a 
linear space 21. Consider their direct sum Ao EB Al and the set Z c Ao EB AI' 

Let IlaollAo+llalllAl be the norm on AoEBAI' Show that (AoEBAI)/Z, with the 
quotient norm, is isometrically isomorphic to Ao + Al and that the same is true for 
Z, with norm max(llaoII Ao' IlaIII A,), and AonAI' (The definitions of Ao+AI and 
AonAI and their respective norms are found in Section 2.4.) 

14. (Girardeau [1]). (a) Let Ai (i=O, 1) be locally convex Hausdorff topological 
vector spaces, such that Ao is subspace of AI' Assume that there is an antilinear sur
jective mapping M: A~ -> Ao satisfying 

<Ma,a)~O (aEA~). 
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Show that M defines a scalar product 

(c,d)= <M a,b), 

where c = M a and d = M b, and that if At is quasicomplete then the completion 
of Ao in the scalar product topology is a Hilbert space A with 

(b) Let Ai and Bi be as in (a), and assume that Ao and Bo are dense in A and B 
respectively. Consider a continuous and linear mapping T: At---+Bt , with T(Ao) 
contained in Bo. Show that 

TEL(A,B) 

iff there exists a A> 0, such that 

converges weakly in the completion of At. 

Hint: «T*Tta,b)~O if Mb=a. 

2.9. Notes and Comment 

The origin of the study of interpolation spaces was, as we noted in Chapter 1, 
interpolation with respect to couples of Lp-spaces. Interpolation with respect to 
more general couples, i.e., Hilbert couples, Banach couples, etc., seems to have 
been introduced in the late fifties. Several interpolation methods have been inven
ted. A few of the relevant, but not necessarily the first, references are: Lions [1], 
"espaces de trace"; Krein [1], "normal scales of spaces"; Gagliardo [2], "unified 
structure"; Lions and Peetre [1], "c1asse d' espaces d' interpolation", Calderon [2], 
"the complex method". We shall discuss their relation in Chapters 3-5. Two of 
these interpolation methods will be treated in some detail: the real method, which 
is essentially that of Lions and Peetre [1], and the complex method. This is done 
in the following two chapters. 

For interpolation results pertaining to couples of locally convex topological 
spaces, see e. g. Girardeau [1] (cf. Exercise 14) and Deutsch [1]. Interpolation 
with respect to couples of quasinormed Abelian groups has been treated by Peetre 
and Sparr [1] (see Section 3.10 and Chapter 7). 

Non-linear interpolation has been considered, e.g., by Gagliardo [1], Peetre 
[17], Tartar [1], Brezis [1]. For additional references, see Peetre [17]. (Cf. also 
Gustavsson [2].) "Non-linear" indicates that non-linear operators are admitted: 
e. g., Lipschitz and Holder operators. Cf. Section 3.13. There are applications to 
partial differential equations: Tartar [1], Brezis [1]. See also Section 7.6. 
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2.9.1-2. The functorial approach to interpolation merely provides a convenient 
framework for the underlying primitive ideas, and makes the exposition more 
stringent. 

2.9.3. Introducing couples A=(Ao,Ai) we have assumed the existence of a 
Hausdorff topological vector space \ll, such that Ai c \ll (i = 0, 1). This assumption 
is made for convenience only. Cf. Aronszajn and Gagliardo [1], where AoEtl Ai 
plays the role of \ll, but, anyway, they have to make additional assumptions in 
order to obtain unique limits. This property, and the possibility of forming 
Ao+Ai' are the essential consequences of the requirements Aic\ll (i=O,1), 
\ll Hausdorff. (Cf. Exercise land 13.) 

Peetre [20] has coined the notion weak couple for the situation when Ao and Ai 
only have continuous and linear injections into a Hausdorff topological vector 
space \ll (cf. also Gagliardo [1]). I'(A) may then still be viewed as a subspace of\ll: 
the linear hull ofio(Ao) and ii(Ai ), but ,1(A) is the subspace of AoEBAi of those 
(aO,a i ) for which io(ao)=ii(ai ). 

2.9.4-5. Concerning the relation between the concepts "interpolation space with 
respect to A" and "interpolation spaces with respect to A and B", see Aronszajn 
and Gagliardo [1]. They show, however, that if A' is maximal and B' is minimal 
among all spaces satisfying (3), then A' is an interpolation space with respect to A 
and likewise for B' and B. 

The definition of "interpolation space" implies the uniform interpolation 
condition (5) if the spaces labelled by the letter B are Banach spaces (i. e., the 
spaces labelled by the letter A need not be complete in Theorem 2.4.2). On the 
other hand, we do not know of any interpolation space that is not uniform. 
This question is connected with the Aronszajn-Gagliardo theorem, since Theorem 
2.4.2 is used in its proof. Thus there is a question whether the Aronszajn-Gagliardo 
theorem holds also in some category larger than fJ8, say AI. Obviously, our proof 
breaks down, because we invoke the Banach theorem, a consequence of Baire's 
category theorem, and in these theorems completeness is essential. 

2.9.6. The necessary condition is valid also in the semi-normed case (cf. Exercise 
6). This necessary condition, adapted to a specific couple and more or less disguised, 
has been used by several authors to determine whether or not a certain space may 
be an interpolation space with respect to a given couple. (Cf. Bergh [1] and 5.8.) 

2.9.7. The duality theorem is taken over from Lions and Peetre [1]. 

2.9.8. Using the Gagliardo completion, Exercise 7, Aronszajn and Gagliardo [1] 
have shown that, in the category fJB and in general, Ao and Ai are not inter
polation spaces with respect to the (compatible) couple (,1 (A), I'(A)). This fact 
should be viewed in contrast to the statement that ,1(A) and I'(A) always are inter
polation spaces with respect to the couple A (see Section 2.4 and also compare 
Section 5.8). 



Chapter 3 

The Real Interpolation Method 

In this chapter we introduce the first of the two explicit interpolation functors 
which we employ for the applications in the last three chapters. Our presentation 
of this method/functor-the real interpolation method-follows essentially 
Peetre [10]' In general, we work with normed linear spaces. However, we have 
tried to facilitate the 'extension of the method to comprise also the case of quasi
normed linear spaces, and even quasi-normed Abelian groups. Consequently, 
these latter cases are treated with a minimum of new proofs in Sections 3.10 and 
3.11. In the first nine sections we consider the categoryY 1 of compatible couples 
of spaces in the category JV of normed linear spaces unless otherwise stated. 

3.1. The K-Method 

In this section we consider the categoryY of all normed vector spaces. We 
shall construct a family of interpolation functors Ke,p on the categorY!l:::. 

We know that L is an interpolation functor onY. The norm on L(A) is 

if A =(Ao,Al)' Now we can replace the norm on Al by an equivalent one. We 
may, for instance, replace the norm IIa11lAl by t'lla11IA" where t is a fixed positive 
number. This means that 

is an equivalent norm on L(A) for every fixed t>O. More precisely, we have 
the following lemma. 

Lemma 3.1.1. For any aEL(A), K(t,a) is a positive, increasing and concave 
function oft. In particular 

(1) K(t,a)~ max(1,t/s)K(s,a). 0 
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The lemma is a direct consequence of the definition, and is left as an exercise 
for the reader. Moreover, (1) implies at once that K(t,a) is an equivalent norm on 
1:(.4) for each fixed positive t. 

The functional t~K(t, a), aE1:(A), has a geometrical interpretation in the 
Gagliardo diagram. CO}1sider the set r(a), 

It is immediately verified that r(a) is a convex subset of IR2, cf. Figure 3. In 
addition 

i. e. K(t, a) is the xo-intercept of the tangent to a r(a) (boundary of r(a)), with 
slope _t- 1• This follows from the fact that K(t, a) is a positive, increasing and 
concave function and thus also continuous. 

x 

" , , , 
" , 

'" , , , aF(o) 

--+-----------------------~~~--------. 
(K(t,o),O) ", Xo 

Fig. 3 

For every t > 0, K(t, a) is a norm on the interpolation space 1:(.4). We now 
define a new interpolation space by means of a kind of superposition, which is 
obtained by imposing conditions on the function t~ K(t, a). Let cI>6,q be the 
functional defined by 

where cp is a non-negative function. Then we consider the condition 

(4) cI>o,iK(t, a)) < 00. 
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By Lemma 3.1.1 we see that this condition is meaningful in the cases 
0<8<1, 1~q~co and 0~8~1, q=XJ. For these values of 8 and q, we let 
Ae.q;K = KejA) denote the space of all aE 1:(A), such that (4) holds. We put 

(5) Ilalle.q;K = tPe.q(K(t, a)). 

In the following theorem it is understood that if T: A--+B then Ke.q(T) = T. 

3.1.2. Theorem. Ke.q is an exact interpolation functor of exponent 8 on the category 
,v. Moreover, we have 

(6) - e 
K(s, a; A)~Ye.qS Ilalle.q;K' 

Proof: Since K(t, a; A) is a norm on 1: (A),_ and since tPe.q has all the three pro
perties of a norm, it is easy to see that Ke.q(A) is a normed vector space. 

In order to prove (6), we use Formula (1) of Lemma 3.1.1 which can be written 
in the form 

min (1, tis) K(s, a) ~ K(t, a). 

Applying tPe.q to this inequality we get 

tPe.q(min(1, tis)) K(s, a) ~ Ilalle.q;K· 

Now we note that, with s>O, 

tPe.i <p(t/s)) = (J~ (t - e <p(t/s))q dt/t)l/q 

= s -e (J~ ((t/s) - e <p(t/s))q d(t/s)/(t/s))l/q, 

i.e. 

Thus 

tPe.q(min(1, tis)) = s-etPe.q(min(1, t)). 

Since tPe.q (min(1, t)) = 1/(ql/q(8(1 - 8))1/q), we obtain (6). 
Using (6) with s = 1, we see that Ke.iA) c 1:(A). The inclusion L1 (.4.) c Ke.i.4.) 

is obvious, since 

K(t, a)~min(l, t) IlaIILl(A)' 

In fact, this inequality gives 



3.1. The K-Method 41 

It remains to prove that KO,q is an exact interpolation functor of exponent e. 
Thus, suppose that T:A--+B, where A=(Ao,A I ) and B=(Bo,B I ). Put 

Then 

Thus 

K(t, Ta; B)~infa=ao+al (II Taoll Bo +t II Tal liB) 

~infa=ao+al (Mo Ilao IIAo + tM I IlalII A). 

But, using (7) with s=Mo/MI' we obtain 

This proves that KO,q is an exact interpolation functor of exponent e. 0 

Remark: The interpolation property holds for all operators T: l'(A)--+l'(B), 
such that (8) holds. In particular, the interpolation property holds for all operators 
T such that T(ao+al)=bo+b l where IlbjIIBj~MjllajIIAj' j=O,1. 

There are several useful variants of the KO,q-functor. In this section we shall 
mention only the discrete Ko,q-method. We shall replace the continuous variable t 
by a discrete variable v. The connection between t and v is t = 2v. This discreti
zation will tum out to be a most useful technical device. 

Let us denote by A,0,q the space of all sequences (ct.)~ 00' such that 

3.1.3. Lemma. If aEl'(A) we put ctv =K(2V, a; A). Then aEKo,iA) ifand only if 
(ct.)~ 00 belongs to A,0:q. Moreover, we have 

Proof" Clearly, we have 

Now Lemma 3.1.1 implies that 
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Consequently, 

and thus the inequalities of the lemma follow. 0 

3.2. The I-Method 

There is a definition of the J-method which is similar to the description of the 
K-method in the previous section. Instead of starting with the interpolation 
method 1: we start with the functor ,1 and define the J-method by means of a kind 
of superposition. 

F or any fixed t > 0 we put 

for aE,1(A). Clearly J(t, a) is an equivalent norm on ,1 (A) for a given t>O. 
More precisely we have the following lemma, the proof of which is immediate, 
and is left as an exercise for the reader. 

3.2.1. Lemma. For any aE,1(A), J(t, a) is a positive, increasing and convex 
function of t, such that 

(1) J(t, a)~max(1, t/s)J(s, a), 

(2) K(t, a)~ min(1, t/s)J(s, a). 0 

The space Ae,q;J = Je,iA ) is now defined as follows. The elements a in Je,iA) 
are those in 1:(A) which can be represented by 

(3) a = SO' u(t) dt/t (convergence in 1:(A)), 

where u(t) is measurable with values in ,1(A) and 

(4) <Pe,q(J(t, u(t))) < CIJ. 

H ere we consider the cases 0 < e < 1, 1 ~ q ~ CIJ and 0 ~ e ~ 1, q = 1. We put 

where the irifimum is taken over all u such that (3) and (4) hold. 
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3.2.2. Theorem. Let JO,q be defined by (3), (4) and (5). Then JO,q is an exact inter
polationfunctor of exponent () on the category#,. Moreover, we have 

(6) Ilallo,q;J ~ Cs-o J(s, a; A), aE L1 (A) 

where C is independent of () and q. 

Proof: Obviously, Ilallo,q;J is a norm. Assume that T: Ar·.Bi , with norm 
Mi , j=O, 1. For aEAo,q;b we have, since T: 1:(A)---1:(B) is bounded linear, that 
Tu(t) is measurable, 

Ta = T(SO' u(t)dt/t) = SO' Tu(t)dt/t (convergence in 1:(B)). 

Thus, with this u, 

J(t, Tu(t)) = max (II Tu(t) II Bo' t II Tu(t)IIBl 

~Momax(llu(t)IIAo' tMdMo Ilu/t)IIA) 

= MoJ(tMdMo, u(t)) , 

and we obtain, by the properties of <POq ' 

<Po,q(J(t, Tu(t))) ~ M~ -0 M~ <POq(J(t, u(t))). 

Taking the infimum of the right hand side, we infer that JOq is an exact inter
polation functor. Finally, noting that aE L1 (A) has the representation 

a=(log2)-1 Stadt/t=(log2)-1 SO'a'X(1,2)(t)dt/t, 

(6) follows at once from (1). 0 

There is a discrete representation of the space Jo,q(A), which is analogous 
to the discrete representation of the space Ko,iA). 

3.2.3. Lemma. aEJoiA) iff there exist uvEL1(A),-oo<v<oo, with 

(7) a = Ivuv (convergence in 1:(A)), 

and such that (J(2V, uJ) EAO,q. Moreover 

Ilallo,q;J ~ inf(u v ) II (J(2V, uJ)11 AS. q , 

where the infimum is extended over all sequences (u.) satisfying (7). 
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Proof· Suppose that aEJ8l4). Then we have a representation a= J;f u(t)dt/t. 
Choose Uv= g:+'u(t)dt/t. Clearly (7) holds with these Uv. In addition, by (1), we 
obtain 

II (J(2V, uv))lIle .• = Lv(2- v8 J(2V, uvW 

~ Lv c g:+ '(t- 8 J(t, u(t)))q dt/t = C {cJ>8iJ(t, u(t)))}q , 

and thus, taking the infimum, we conclude that 

Conversely, assume that a= Lvuv and (J(2V, Uv))vEA8.q. Choose 
u(t) = u./log 2, 2V~t<2v+1. Then we obtain 

a = Lvuv = Lv g:+ '(u./log2)dt/t = J;fu(t)dt/t . 

Also, by (1), we have 

{cJ>8iJ(t, u(t)))}q = J;f (t-8 J(t,u(t)))q dt/t 

= Lv g:+ '(t- 8 J(t, u(t)))qdt/t 

~ Lvc(rV8 J(2V, uv))q. 

Again, taking infimum, we obtain 

3.3. The Equivalence Theorem 

In this section we shall prove that the K- and J-methods of the preceding two 
sections are equivalent. More precisely, we shall prove the following result. 

3.3.1. Theorem (The equivalence theorem). If 0 < (;1< 1 and 1 ~ q ~ 00 then 
J 8.q(A) = K8.iA) with equivalence of norms. 

Proof· Take first aEJ8)A) and a= J;fu(t)dt/t. Then, by Lemma 3.2.1, it follows 
that 

K(t, a) ~ J;f K(t, u(s))ds/s ~ J;f min(1, t/s) J(s,u(s)) ds/s 

= J;f min(1, S-1)J(ts, u(ts))ds/s. 

Applying cJ>o.q and changing variable, we obtain 
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Thus Ilallo,q;K ~C Ilallo,q;J follows by taking the infimum. 
For the converse inequality, we need a lemma. 

33.2. Lemma (The fundamental lemma of interpolation theory). Assume that 

min(1, 1ft)K(t, a)--+O as t--+O or as t--+oo. 

Then,for any e>O, there is a representation 

a = Iv Uv (convergence in I'(A)) 

of a, such that 

J (2V, uJ ~ (y + e) K(2V, a). 

Here y is a universal constant ~ 3. 

Before we prove the fundamental lemma, we complete the proof of Theorem 
3.3.1. By Theorem 3.1.3, we have 

K(t, a)~ CO,qtO Ilallo,q;K 

for any given aE Ko,iA). Thus it follows that min (1, 1ft) K(t, a)--+O as t--+O or 
t--+ 00. Consequently, the fundamental lemma implies the existence of a represen
tation a = Lv UV ' such that 

J(2V, uv)~(y+e)K(2V, a). 

Thus 

II(J(2V, uJ)11 AB,. ~ (y + e) II (K(2V, a))11 AB, •• 

By Lemma 3.1.3 and 3.2.2, we see 

II all O,q;J ~ 4(y + e) II allo,q;K' 

This completes the proof of Theorem 3.3.1. 0 

Proof of the fundamental lemma: For every integer v, there is a decomposition 
a=aO,v+al,v, such that for given e>O 

Thus it follows that 
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Write 

Therefore, we have 

Letting N ~ 00 and M ~ 00, we see that 

a= L~<XlUv (convergence in .!'(A)). 

By (1), we also see that 

J(2V, U.) ~max(llao,vIIAo + Ilao,v-lIIAo' 2V(llal ,v_lllA l + Ilat,vIIA)) 

~3(1 +e)K(2V, a). 

This proves the lemma. 0 

In the sequel we shall speak of the real interpolation method. Then we shall 
mean either the K9,q- or the J9,q-method. In view of the equivalence theorem, 
these two methods give the same result if 0 < 8 < 1. Accordingly, we shall write 
19,q instead of A9,q;K 05 A9,q;] if 0 < 8 < 1. !! 8 = 0 or 1 and q = 00, we shall let 
A9,q denote the space A9,q;K. The norm on A9,q we denote by 11-II9,q if 0<8<1 
or if 0 ~ 8 ~ 1 and q = 00. 

3.4. Simple Properties of A B, q 

In this section we shall prove some basic and simple properties of A9,q. We 
collect these results in two theorems, the first of which deals with inclusions 
between various A9,q-spaces. 

3.4.1. Theorem. Let A =(Ao, AI) be a given couple. Then we have 

(a) (Ao,Al )9,q=(A(,Ao)t-9,q (with equal norms); 

(b) A9,qcA9,r if q~r; 
(c) A90,qO n A91 ,ql c A9,q if 80 < 8 < 8t ; 

(d) At cAo=>A91,qcA90,q if 80 <81; 

(e) Al=Ao (equal norms) implies A9'Q=Ao and IlaIIAo=(q8(1-8))1/QllaI19,q. 
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Proof: We have 

and l1>o,q(CP(t)) = 11>1_0,q(tCP(t- 1)). This gives (a). 
In order to prove (b), we first note that Theorem 3.1.2 implies (b) when r= 00. 

If q~r<co we obtain, again by Theorem 3.1.2, 

which gives (b). 
For the proof of (c), we note that 

Now it is easy to see that the first integral can be estimated by I1>Ol,ql(CP), and the 
second one by I1>OO,Qo(CP), This proves (c). _ 

If A1 cAo we have IlallAo~k IlaIIA,. Then K(t, a; A)= Ilall Ao if t>k. In fact, 
if a=aO+a1 we have 

which proves IlaIIAo~K(t, a; .4). It follows that 

This implies (d). Sinse (e) is immediate, the theorem follows. 0 

3A.2. Theorem. Let .4 = (Ao, A 1) be a given couple. 
(a) If Ao and A1 are complete then so is .4o,Q' 
(b) If q < co then ,1(.4) is de!!;se in .4o,Q' _ 
(c) The closure of ,1(A) in Ao,oo is the space A~,oo of all a such that 

t- O K(t, a; .4)~O as t~O or t~ co. 

(d) If AJ denotes the closure of ,1(.4) in Aj we have for q< co, 

Proof: In order to prove (a), we use Lemma 2.2.1. Assume that 

By Theorem 3.1.2, we have K(1, a)~Clla)lo'Q' By Lemma 2.3.1, we know that 
Ao + A1 is complete. Thus Ljaj converges in Ao + A1 to an element a. Since 
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it follows that aEAo,q and Ljaj converges to a in Ao,q. 
We now prove (b). Note that the assumption q< 00 implies 0<8<1. Then 

every aEAo,q may be represented by a= Lvuv, where uvEJ(A) and 

Then 

This proves (b). 
In (c) we assume 0:!S;8:!S;1. If aEA~,oo we obtain (from the fundamental 

lemma of interpolation theory (Lemma 3.3.2)) a = Lv uv, where UvE J(A) and 
J(2V, u.):!S; C K(2V, a). Then 

Thus J(A) is dense in A~,oo. Conversely, if a is in the closure of J(A) in Ao,oo then 
we can find bEJ(A) such that Iia-bllo,ao <e. By Lemma 3.2.1 and Theorem 3.1.2, 
we obtain K(t, a):!S;K(t, a-b)+K(t, b):!S;CtOlla-bllo,oo +min(1, t)J(1, b). Thus 

CO K(t, a):!S; Ce+ t-Omin(l, t)J(1, b). 

It follows that aEA~,ao' 
The last parts (d) and (e) of the theorem are obvious. 0 

3.5. The Reiteration Theorem 

According to the weak reiteration theorem (cf. 2.8.11), we know that if X 0 and XI 
are interpolation spaces of exponents 80 and 8, with respect to A, and if X is an 
interpolation space of exponent 1'/ with respect to X = (X 0' XI)' then X is an 
interpolation space of exponent 8=(1-1'/)80 +1'/8, with respect to A. In this 
section we shall prove that if X 0 and X, are constructed from the couple A by 
means of the real interpolation method, and if X is constructed from X by means 
of the real method then X can be constructed from A by means of the real method. 
Thus there is stability for repeated use of the real interpolation method. 

3.5.1. Definition. Let A be a given couple ofnormed vector spaces. Suppose that X 
is an intermediate space with respect to A. Then we say that 

(a) X is of class rcK(8;A) if K(t,a;A):!S;CtOllall x , aEX; 
(b) X is of class rcA8;A) if Ilallx:!S;Ct-oJ(t,a;A), aEJ(A). 

Here O:!S; 8:!S; 1. We also say that X is of class rc(8;.4) if X is of class rc K(8;.4) 
and of class rc}(8; .4). 
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_From Theorem 3.1.2 and 3.2.3, we see that Ao .• l...is of class CC(8; A) if 0<8.::.1. 
If A =(Ao, AI) we have that Ao is of class CC(O; A) and AI is of class CC(1; A). 
This follows at once from the definition of J(t, a; A) and from the inequality 

It is sometimes convenient to write down the definition without explicit use of 
K(t, a) and J(t, a). Indeed, it is obvious that 

(a) Xis of class CCK (8;A) if and only if for any t>O there exist aoEAo and 
aIEA I, such that a=aO+a l and IlaollAo~CtOllallx and IIalll A1 ~CtO-lllallx' 

We can also show that 
(b) X is of class CCA8; A) if and only if we have 

In fact, if X is of class CCA8; A) we have that 

for all t>O. Taking t= IlallAo/llall A" we get (1). Conversely, if (1) holds we see 
that 

Another useful formulation of the definition is given in the following theorem. 

3.5.2. Theorem. Suppose that 0 < 8 < 1. Then 
(a) X is of class CC K(8, A) iff 

L1(A)cX cAo.",. 

(b) A Banach space X is of class CCA8, A) iff 

In this theorem, we are, of course, only dealing with intermediate spaces (cf. 
Definition 3.5.1). 

Proof" By the definition of Ao.oo we have Xc Ao.oo if and only if 

SUPt>o t- O K(t, a; A) ~ C Ilall x. 

This clearly proves (a). In order to prove (b), we assume that a = Lvuv in 1'(A). 
Then if X is a Banach space of class CC A 8; A) 
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i.e. 

Conversely, if this inclusion holds we put 

Then 

{ a if v=n, 
uv = 0 if v#n. 

which shows that X is of class rt'A(}; ,4). 0 

3. The Real Interpolation Method 

We are now ready to prove the reiteration theorem, which is one of the most 
important general results in interpolation theory. Often the reiteration theorem is 
called the stability theorem. 

3.5.3. Theorem (The reiteration theorem). Let A=(Ao,A1) and X=(XO,X 1) 

be two compatible couples of normed linear spaces, and assume that Xi (i =0,1) 
are complete and of class rt'«(}i;A), where O~(}i~1 and (}O#(}l' 

Put 

Then,for 1 ~q~ 00 

x n,q = A 8,q ( equivalent norms). 

In particular, if 0<(}i<1 and ie"q, are complete then 

Proof' Suppose that a=aO+alEX~,q with aiEXi. Since Xi is of class rt'«(}i;A), 
we have 

It follows that 

Applying tP8,q we deduce that 

tP8)K(t, a; A» ~ C(J~(t-(8-8o) K(t8 ,-80 , a; X»q dt/t)l/q. 
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If we change the variable in the integral, writing s = t01 -0o and noting that 
17 = (() - (}o)/(() 1 - (}o), we obtain 

(On the right hand side <P~,q is acting on the variable s.) It f~llows that X",qcAo,q' 
Next, we prove the reverse inclusi~n. Assu112e that aE Ao,q and choose a rep

resentation a= J~u(t)dt/t of a in l:(A). If aEX",q we have, as above, 

Using Lemma 3.2.1 and that Xi is of class ~((}i',-4) we obtain 

tOO K(t01 -00, a; X) ~ J~ tOO K(t01 -00, u(s); X)ds/s 

~ J~ tOOmin(1, (t/S)01-0°)1(SOI-00, u(s); X)ds/s 

~ C J~ min((t/s)OO, (t/S)OI)J(S, u(s); A)ds/s. 

Changing the variable by putting S=(Jt and applying <POq' it follows that 

by Lemma 3.2.1. Since the integral is finite, the inclusion is established by taking 
the infimum in view of the equivalence Theorem 3.3.1. 0 

In the case () 0 = () 1 we have the following complement to the reiteration 
theorem. 

3.5.4. Theorem. Let A be a given couple of Banach spaces and put 

where O<(}<1, 1~qi~oo (i=O,1). Then 

where 

1 1-17 17 -=--+-. 
q qo ql 

The proof of this theorem will be given in 5.2 (Theorem 5.2.4). 
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3.6. A Formula for the K-Functional 

By the reiteration theorem, we have X~,q = Ao,q if X = (AoO,qO' A 01 ,qJ This 
suggests the possibility of a formula connecting the functional K(t, a;.-4) with 
K(t, a; X). Such a formula was given by Holmstedt [1]. 

3.6.1. Theorem. Let A be a given couple ofnormed spaces and put 

where O~80<81~1 and 1~qo~C(),1~q1~co. Put A=81-80 . 

Then 

K(t, a; X) - (S~/A(S-Oo K(s, a; A))qO dS/S)l/qO 

+ t(S;1/A(S-OI K(s, a; A))ql dS/S)l/ql . 

Proof" We first prove "~". Let a=aO+a1,ai EAi,i=O,1. By Theorem 3.1.2 
and Minkowski's inequality it follows that 

(S~/A(S-O K(s, a; A))qO dS/S)l/qo ~ (S~/A(S-OO K(s, ao; AWo dS/S)l/qO 

+(S~/A(S-OO K(s, a1; A))qO ds/S)l/qO 

~ Ilall xo + C(S~/A(sA IIa111x /odS/S)l/qO ~ C(llaoll xo + t IIa111x J 

Similarly, we obtain 

Adding the estimates and taking the infimum, the proof of "~" is complete. 
We turn to the proof of" ~". By the definition of K(t, a; A), we may choose 

ao(t)EAo and a1(t)EA 1 such that a=aO(t)+a 1(t) and 

With this choice we have 

K(t, a; X) ~ Ilao(t1/A) llxo +t Ila1(t1/A)llxl 
= (SOO(s-OO K(s, ao(t1/A); A))qO ds/S)l/qO 

+ t(SOO (S-OI K(s, a1 (t 1/A); A))ql dS/S)l/ql 

~ (S~/A(S-Oo K(s, ao(t1/A); A))qO ds/S)l/qO 

+(L~/A(S-OO K(s, ao(t1/A); A))qO ds/S)l/qo 

+ t(S~I/A(S-OI K(s, a1 (t 1/A); A))ql dS/S)l/ql 

+ t(S;1/A(S-OI K(s, a1 (t 1/A); A))q, dS/S)l/QI • 
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We estimate each term separately, using Lemma 3.1.1. For the first term we 
obtain, by the triangle inequality, 

(J~/;'(S-90 K(s, ao(ti/A); A))qo dS/S)I/qO ~(J~I/;'(S-90 K(s, a; AWo ds/s)l/qO 

+(J~/;'(S-9 K(s, a l (tlf).); A))qOds/S)I/qO, 

where the last term is bounded by 

(J~/;'(S-90S Ilal(tl/A)IIAlods/s)l/qO~ Ct-I/AK(t l/A, a; A)t(1-90l/A 

~ C(J~/;'(S-90 K(s, a; A))qO ds/s)l/qO; 

the last inequality holds since s- I K(s, a) is decreasing. 
To estimate the second term, we similarly infer that 

(L,?/;.(s -90 K(s, ao(tl/A); A))qO ds/s)l/qO ~ (Jr"i'/;.(s - 90 II ao(tl/A)II Ao)qOds/ s) I /qO 

~Ct-90/A Ilao(tI/A)IIAI ~Ct-90/AK(tl/A, a; A) 

~ C(J~/;'(S-90 K(s, a; Awods/s)l/qo. 

The third and fourth terms are treated analogously. Summing the four estimates, 
we get " ~" . 0 

The following corollary is easily proved by an adaptation of the above proof; 
we leave this as an exercise. 

3.6.2. Corollary. Let A be a given couple of normed spaces. 
a) Put X=(Ao,A9I ,q),Jc=el . Then 

K(t, a; X) '" t(L'?/;.(S-9 1 K(s, a; A))q, dS/S)I/q,. 

b) Put X = (A90,qO' AI)' Jc=l-eo' Then 

K(t, a; X)"'(J~/;'(S-90 K(s, a; A))qOds/s)l/qo. 0 

3.7. The Duality Theorem 

We consider the category f1J of all Banach spaces. Here we determine the dual 
A~,q of the interpolation space A9,q when 1 ~ q < 00. Recall that if A (A) is dense in 
Ao and in A I we have 

(1) K( 'A' A') I(a', a)1 
t, a; 0' I = SUPuEA(Al J( - I . A A) 

t ,a, 0' I 
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and 

(2) J( I A' A') I(a', a) 
t, a; 0' 1 = sUPaeLl(A) K(t 1 . A A)' ,a, 0' 1 

(1) and (2) are immediate consequences of Theorem 2.7.1. 
These formulas suggest a simple !elation betw~en the space Ao,q and its dual. 

By Theorem 3.4.2, we know that A(A) is dense in Ao,q if q < 00. Since 

(dense inclusions) we have, for q < 00, 

We shall now prove the following result. 

3.7.1. Theorem (The duality theorem). Let A be a couple of Banach spaces, such 
that A(A) is dense in Ao and Ai' Assume that 1 ~ q < 00 and 0 < () < 1. Then 

where 1/q + 1/q' = 1. 

Proof' We shall prove that 

(3) (Ao, A i )6,q;J c(A~, A~)l-O,q';K 

(4) (Ao, A i )6,q;K ::::>(A~, A~)l-O,q';J' 

Using (3) and (4), we get the result by the Equivalence Theorem 3.3.1 and Theorem 
3.4.1. 

In order to prove (3), we take... a'e(Ao, A i )6,q;J' and apply Formulaj1). Th~s, 
given 8>0, we can find b.eA(A) such that b.i=O and, since a'eA(A)'=1:(A/), 

Choose a sequence rJ..e)"o,q, and put 

and 
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since Ilocll;'8 .• ~ Ilaallo,q;J' Noting that K(rV, a'; A~, A'l)= 2- v K(2V, a'; A'l' A~), we 
obtain 

Lv rv ocv(K(2V, a'; A'l' A~) -emin(1,2V)) 

~ Il oc ll;'8 .• ·lla'II(Ao,A1) •.• ;J· 

Since ;.o,q and ;.l-O,q' are dual via the duality Lvrvocvf3v and e is arbitrary, (3) 
follows. 

In order to prove (4), we take an element a' in (A'I' A~)I-o,q';J' We write a' 
as a sum 

a'= ~ a' L.,v v 

with convergence in 1:(A') = A (A)'. Then it follows that 

Since 

we conclude that 

which implies (4). 0 

Remark: In the case q = (fJ we see from the proof above that if A~,oo denotes 
the closure of A(A) in ,40,00 then 

3.8. A Compactness Theorem 

Using Theorem 3.4.1, we see that if AlcAO then A01,q1CAoM1 when (JO<(JI' 
and Ao,q c Ao,r when q ~ r. It follows that 

If the inclusion A I C Ao is compact, then so is the inclusion (1). This will follow 
from our next theorem. 
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3.8.1. Theorem. Let B be any Banach space and (Ao, A l ) a couple of Banach 
spaces. Let T be a linear operator. 

(i) Assume that 

T: Ao --+ B compactly, 

T: Al--+B, 

and that E is of class 'i6' K( (); A) for some () with 0 < () < 1. Then 

T: E--+B compactly. 

(ii) Assume that 

T: B--+Ao compactly, 

T: B--+Al' 

and that E is of class 'i6';( (); A) for some () with 0 < () < 1. Then 

T: B--+E compactly. 

Proof· (i) Let (av)~ be a bounded sequence in E and assume that Ila.llE~1. 
Moreover let Mj be the norm of T as a mapping from Aj to B. For a given 
8>0 wechoosetsothat t9<8t. Next we choose avoEAo and avlEA l , such that 
av=avo +avl and 

By the assumption on E we have K(t, av; A)~Ct91Ia.llE. It follows that 

Thus (avo)~ is bounded in Ao. Since T is a compact operator from Ao into B 
we can find a subsequence (av'o) of (avo)~ so that 

II Tav'o - Ta/J'oIIB~8, 

if v', fl.' are large enough. Since 

we conclude that 

if v', fl.' are large enough. This proves the compactness of the operator T: E --+ B. 
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(ii) Let (bv)f be a bounded sequence in B with Ilbvll B :::; 1, and let M j be the 
norm of T as a mapping from B to A j' Given an e > 0 we choose t so that t < et9• 

Passing to a subsequence we may assume that 

if v', /-i are large enough. Moreover we have 

By the assumption on E we have that t9 11a11 E :::; C J(t, a; A). Thus we conclude that 

Hence we see that, with a new constant C, 

i. e. 

Therefore T: B -> E is compact. 0 

3.8.2. Corollary. If Ao and A1 are Banach spaces, A1 c Ao with compact inclusion 
and 0 < {} 0 < {} 1 < 1 then A9 q c A9 q with compact inclusion. 1, 1 0, 0 

Proof" We use part (i) of Theorem 3.8.1 on the identity mapping L By assumption, 
I: A 1-> Ao compactly. It is trivial that I: Ao-> Ao and thus I maps the space 
A91 ,ql compactly to Ao. Thus 

A 91 ,ql cAo (compact inclusion). 

Using part (ii), we get in the same way 

A 91 ,Q, c(Ao, A91'QJ~'QO (compact inclusion). 

By Theorem 3.5.3, we see that 

(Ao,A91'Q)~'Qo=A90'QO if {}O=1J{}1' 

Now the result follows. 0 

3.9. An Extremal Property of the Real Method 

In this section we shall prove that the interpolation functors J9,1 and K9 ,oo are 
extremal in the sense explained in the following theorem. 
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3.9.1. Theorem. Suppose that F is an interpolation Junctor oj exponent e. Then, 
Jor any compatible Banach couple A =(Ao, A 1), we have 

Moreover, if A (A) is dense in Ao and in A1 then 

Proof" Write A=F(A) and consider the mapping 

TA=Aa, 

where a is a given element in A and AECC. Clearly T: CC--+Aj with norm IlallAj. 
Thus T: CC--+F(A) with norm less than a constant multiplied by Ilall~~ollall~I' 
It follows that 

or, equivalently, 

(1) IlaIIA~Crv8J(2V,a;A). 

If a = ~>v in I" (A) we therefore obtain 

i. e. 

In order to prove the inclusion AcKo.oo(A), we take a'EA(A') and put 
Ta=<a',a). Then T:Ai--+CC with norm 11a'IIA; (i=O,1). By the assumptions it 
follows that T: A --+ CC with norm 

sUPaEA I<a', a)l/llall A ~ C 11a'1I~;;-811a'11~', ~ CtO J(C 1, a'; A'). 

Thus for all aEA and all a'EA(A') we have 

Noting that I"(A)' = A(A') (Theorem 2.7.1) and taking the supremum over all 
a' E A (A') on the left hand side, we conclude that 

which means that AcKo.oo(A). 0 
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3.10. Quasi-Normed Abelian Groups 

The development of the real interpolation method did not depend heavily on all the 
properties of a norm. It is easily seen that the homogeneity IIAal1 = IAlllal1 is not 
used. In several contexts the triangle inequality can be replaced by the more 
general quasi triangle inequality II a + bll ~ k( II a II + II b II). This indicates the 
possibility of extending the real interpolation method to more general categories 
of spaces. Such an extension is motivated by certain applications, for instance 
in order to get the full version of the Marcinkiewicz interpolation theorem. In this 
and the next two sections, we shall extend the real interpolation method to quasi
normed Abelian groups. 

Let A be an Abelian group. The group operation is denoted by +, the inverse 
of a is -a and the neutral element is o. A quasi-norm on A is a real-valued function 
11·11 A' defined on A, such that 

(2) II-aliA = IlalIA, 

(3) Ila+bllA ~c(llaIIA + IlbII A), 

where C ~ 1. The inequality (3) is called the c-triangle inequality and the function 
11·11 A a c-norm. 

The topology on A is defined in a natural way. A basis for the neighbourhoods 
is the collection of all sets {b: II b - all A < 1:} where 1: >0. When c = 1 the topology 
is defined by means of the metric d(a, b)= lib-aliA. From the following lemma, 
we see that A is metrizable also in the case c> 1. 

3.10.1. Lemma. Suppose that A is a c-normed Abelian group and let p be defined by 
the equation (2c)P = 2. Then there is a i-norm 11·11 ~ on A, such that 

Itfollows that d(a, b)= Ilb-all~ is a metric defining the topology in A. 

Proof" We define Ilall~ by the formula 

Taking n=1 and a 1 =a we see that Ilall~ ~ IlaiIA. It is also easy to see that 
Ilall~ is a i-norm. In fact, if a=a 1 + ... +an and b=b 1 + ... +bm and c=a+b, 
we put cj=aj if 1~j~n and cj=bj_n if n+1~j~n+m. Then C=C1 +···+cn +m 

and 
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This implies the 1-triangle inequality 

Ilcll~ ~ Ilall~ + Ilbll~. 

Obviously (2) is also satisfied. 
It remains to prove IlaiiA ~ 21Iall~. (Note that this inequality also implies (1).) 
First we note that 

when v1 ' ... ' vn are any integers such that 

In fact, (5) is true if n = 1. Assume that (5) holds for 1,2, ... , n -1. Considering (6), 
it is easily seen that there are two disjoint, nonempty sets 11 and 12 , such that 
I 1 uI2 ={1, ... ,n} and 

By the induction hypothesis, it follows that 

Consequently, 

Thus we have proved (5). 
Now suppose that a=a 1 + ... +an and put 

Choose V 1, ••• , Vn so that 

Then (6) holds, and thus by (5) we have 

Since Ilaii A is the infimum of all M, we obtain IlaIIA~21Iall~. D 

Since every quasi-normed Abelian group is metrizable, we have the notions of 
Cauchy sequences and completeness. It is easy to verify the following analogue of 
Lemma 2.2.1. (We leave the proof to the reader.) 
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3.10.2. Lemma. Suppose that A is a c-normed Abelian group and let p be defined by 
the equation (2c)P=2. If a= It=oa j converges in A, then 

Moreover, if A is complete then the finiteness of the right hand side implies the 
convergence in A of the series Il= oaj • 0 

We shall now give an example which will be used in the next section and in 
Chapter 7. 

Example: Suppose that 0 < p < 00 and let Ji be any positive measure on a measure 
space (U, Ji). Let Lp=Lp(dJi) denote the space of Ji-measurable functions f, such 
that 

In the limiting case p = 00 we get the space Loo = Loo (dJi) of all bounded Ji
measurable functions. Let us write 

and 
IlflIL'" =esssuplf(x)l. 

Note that Lp is a vector space, but for the moment we forget about multiplication 
by scalars. Thus we consider Lp as an Abelian group. 

3.10.3. Lemma. The Abelian group Lp is c-normed with c=l if l~p~oo and 
C=2(1-p)/p if O<p<1. Thus we have 

(7) 

Moreover, Lp is complete. 

Proof: We consider only the case 0 < p < 1 since the case 1 ~ p ~ 00 is covered by 
the familiar theory of Lp-spaces. In order to prove (7), we shall use the well-known 
inequalities (x~O, y~O) 

From the left hand inequality we obtain 

From the right hand inequality we now obtain 
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In order to prove completeness, we shall use Lemma 2.2.1. If (2eY =2 and 
e=2(1-pl/p we have p=p. Therefore we assume that 

Thus Lj;.llfl converges in L l . Put f = Lj;. 1 fj. Then f is measurable and 

Thus If IP belongs to L t , i. e. f E Lp. It follows that f = LJ= 1 Jj converges in Lp. 0 

Consider the case 0 < p::::;; 1. In the notation of Lemma 3.10.1, we then have 
e=2(l-pl/p and p=p. Thus 

defines an equivalent norm on Lp. Following Peetre-Sparr [1], we can now 
consider the limiting case p=O. Let suppf denote the support of j; i.e. any 
measurable set E, such that f = 0 outside E and f'" 0 almost everywhere on E. 
Clearly E is unique up to sets of measure O. Then 

We thus define Lo to be the space of all measurable functions J, such that 

IlfllLo = Il(suppf)< 00. 

Since supp(f +g)c(suppf)u(suppg), we see that Lo is a 1-normed space. 
Note that if 0<p::::;;1 we have 

11 2fliLp = 12111f11Lp ' 

112fllt = 121P Ilfllt· 

Moreover we have 

(since f and 2f have the same support). 0 

The example above is typical. The quasi-normed Abelian groups we shall 
consider in the sequel are in fact vector spaces, where the quasi-norm is not 
homogeneous. In a quasi-normed vector space we require not only the pro
perties (1) and (3) but also 

112ali A = 12111a11 A , 2 scalar. 
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Now let A and B be two quasi-normed Abelian groups. Then a mapping T 
from A into B is called a homomorphism if T( -a)= - T(a), T(a+b)= T(a)+ T(b). 
The homomorphism T is bounded if 

The bounded homomorphisms are continuous and constitute a quasi-normed 
Abelian group. We shall let d stand for the category of all quasi-normed Abelian 
groups, the morphisms being the bounded homomorphisms. Sometimes we shall 
also consider the category f2 of all quasi-normed vector spaces. In f2 the mor
phisms are the bounded linear mappings, i. e., bounded homomorphisms satisfying 
the additional assumption T(A.a) =,1 T(a). Moreover, the morphisms constitute a 
quasi-normed vector space. 

The notion of compatible spaces A o and Al carries over without change. 
We also have the a~alogue of Lemma 2.~.1. In fact, if Aj is crnormed then it is 
easily seen that L1(A)=AonAI and 1:(A)=Ao+AI are c-normed spaces with 
c=max(co, c l ). If Ao and Al are complete then so are ,1(.4) and 1:(A). (Use 
Lemma 3.10.2.) 

If ~ is a sub-category of d we can form the category ~ I of compatible couples 
A = (Au, A I)' Here we can adopt the same conventions and notation as in Section 
2.3. As a consequence the definitions of intermediate space, interpolation space(s) 
and interpolation functor carryover without change. (See Definition 2.4.1 and 
2.4.5.) 

3.11. The Real Interpolation Method for Quasi-Normed 
Abelian Groups 

In this section we shall consider the category d of all quasi-normed Abelian 
groups. For any couple A in d l we can define the functionals K(t, a; A) and 
J(t, a; A). Clearly Lemma 3.1.1 and 3.2.1 still hold. We can also imitate the 
defin~tions of the spaces K9,iA) and J 9,iA) without changing anything. For 
J 9,iA) we use the discrete definition, which is equivalent to the continuous one 
in the category¥, in order to avoid integration in the quasi-normed groups. 

In the case 0 < e < 1 we can even extend the range of the parameter q, allow
ing q to be any positive real number. Then we still have Lemma 3.1.3 and Lemma 
3.2.2. The interpolation theorems 3.1.2 and 3.2.3 are still true in the category d. 
It should be noticed that Ilal19,q;K and Ilal19,q;J are no longer norms but merely 
quasi-norms. This will follow from the next lemma. 

3.11.1. Lemma. Suppose that Aj is crnormed. Then 

(1) K(t, a + b; A)~co(K(cl tjco, a; A)+ K(c i tjco, b; A)), 

and 

(2) J(t, a+b; A)~co(J(cltjco, a; A)+J(c1tjco, b; A)). 
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Proof: If a=aO+a 1 and b=bo+b 1 we have 

K(t, a + b)~ Ilao + bo IIAo + t IIa1 + b11l Al 
~ co(llao IIAo + Ilbo IIA)+ tc1(lla11l Al + Ilb111 A) 

which implies (1). The second estimate is equally easy to prove. 0 

Using Lemma 3.11.1 we are now able to prove the analogues of the inter
polation theorems 3.1.2 and 3.2.3. Here we prefer to formulate the result in 
one theorem. 

3.11.2. Theorem. KO,q and Jo,q are interpolation functors of exponent 8 on the 
category of quasi-normed Abelian groups and Ko,q is exact of exponent 8. M ore
over, we have 

(3) - 0 K(s, a; A)~Yo,qS Ilallo,q;K, 

where 0<8<1, O<q~co, or 0~8~1, q=co; and 

(4) -0 -
Ilallo,q;J~Cs J(s,a;A). 

Here C is independent of 8. 

Proof: The proofs of Theorem 3.1.2 and 3.2.3 carryover without change as 
long as we do not use the triangle inequality. As far as the K-method is con
cerned, we shall therefore only have to prove that A = Ko,iA) is a quasi-normed 
Abelian group. This amounts to proving the quasi-triangle inequality. 

Using Lemma 3.10.3, we see that 

Combining this inequality with Lemma 3.11.1, Formula (1), and with the equality 

we obtain 

Thus if A j is c rnormed, j = 0, 1, then A = Ko,l4) is c-normed with 

Using the same argument, it is easily verified that Jo,iA) is also a c-normed 
space (with the same c). 

In the proof of Theorem 3.2.3, we used the triangle inequality also when we 
proved J o,l4) c l'(A). Therefore the proof of this inclusion has to be modified 
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in the present situation. The way this modification is carried out is typical for 
the modifications we shall need in what follows. 

In order to prove J ojA) c 1'(A), we assume that 1'(A) is c-normed and define 
p by the formula (2c}P=2. We can assume that c is large, so that p<q. Assuming 
that a= Lvuv in 1'(A) with uvEL1(A) we therefore obtain from Lemma 3.10.2 

Using the estimate 

K(l, a)~min(1,2-V)J(2V, a) 

(Lemma 3.2.1), we obtain 

Put P = ql p. Then p> 1 and therefore Holder's inequality implies 

where lip' = 1 -lip. Since 0 < e < 1, the first sum on the right hand side con
verges. Since pp = q, we therefore obtain from Lemma 3.2.2 

K(l, a) ~ CO,q Ilallo,q;J , 

proving that 

The proof of the fact that Jo,q is an interpolation method of exponent e will 
follow from the K-part of the theorem and the equivalence theorem below. 0 

3.11.3. Theorem (The equivalence theorem). Assume that 0 < e < 1, 0 < q ~ co, 
and let A be a couple of quasi-normed Abelian groups. Then Jo,q(A)=Ko,iA) 
with equivalent quasi-norms. 

Proof: First we prove Jo,iA)cKo,iA). Take an element aEJojA), and assume 
a = Iv UV ' We know that K(t, a) is a c-norm. Choosing c large and p so that 
(2c}P = 2, we have p = ql p > 1, and, just as in the proof of the previous theorem, 

It follows that 

K(21l, a)~ C(L(min(1,21l - v)J(2V, uv»P)l/P 

=C(Iv(min(1,2V)J(21l - V, UIl_V»P)l/p. 



66 3. The Real Interpolation Method 

Thus we obtain, by Lemma 3.1.3 and Minkowski's inequality, 

Ilal18,q; K ~ C(LI'(2 -1'8 K(21', a»q)l/q 

= C {(LI'(2 -1'8P(K(21', a))p)p)l/p} lip 

~ c {(LI'[r 1'8PL(min(1,2V)J(21'-V, urvW]p)l/p} l/p 

~ C {Lv min(1, 2VP )[LI'(2 -1'8 J(21'- v, Ur v»q] liP} l/p 

= C {Lv min(1, 2VP ). 2 - v8p} l/p {LI'(r 1'8 J(21', UI'»q} l/q . 

By Lemma 3.2.3, we conclude that 

The converse of this inequality can be proved just as in the case of normed 
spaces. In fact, the proof of the fundamental lemma goes over without any es
sential change. If Aj is cj-normed we have only to change the value of the con
stant y, so that y is replaced by y'max(cQ , c l ). The reader is asked to check the 
details for himself. When the fundamental lemma is established we immediately 
obtain the desired result, 0 

It should be clear by now how to extend the results in Section 3.4. In fact, 
Theorem 3.4.1 needs no change, neither in its formulation nor in its proof. The 
proof of Theorem 3.4.2 has to be modified slightly. However it is only the proof 
of part (a), the completeness of A8,q, which has to be changed. We leave it to the 
reader to carry out this proof with the aid of Lemma 3.10.2. 

The definitions of spaces of class I6'K(8;A), I6'A8;A) and 16'(8; A) (Definition 
3.5.1) carryover without change. An equivalent formulation of this definition 
will be given in our next theorem, which corresponds to Theorem 3.5.2. 

3.11.4. Theorem. Suppose that 0<8<1. Then 
(a) X is of class 16' K( 8; A) if and only if 

(b) A complete space X is of class I6'A8; A) if and only if for some q ~ 1 we have 

If X is c-normed we can choose q so that (2c)q = 2. 

Proof: Only part (b) needs a new proof. Assume that a = Lvuv in 17(A). By 
Lemma 3.10.2 we have, since X is complete, 
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If X is of class rt'A8; A) we obtain 

i. e. 

The converse follows as in the proof of Theorem 3.5.2. 0 

3.11.5. Theorem (The reiteration theorem). Let A=(Ao,AI) and X=(XO,X I ) 
be two couples of quasi-normed Abelian groups, and assume that Xi (i = 0,1) are 
complete spaces of class rt'(8 i ;A), where 0:::;8 i :::;1 and 80 #8\. Put 

Then 

I n particular, we have 

Proof: The proof of the inclusion X ~.q c Ao.q goes through as in the normed 
case (Theorem 3.5.3). The proof of the converse inclusion, however, has to be 
changed. Assume therefore that aEAo.q, and choose a representation a= Lvuv. 
As in the proof of Theorem 3.5.3, we change variables and then we apply Lemma 
3.1.3: 

To estimate the right hand side, we note, again as in the proof of Theorem 3.5.3, 
that 

and, by Lemma 3.10.2, that for any p>O, small enough, 

Using these two observations, we infer that (p=q/p>1) 

Iiall"'"q:::; C(LI' r 1'0q (Lv (21'00 K(21'(01 -00 ), Ul'_ v; X))P)qIP)l/q 

:::; C{ (LI'[2 -I'OP(L(2VOO min(1, 2V(01 -00 »)1(21'- V, ul'_ v; A))PJP)I/P} lip 

:::; C{Lv 2vooP min(1, 2V(01 -Oo)p)(LI'(r 1'0 1(21'-V, ul'_ v; A))q)l/p} lip 

:::; C{Lv(2v(00 -0) min(1, 2V(01 -OO»))P} lip (LI'(2 -1'01(21', ul'; A))q)l/q, 
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by Minkowski's inequality. Taking the infimum and invoking the equivalence 
Theorem 3.11.3, we obtain 

!!a!!x". ~ C !!a!!1 •.• ' 0 

Next, we draw attention to the fact that if !!.!! is a quasi-norm on A then 
so is !!:!!P for all p>O. The proof of this is obvious. Let us denote by (A)P the 
space A provided with the quasi-norm !!.!! P, Note that a proper choice of P (see 
Lemma 3.10.1) will make (A)P a 1-normed space. Now it is natural to ask for 
a connection between the spaces Ao,q and the spaces ((AoYo, (AI)P')o,q' Such a 
connection is given in our next theorem. 

3.11.6. Theorem (The power theorem). Let Po and PI be given positive numbers 
and put 

Then 

8=1]pdp, 

p=(1-1])Po+1]PI' 

q=pr. 

where 0<1] < 1, O<r~ 00. 

In the proof of the power theorem we shall work with the functional (cf. 
Exercise 1) 

Since 

the norm on Ao,q will be equivalent to tPojKoo(t, a)). We now have the following 
lemma: 

3.11.7. Lemma. Let Po and PI be given positive numbers. Then 

if 

Proof: For simplicity we write 

Koo(t) = Koo(t, a; Ao, AI)' 

Koo(s) = Koo(s, a; (Ao)PO, (AIY'). 
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Now choose ao and at so that (e >0 is arbitrarily given) 

Since at least one of the numbers 

is larger than 1 and both are smaller than 1 + e, we have 

where Sf -+0 as s-+O. This implies 

which clearly gives the lemma. 0 

Proof (of the power theorem): If q=oo we have r=oo, and thus, with the no
tation of the proof of Lemma 3.11.7, 

Ilall«Ao)Po. (AIlP!).,", '" sups> 0 s-~Koo(s) = SUPt>o C~Pl(Koo(t))P . 

Since IJPl = 8p this gives the result. 
In the case q<oo we also have r<w. Noting that Koo(t) is a decreasing 

function of t, we have 

II a 11«Ao)Po. (AIlP!)"" '" So (s- ~ K oo(s))' ds/s '" - SO (K oo(s))' ds -~r 

'" So s-qr d(Koo(s))' . 

In the right hand side we change the variable s to the variable t. By Lemma 3.11.7 
the right member then becomes equivalent to 

So t- qp1r( K oo(t)) - qr(po- pll d(K 00 (t))p0r 

'" So t- 8Q d(K oo(tW '" So t- 8q(K oo(t))Qdt/t . 

This proves the theorem. 0 

The power theorem gives at once the following interpolation result. 

3.11.8. Theorem. Suppose that T: Ai-+Bi with quasi-norm Mi (i=O,1). Then 

T: ((Ao)PO, (Al)Pl)~.r-+((Bo)Po, (Bl)Pl)~,r 

with quasi-norm M, such that 
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3.12. Some Other Equivalent Real Interpolation Methcxis 

In this section we describe a few other real interpolation methods which are 
frequently used in the literature. These methods are known as "espaces de 
moyennes" and "espaces de traces". We shall give a brief presentation and also 
prove the fact that these interpolation methods are equivalent to the K- and 
l-method. (The historical development is the reverse one, the K- and l-methods 
being more recent than the methods introduced in this section.) In order to 
align the notation with the rest of the book we have modified the original defi
nitions given by Lions (cf. Notes and Comment). 

"Espaces de moyennes" 

For simplicity we shall work in the category f1J of all Banach spaces. If A is a 
Banach space we let L~(A) denote the space of all A-valued, strongly measurable 
functions u on IR + = {t: 0< t < 00 }, such that the norm 

Ilu(t)IIL'~(A) = (Jg> Ilu(t)ll~ dt/t)l/P 

is finite. Here we take 1 ~p ~ 00, with the usual convention when p = 00. 

Let Po and Pi be two numbers such that 1 ~Pj~OO U=O, 1) and put P=(PO,Pi)' 
Moreover let () (0 < () < 1) be given. For a given compatible Banach couple 
A =(Ao, Ai) we now define the space S= SeA, p, ()) as follows: S is the subspace 
of 1'(A) consisting of all a for which there is a representation 

a = Jg> u(t) dt/t (convergence in 1'(A)) 

where u(t)E.1(A), O<t<oo and 

The norm on S is the infimum of the left hand side over all admissible u. 
The space SeA, p, 0) is one of two spaces called "espaces de moyennes" in 

Lions-Peetre [1]. A second space, denoted by ~=~(A,p,()), is defined by means 
of the norm 

infa =ao(t)+ al(t) (II to ao(t) II q'o(Ao) + II t i -° ai (t) II q, I (Ad) . 

3.12.1. Theorem. Let P=(Po, Pi) and 0 be given, so that 1 ~Pj< 00, j=O, 1 and 
0<0<1. Put 

1 1-0 () 
-=--+-. 
P Po Pi 

Then, for any Banach couple A, we have, with equivalent norms, 

SeA, p, ())=~(A, p, ())=Ao,p' 
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Proof: In order to prove the first equality S = ~ (this is essentially the equivalence 
theorem), we assume that a = J~u(r)dr/rES. Put 

Then, by Minkowski's inequality, 

and 

which clearly implies Sc~. Conversely, assume that a=aO(t)+al(t)E~, where 
t-Oao(t)EL~o(Ao) and tI-OaI(t)EL~l(AI)' Let p be an infinitely differentiable func
tion with compact support on lR+ such that J~ p(r)dr/r=1 and put 

II t- o. ta~(t)llq'o(Ao):::::; C II t-Oao(t)llq'o(Ao) ' 

II t l - o. ta~ (t)IIL'!>I(A d:::::; C II t l -oa l (t)11 q'l (AI) . 

Writing u(t)=ta~(t)= -ta~(t) we then have 

and 

Ilalls:::::;max(llt-O·ta~(t)llL* (A)' Iltl-o·ta~(t)IIL' (A») 
Po 0 P1 1 

:::::; C max(1I t-Oao(t)IILl'>o(Aol' II tI-Oa i (t)IILl'>, (Ad) . 

This clearly implies ~ c S. Thus we have proved that S =~. 

Next, we prove that ~ = Ao,p (this is essentially the power theorem). We shall 
use the fact that 

In order to prove (1) we choose ao and a l so that a=aO(t)+aI(t) and 
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If a # 0 we can assume that each of the two terms on the left hand side is positive. 
Thus, choosing A appropriately, we see that 

II a II~ 0::; max(11 t - 0 ao(At) II q'o(Aol' II t 1 - 0 a1 (At) II vr, I(AI») 

= max(AO II t-° ao(t)llvr,o(Ao)' ,10- 111 t 1 -0 a 1 (t)11 vr, I(AIl) 

= Ilt-Oao(t)lli;~Ao)'llt1-0a1(t)II~'), (All 
° I 

This implies half of (1). The remaining half is proved in the same way. 
Using (1) we see that 

II all~ ~ S~ inf(t- Opo II ao(t) II ~~ + t(l -O)PI IIa1 (t)11 ~I) dt/t 

~ S~Cninf(llao(r)II~~ +rlla1(r)II~')dr/r, 

where I'JP1 =8p, air)=ait), (j=0,1) and rn=tOpo• Using the power theorem we 
therefore see that 

which proves that $=Ao,p' 0 

"Espaces de traces" 

If u is an A-valued function on lR+ we let u' denote the derivative in the sense 
of distribution theory. We shall work with the space vm = Vm(A, p, 8) of all 
functions u on IR+ with values in 1'(A), such that u is locally Ao-integrable, u(m) 
is locally A 1-integrable and such that 

is finite. We assume that 0<8<1 and 1 0::; Po 0::; 00, 10::;P10::;00. Then Hlvm is 
a norm, and vm is a Banach space. 

We shall say that u(t) has a trace in 1'(A) if u(t) converges in 1'(A) as t-->O. 
Then we put 

The space of traces of functions in vm will be denoted by Tm = Tm(A, p, 0). Thus 
Tm is the space of all aE1'(A), such that there is a function UE vm with traceu=a. 
I ntroducing the quotient norm 

Ilall Tm = inftraceu=a Ilullvm, 

T becomes a Banach space. 
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3.12.2. Theorem. Assume that 0<0<1 and 1~Pj<oo for j=O,1. Then 

where 

1 1-0 0 
-=--+-. 
P Po PI 

Proof: We shall prove that 

(2) Tm(A, p, 0) = S(A, p, 0) 

which gives the result in view of Theorem 3.12.1. 
First assume that aE Tm. Then a=traceu for some UE vm. Let cp be an 

infinitely differentiable function with compact support on lR+ such that 

Jg> cp(t)dt/t = 1 . 

Put 

u(t) = Jg>cp(t/r)u(r)dr/r. 

Then it is easily seen that 

a = Jg>v(t)dt/t = Jg> v(1/t) dt/t , 

if for some constant d 

Clearly 

and thus 

Moreover, since 

we also have 

It follows that Ilalls~Cllullvm and hence TmcS. 
Conversely, assume that aES has the representation 

a = Jg> v(t)dt/t . 
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Then we put 

u(t) = StOO (1- t/r)m-l v(1/r)dr/r . 

Clearly traceu=a and, by Minkowski's inequality, 

Moreover 

so that 

IltO-1tmu(m)(t)IIL'f,,(Atl= Ilt1-Ov(t)IIL'f,j(Atl· 

It follows that aE Tm and thus S c Tm. 0 

3. The Real Interpolation Method 

In Section 6.6 we shall need a modified equivalent definition of the space Tm. 
Let ii=(l1o,111) be given and define the space ym=ym(A,p,ii) by means of the 
norm 

Then we have 

3.12.3. Corollary. Assume that 110>0, 111<m and 1~Pj<oo for j=o,1. Put 

8=110/(110+m-111)' 1/p=(1-8)/po +8/Pl· 

Then 

Proof: First we note that 

In order to see this we observe that (td/dttu(t) is a linear combination of tkU(k)(t), 
k = 1, ... , m. Moreover 

so that 

Thus the right hand side of (3) is bounded by a constant multiplied by the norm 
of u in Vm• 

Conversely, we obviously have 

(td/dt)u(t) = - S;n (rd/dr)2 u(r) dr/r 



3.13. Exercises 75 

and therefore, by Minkowski's inequality, 

Writing tmu(m) as a linear combination of (td/dt)k U (k = 1, ... , m), this estimate 
clearly completes the proof of (3). 

Now we change the variable of integration on the right hand side of (3), 
writing u(t) = v(s), if t = sl'. Then 

(td/dttu(t) = c(sd/dstv(s) . 

It follows that 

Ilull vm ~ max(lls°l'v(s)IILT'o(Ao)' Ils(O-1)I'(sd/ds)mv(s)IIL~ I(AI)) 

~ max(11 SOPv(s) II Ils(O-1)p+mv(m)(s)11 ) 
qo(Ao)' LT. I(A I) . 

With p = '10 + m - '11 we finally see that 

Since trace u = trace v (p being positive) we get the result of the corollary. 0 

3.13. Exercises 

1. (Holmstedt- Peetre [1]). Let A be a couple of quasi-normed spaces. Define the 
functional Kp(t, a) by 

Show that rJ>o,q(Kp(t, a)) is an equivalent quasi-norm on Ao,q for all p>O. Prove, 
moreover, that 

where 1::::;p::::;q::::;oo and 1/r=1/p-1/q, and that 

where 1 ::::;q::::;p::::; 00 and 1/r=1/q-1/p. 

Hint: Use Holder's inequality and the Gagliardo diagram. 
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2. (Holmstedt-Peetre [1]). Prove that (in the notation of the previous exercise) 

iff for each s > 0 and each decomposition ao + a I = a of a there is a decomposi
tion bo+b l =b of b such that Ilb;llA;~ IlaiIIA;+s. 

3. (Holmstedt-Peetre [1]). With the notation of Exercise 1, show that if 

K/t,b)~K/t,a) (t>O) 

holds for some p ~ 1, then it holds for ali p ~ 1. Cf. Sparr [2J. 

Hint: Apply Exercise 1 and Exercise 2. 

4. Prove that under suitable conditions on the spaces involved we have 

(A(I) X A(2) A(I) x A(2») =(A(I) A(I») x (A(2) A(2») 
o 0, 1 I 6,q 0' I 6,q 0' 1 6,q' 

5. (a) (Lions- Peetre [1]). Let A(v), v = 1,2 and B be compatible Banach couples. 
Assume that T is a bilinear mapping from the couple (Abl ) x A2), A~I) X A~2») 
to B and that 

Prove that 

II T(a(!), d2»)11 Bo ~ M 0 Ildl)11 Ahl) Ild2)IIAfl) , 

II T(d l ), a(2»)IIB ~ M I Ildl)11 A(l) Ild2) II A(2) • 
I I I 

if Odk1, 1/q-1=L~=I(1jPv-1), 1~q~CX). Generalize to multilinear mappings 
and quasi-norms. 

Hint: Apply Young's inequality. 

(b) Assume that T is bilinear and that, as in (a), 

where A, Band C are compatible Banach couples, Show that (h = T(j, g)) 

K(t, h) ~ CII f II AoK(t, g) 

K(t, h)~ C K(t,f) IlgllBo 

(jEAo, gEl:(B)) 

(jEl:(A), gEBo). 

Use this to prove that (jEl:(A), gEl:(B)) 

K(t, h)~ C Sf S-I K(st,f)K(st, g)ds/s, 
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and then, if 1::::;1/p+1jq and (}=(}O+(}l' that 

(Cf. O'Neil [1].) 

In the next two exercises we introduce and apply the concept quasi-linearizable 
couples. . 

6. (Peetre [10]). Let A be a compatible Banach couple. Assume that there are 
two families of operators Vo(t) and V1(t), both in L(1:(A), A(A)), such that there 
is a number k ~ 1 for which 

Vo(t) + V1(t)=I (identity), 

IIVo(t)aII Ao ~kmin(llaIIAo' tllaII A,), 

tIIVI(t)aII Al ~kmin(llaIIAo' tllaII A,)· 
(aEA(A)) 

A couple A with these properties will be called quasi-linearizable. Show that for 
such couples 

If A is quasi-linearizable, .8 is any compatible Banach couple and P: .8-+A, 
Q: A -+.8 are both linear and bounded with QP = I, then prove that .8 is also 
quasi-linearizable. See Exercise 18. 

7. Let Ao,A~l) and Ai2) be Banach spaces with Ay)cAo for j=1,2. Assume 
that (Ao, A~l») and (Ao, A~2») are quasi-linearizable couples and let (V~l)(t), V~l)(t)) 
and (V~2)(t), V~2)(t)) be the corresponding couples of operators (see Exercise 6). 
Prove that if the operators V~l)(t) and V~2)(t) commute and 

j,k=1,2, 

then (Ao, A~l) n A\2») is a quasi-linearizable couple and 

(See Notes and Comment.) 

8. (Peetre [29]). Let A and.8 be compatible Banach couples. Prove that (0< ()< 1) 

(i) TE L(Ao, Bo) n L(A1, B1) => TE L(Ae.p, .8e.p) (0 < p ~ 00), 

(ii) TE(L(Ao, Bo), L(A1, B1))e.1 => TEL(Ae.p, .8e.p) (1 ~p~ 00), 

(iii) TE(L(Ao, Bo), L(A1, B1))e.«> => TEL(Ae.l , .8e.oo)' 
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9. (Tartar [1J). Let A and B be compatible couples of normed linear spaces 
and assume that Al cAo. Let T be a non-linear mapping, which maps Ao to 
Bo and Al to Bl and suppose that there are positive increasing functions f 
and g and positive numbers 1X0 and IXI such that 

II Ta - Ta 1 11 Bo :::;;f(max(llaII Ao ' IlaIII Ao)) Ila- alll~oo ' 

II Talll BI :::;; g(lla1 11 Ao)ll alll~\ . 

Show that T maps A=A~,r to B=Be,q, where '1 = f)1X t/IX , 1X=(1-f))1X0+f)1X 1, 

and r = IXq, and that there is a positive increasing function h, such that 

Hint: Use the power theorem to reduce the proof to the case 1X0 = IXI = 1. 

10. (Tartar [1 J). Let A and B be compatible normed linear couples and assume 
that Al cAo. Let U be an open set in Au and let T be an non-linear mapping 
from V to Bo and from Un Al to B I • Moreover, assume that, for all aE U, 
there is a neighbourhood V in Ao of a, such that 

II Ta - TalllBo:::;;a Iia-alll~~, 

II Talll BI :::;;}'(llall1~\ + 1), 

where a1 E V n Al and a,}, are constants depending on V only. Let A and B be 
the spaces defined in the previous exercise. Prove that T maps UnA to B. 

11. (Peetre [10J). Let r:l> be a functional defined on positive Lebesgue-measurable 
functions f on (0,00). We say that r:l> is a function norm if 

( 1 ) r:l>(f) ~ ° for all f, 

(2) r:l>(f)=O-=f=O (a.e.), 

(3) r:l>(f)< 00 => f < 00 (a. e.), 

(4) r:l>().f)=)'r:l>(f) for ),>0, 

(5) f(t):::;; r:;;= tlit) => r:l>(f):::;; "I'1= 1 r:l>(f) . 

Define the spaces K(/)(A) and J(/)(A) as in Sections 3.1 and 3.2 by replacing r:l>e,q 
by a general function norm r:l>. Prove the analogues of Theorems 3.1.2 and 3.2.3 
if r:l> satisfies the additional conditions 

(6) r:l>(min(1, t) < 00, 

(7) J~min(1, t- 1)f(t)dt/t:::;;Cr:l>(f) for all f, 

(8) r:l>(f().t)):::;;f)()')r:l>(f(t)) for all f, 
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where e is finite on (0, 00). Prove the analogue of the equivalence theorem if e 
satisfies the condition 

S~e(A)min(1, 1/A)dA./A< 00. 

(There is an analogue of the reiteration theorem too. Moreover, it is sufficient 
to require e(A) = o(max(1, A)) as A-->O,oo.) 

12. (Lofstrom [4]). Let A = (Ao, A I) be a compatible Banach couple. Assume 
that Ao and Al are Banach algebras with common multiplication. Prove that 
Ao I is also a Banach algebra. Conversely, prove that if for any given couple A 
th~ space Ao,q is a Banach algebra under the given multiplication then q = 1. 
(Cf. Chapter 4, Exercise 1.) 

Hint: Use the couple (II' It) as a test couple and apply the discrete i-method. 

13. (Peetre [20J). Let A=(Ao,AI) and B=(Bo,B I) be compatible couples of 
normed linear spaces. We say that A is a (K-) subcouple of B if, for i=0,1, 

and if 

K(t, a; A)=K(t, a; B), aEl7(A). 

Prove that if ,1(A) is dense in Ao and in A I' then A is isometrically isomorphic 
to a subcouple of the couple 7,,)(w) = (loo(M; wo, Ao), loo(M; WI' AI)) for suitable 
M, W O and WI' Here loo(M; w, A) is the space of all functions f from M to A such 
that 

(See Notes and Comment.) 

Hint: Let M be the unit ball of ,1(A') and put wi(m)=llmll~:I, i=O,1. The iso
morphism is a--> fa where fa(a') = (a', a>. Note that 

- I(a', a>1 
Koo(t, a; A)=suPa'*O Ila'll Ab +t Illa'IIA\ 

and prove that Koo(t,a;A)=Koo(t,Ja;Too(w)). Finally, use Exercise 1. 

14. Define the space Tj = Tj(A, p, r;) by means of the quotient norm 

II a II T!" = inftraceuU) =a II u II y ... , 
} 

where jim = jlm(A, p, i1) is as defined in Section 3.12. Prove that 



80 3. The Real Interpolation Method 

if 0 ~j < m, 11 0 > 0, 111 < m - j and 

and 1~po<co, 1~PI <00. (See Lions-Peetre [1].) 

15. (Holmstedt [1]). Let <p be a continuous positive function such that u -l<p(U) 
is decreasing and <p(u) is increasing. Suppose that 0 < 8 < 1, 0 < p < 1, 0 < p ~ co 
and O<q~ 00. Put 

I o( <p) = (S~ (J6 (t -8 S - P <p(st))P ds/s)qIP dt/t)IIP , 

I I (<p) = (S~ (Sf (t - 8S - P <p(st))P ds/s)qIP dt/t)IIP . 

(i) Prove that there is a constant c, independent of 0, p, p and q, such that if 

q(1- p) 
1X0 = 8 ,when 0<p<8, 

-p 

qp 
IXI =--8' p-

when 8<p< 1, 

and if m = min(O, 1 - q/p), n = max(O, 1 - q/p), then 

(ii) Prove the following sharp form of the reiteration theorem: 
Put Xj=Aoj,qj when 0<8j <1, 80 #81 and O<qj~co. Then there is a con

stant c which does not depend on 11 such that if 8=(1-11)80+1181,0<11<1, then 

where mj=min(1/q, 1/q), nj=max(1/q, 1/q), j-~O, 1. 

Hint: The proof of the first part is by no means trivial although it depends only 
on Minkowski's inequality. For the second part use Holmstedt's formula, Sec
tion 3.5. 

16. (Sagher [1 ]). The real interpolation method can be extended to quasi-normed 
Abelian semi-groups A having a zero element. Thus assume only that IlaIIA~O 

with equality iff a=O, and that Ila+bll A ~c(llaIIA + IlbII A). Let Ao and Al be 
two quasi-normed Abelian semi-groups, and let A be a topological semi-group 
and assume that Ao and Al are sub-semi-groups of A and 
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Then define ...Ie.q in the obvious way by means of the K-functional. 

(a) Check that the following interpolation theorem holds: 

81 

If T: A ~ B is a quasi-linear mapping, i. e. if there are numbers M 0 and M I' 

such that, for all aiEAi' we can find biEBi, such that T(ao+al)=bo+b l and 
II T ai II Ai ~ Mi II b;ll Bi' then T: ...Ie.q ~ Be.q and 

(b) Check that the power theorem holds in this more general setting. 

(c) Use the Holmstedt's formula to prove the reiteration formula 

(See Chapter 5, Exercise 8, for an application.) 

17. (Peetre [26J). For a given quasi-Banach space E with norm 11-11, put 

Let N be the space of all a E E, such that II a II * = 0 and let E * be the completion 
of E/N in the norm induced by the semi-norm 11-11. 

(a) Prove that (E*),=E'. 

(b) Prove that if A is a Banach couple, such that Ll(...I) is dense in Ao and in 
A I' then (...Ieq) * = ...Iel for 0 < q < 1, 0 < e < 1. (See Chapter 5, Exercise 9, for an 
application.) 

18. In a given category C(j an object A is called a retract of an object B if there are 
morphisms I: A~B and P: B~A such that PI is the identity. 

(a) Prove that if A is a retract of B in the category of all (quasi-)normed 
spaces then ...Ieq is a retract of Beq with "the same" mappings I and P. 

(b) Prove that if A is a retract of B then I~O(A) is a retract of l~l(B), So and SI 

arbitrary. (Cf. 5.6.) 

(c) Prove that Lp(wo) is a retract of Lp(w I ), Wi positive. (Cf. 5.4.) 

19. Let A be a dense sub-space of a Hilbert space H. Identifying H with its dual, 
we then have AcH cA'. Show that (A,A')1/2.2 =H. (Cf. Chapter 2, Exercise 14.) 

20. (Cwikel [3J). Let A and B be uniform interpolation spaces with respect to 
.it and B in JV~. Show that the condition 

K(t, b; B)~w(t)K(t, a; A) (all t>O), 
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where w(t)-w(2t), SO'w(t)dt/t< 00 and aEA, implies that hER and 

Hint: Use the fundamental lemma, and apply Theorem 1.6.1. 

21. Let A be a compatible quasi-Banach couple. Prove that if Ao,p=Ao for 
some (J > 0 and some p ~ 1 (> 0) then Ao = A I' Generalize this to the case 
Aoo,po=Ao1,PI for some (Ji and Pi with (JOi=(JI' and Pi~1 (>0). (Cf. 3.14 and 
Chapter 4, Exercise 4.) Does the conclusion still hold under the assumption 
Ao,po =Ao,PI' where 0 < (J < 1, Po i= PI? 

22. Show that Lo is not discrete. (See 3.10 for the definition.) 

3.14. Notes and Comment 

The study of interpolation with respect to couples of Hilbert (Banach, etc.) 
spaces was motivated by questions connected with partial differential equations. 
Applications of the real method to interpolation of Lp-spaces are given in Chap
ter 5 and of Sobolev and Besov spaces in Chapter 6. The development of the 
real interpolation method stems from Lions [1] in 1958, and from Lions-Peetre 
[1], where the theory is developed for the first time. In the form given in this 
book, including the results, the real method was introduced by Peetre [10] in 
1963. A preview of the real method may be seen in the proof of the Marcinkiewicz 
theorem (See. 1.7 for references.) 

Several authors have done related work. See, e.g., Gagliardo [1], [2], Ok
lander [1], Krein [1], Krein-Petunin [1] (a survey), Aronszajn [1], Calderon [3], 
Lions-Magenes [1]. 

The methods of Lions [1] (espaces de traces) and Lions- Peetre [1] (espaces 
de moyennes) are equivalent to the K-method. This is discussed in 3.12. Gagliardo's 
[1], [2] method yields the same spaces (equivalent norms) as the K-method. 
(See, e.g., Peetre [10] and Holmstedt [1].) Oklander's [1] method is precisely 
the K-method, and was found independently. Krein's [1] notion, scales of 
spaces, may be described in the following way. Let Aa (0~a~1) be a family 
of Banach spaces with dense inclusion, Ap c Aa if a < [3. The family (Aa) is called 
a scale if, given 0 ~ ao ~ a ~ a l ~ 1, Aa is of class CJ ((J, (Aao' Aa)), where 
a=(1-(J)ao+(Ja l • (Cf. 3.5.) Their minimal scale is Aa,oo' and their maximal scale 
is Aa, I (equivalent norms). (Cf. 3.9.) 

Interpolation of Lipschitz and Holder operators (cf. Exercise 9 and 10) has 
been discussed by Peetre [17], who also considered the possibility of interpola
tion of metric spaces. For the metric case, see Gustavsson [2]. Many references 
are found in Peetre [17]. See also Tartar [1]. 

Extensions of the real method to interpolation of more than two spaces have 
been given (similarly) by Sparr [1], Yoshikawa [1], Kerzman [1], and Fernandez 
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[1]. Earlier (1966) M. Cotlar raised, in a personal communication, the question 
whether an extension to general cones is possible. Sparr's [1] work is an instance 
of a generalization of this kind. An extension of the real method to the case of 
locally convex topological spaces is found in Goulaouic [1]. The case of quasi
normed Abelian groups, treated in 3.11, was first considered by Kree [1] (Lp with 
O<p<l), Holmstedt [1] (quasi-normed linear spaces), and Peetre-Sparr [1] 
and Sagher [1] (the general case). 

Instead of the functional cPOq ' more general functionals may be used (see 
Peetre [10] and Exercise 11). 

Moreover, instead of a couple (Au, AI)' it possible to utilize two pseudo
norms P u(t, a) and PI (t, a) defined on some Hausdorff topological vector space A. 
Po and PI are then used to define functionals, analoguous to the K- and the 
l-functionals, denoted by M and N respectively. This generalization was pro
posed by Peetre [1] (see also Yoshinaga [1]). 

Interpolation of semi-normed spaces has been treated by Gustavsson [1]. 
In particular, he shows that the equivalence theorem holds in this case too, 
with the obvious definitions of the K- and l-method. 

Let F be an interpolation functor, and consider the couples A(1)=(Ao,Ail » 
and A(2)=(Au,A\2». Put A=(Ao,Ail )nA2». Peetre [27] has considered the 
question: when is it true that 

The answer is it is true when, for instance, A(l) and A(2) are quasi-linearizable 
(Exercise 6), F = Koq and a certain commutativity condition is fulfilled: A\l) 
and A\2) are the domains of the commuting operators Al and A2 acting in Ao, 
with a supplementary assumption on Al and A2 (cf. Exercise 7 and 6.9). Triebel 
[4] has given an example of a couple for which equality does not hold when 
F = Koq, as an answer to a question posed by Peetre. For results and applica
tions, see Peetre [27] and the references given there. 

There is an obvious question (first considered by Mitjagin [1] and Calderon 
[3], cf. 5.8): Is it possible to obtain "air' interpolation spaces by some K-method? 
For certain couples, the answer is "yes" (cf. 5.8). A precise formulation of the 
question is the following: Let A be any given couple and A any interpolation 
space with respect to A. Is it true that 

K(t, b; A)~ K(t, a; A), aEA, 

implies that bEA and 

The answer is, in general, "no", as an example by Sedaev-Semenov [1] shows 
(see Exercise 5.7.14). Peetre [20] has given a contribution to the problem: For 
which couples A and B is it true that (aEl:(A), bEl:(B» 

K(t, b; B)~ K(t, a; A) 
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implies that TE L(A, B) exists, such that b = Ta? He employs the result in 
Exercise 13 and the concept retract of Exercise 18. Clearly, when B = A, any 
compatible Banach couple A, for which the answer is yes to this question, also 
yields yes to the first question, in view of Theorem 2.4.2. Couples for which the 
answer is yes to the first question are called K-monotonic. 

Recently, M. Cwikel in a personal communication, has shown that, for any 
compatible Banach couple A, the couple (Aoo, po' Aolop ) is K-monotonic, pro
vided that 0<8i<1, 1~pi'::;;co (i=0,1). Cwikel applies the retract methods in
troduced by Peetre [20] and Sparr's [2] result for weighted Lp-spaces mentioned 
below in 5.8. (Cf. Exercise 18 and 13.) In particular, the couple (BSO q ,Bsp' ) 

po 0 lql 

of Besov spaces (see Chapter 6) is K-monotonic (SiEIR, 1 ~Pi' qi~ co), as well 
as the couple (LpOqO,Lp,q) (1~Pi,qi<CO, qi~Pi (i=0,1)) (cf. Exercise 1.6.6). 

3.14.1-2. As we remarked in Chapter 2, we use categories and functors only 
in order to obtain greater precision of expression. 

The discrete versions of the K- and the 1-method are frequently used in the 
applications, see, e. g., Chapter 6. They are also convenient for the extension of 
the real methods to the quasi-normed case in 3.11. 

3.14.3. The fundamental lemma, employed when proving that Koq and 10q are 
equivalent, exhibits a universal constant. The least value of this constant is 
unknown to us. Peetre (unpublished) has shown that it is at least 1/2. 

3.14.4. The inclusion (b) in Theorem 3.4.2 reflects a general inequality, in a way 
a converse to Holder's inequality: 

Let f be a positive and quasi-concave function on 1R+, i. e. 

f(s)~max(1, slt)f(t). 

Assume that O<p~q~ co. Then 

where there is equality for f(t)=min(1, t). 
The new feature is that the best constant is determined. This is an unpublished 

result by Bergh. The inequality goes back to Frank- Pick [1]. (Cf. Borell [1].) 

3.14.5-6. We have, in fact, proved more than Theorem 3.5.3 states. We have 
proved that if Xi is of class CK (8i;A), i=0,1, then 

Conversely, if Xi is complete and of class CA8i; A) then 
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The assumption that A9i , qi are complete in the last statement of Theorem 3.5.3 
is not indispensable. This is a consequence of Holmstedt's [1] formula in 3.6 
(see Exercise 15, where a sharper version of the reiteration theorem is found). 
Holmstedt [1] proved his formula in the quasi-normed case and with 0 < qi ~ 00. 

3.14.7. Theorem 3.7.1 was essentially presented by Lions [3] and Lions-Peetre [1]. 
The dual of A9,q when 0 < q < 1, has been investigated by Peetre [26]. He 

showed that A~,q = A~,l (0 < q < 1), A being a compatible Banach couple with 
L1(A) dense in Ao' and in AI' 

3.14.8. Compactness theorems of the type: 

imply that 

T: Ao -> Bo (compactly), 

T: Al ->Bl 

i.e. more general than those in 3.8, have been given by Krasnoselskij [1], Krein
Petunin [1] and Persson [1]. In those theorems, the couple B is subject to an 
approximation condition. 

3.14.9. As we noted earlier, Theorem 3.9.1 is related to Krein-Petunin's [1] 
minimal and maximal scale. The theorem is due to Lions- Peetre [1]. 

3.14.10-11. These sections are taken over from Peetre-Sparr [1]. Applications 
of the interpolation results can be found in Chapter 5 and Chapter 7. Related 
results have been found by Sagher [1] (cf. Exercise 16). 

3.14.12. The space S(A, p, 8) is the "espace de moyenne" introduced by Lions
Peetre [1], but with slightly different notation. In fact, let ~o and ~ 1 be any two 
real numbers such that ~O~l <0 and (1-8)~o+8~1 =0. Making the transforma
tion t = r~1 - ~o, we see that the norm on S(A, p, 8) is equivalent to the infimum of 

where a= Sg'v(r)dr/r. After the additional transformation r=ex, we see that 
the norm on S(A, p, 8) is equivalent to the infimum of 

where a = S':' 00 w(x)dx. But this is just the norm on the "espace de moyenne" 
S(po, ~o, Ao; PI' ~l' Ai) introduced by Lions-Peetre [1]. 

By a similar transformation, it will be seen that our space 3(A, p, 8) is the 
space 3(Po, ~o, Ao; PI' ~l' AI) defined by Lions-Peetre [1]. 
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Theorem 3.12.1 was first given by Peetre with a different proof. He also 
proved the theorem in case one or both of the numbers Po and PI is 00 (see 
Holmstedt [1]). Thus Theorem 3.12.2 and Corollary 3.12.3 also hold in the 
case Po = 00 or PI = 00. 

Writing lXo=lJo-1jpo, lXl =1J1-1jPI' we see that the norm in our space 
vm(A, p, ij) is equivalent to 

which is the norm in the space Vm(Po, lXo, Ao; PI' lXI' AI) introduced in Lions
Peetre [1]. As a consequence our space Tm(A, p, 8) is equal to their space 
T~(po, lXO' Ao; PI' lXI' AI) provided that 8 is given as in Corollary 3.12.3. 

Lions- Peetre [1] are also working with more general trace spaces, using the 
trace of the derivatives of u. (See Exercise 14.) 



Chapter 4 

The Complex Interpolation Method 

The second of the two interpolation methods which we discuss in detail, the 
complex method, is treated in this chapter. Our presentation follows the essential 
points in Calderon [2]. The results are analogous to those obtained for the real 
method in Chapter 3, but they are frequently more precise here. We make a 
comparison with the real method in Section 4.7. The proofs in the first sections 
are more detailed than in the later sections. 

Throughout the chapter we consider the category gHl' consisting of compatible 
Banach couples. 

4.1. Definition of the Complex Method 

We shall work with analytic functions with values in Banach spaces. The theory 
of such functions is, as far as we shall need it, parallel to the theory of complex
valued analytic functions. 

In this section we introduce two interpolation functors Co and CO using 
the theory of vector-valued analytic functions. This will lead to an abstract 
form of the Riesz-Thorin theorem. 

Given a couple A, we shall consider the space '?(A) of all functions I with 
values in 1"(A), which are bounded and continuous on the strip 

s = { z: ° :( Re z :( 1 }, 

and analytic on the open strip 

So={z:O<Rez<1}, 

and moreover, the functions t-> IU + it) U = 0, 1) are continuous functions from 
the real line into Ai' which tend to zero as It 1-> 00. Clearly, '?(A) is a vector 
space. We provide'? with the norm 

II I II g; = max (sup II l(it)II Ao' sup 11/(1 + i t)IIA). 
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4.1.1. Lemma. The space:#' is a Banach space. 

Proof: Suppose that Lnllfnll,F<OCI. Since fn(z) is bounded in l'(A), we have 

Since Ajcl'(A), we conclude that 

By Lemma 2.3.1, we know that l'(A) is a Banach space. It follows that Ln fn 
converges uniformly on S to a function f in l'(A). Thus f is bounded and con
tinuous on S and analytic in So. Furthermore, Ilf/j+it)IIA~ Ilfnll,F and thus 
LnJ,,(j+it) converges uniformly in t to a limit in Aj, which mu'st coincide with the 
limit in l'(A). Therefore, f(j+it)EAj and Inf~(j+it) converges uniformly to 
f (j + it) in A j' But then it follows that f =:#', and that In f~ converges to f in ~ D 

We shall now define the interpolation functor Co. The space A[O] = Co(A) 
consists of all aEl'(A) such that a=f(O) for some fE:#'(A). The norm on A[o] is 

Ilall[o] =inf {II fll,F: f(O) =a, f E:#'}. 

4.1.2. Theorem. The space A[O] is a Banach space and an intermediate space with 
respect to A. The functor Co is an exact interpolation functor of exponent O. 

Proof: The linear mapping f-+f(O) is a continuous mapping from :#'(A) to l'(A) 
since II f(O)11 I(4) ~ II fll.~· The kernel of this mapping is JII' 0= {f: f E:#',f(O)=O}. 
Clearly, A[o] is isomorphic and isometric to the quotient space :#'(A)!AI'o. Since 
~ is closed, it follows that ALB] is a Banach space. Moreover, since II a II I(4) = 

Ilf(O)III(A)~ Ilfll,F we obtain A[o]cl'(A). 
Taking f(z)=exp(b(z-O)2)a, we also see that A(A)cA[o]. Thus A[o] is 

an intermediate space with respect to A. 
Next, we prove that Co is an exact interpolation method of exponent O. Thus 

assume that T maps A j to l!j with norm Mj (j = 0,1). Given a E A[o] and s > 0, 
there is a function fE:#'(A), such that f(O)=a and Ilfll,F ~ Ilall[o]+s, Put 
g(z)=MO- 1 M~zT(f(z». 9 belongs to the class :#'(.8). Moreover, Ilgll,F~ Ilfll,F~ 
Ilall[o]+s. But now g(O)=M~-1 M~OT(a) and hence we conclude that IIT(a)II[o]~ 
M6-0M~llgll,F~M6-oM~llall[o]+s', where s'=M6-oM~s. This gives the 
result. D 

Now we shall introduce a second complex interpolation method. This is based 
on a space ~(A) of analytic functions, defined as follows. The functions 9 in ~(A) 
are defined on the strip S with values in l'(A). Moreover they have the following 
properties: 

(i) Ilg(z)III(A)~c(1 + Izl), 

(ii) 9 is continuous on S and analytic on So, 
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(iii) g(j+it l )-g(j+it2) has values in Aj for all real values of tl and t2 and for 
j=0,1, and 

II II =max(su \\g(it l )-g(it2)\\ su \\g(1+it l )-g(1+it2 )\\) 
g r; Ptth t -t ' Ptt,t2 t -t 

1 2 Ao 1 2 At 

is finite. 

4.1.3. Lemma. The space ~(A), reduced modulo constant functions and provided 
with the norm Ilgllr;, is a Banach space. 

Proof: From the conditions it follows easily that if h =I- 0 is a real number then 

\\ g(Z+i~)-g(Z)\\ _ ~ Ilgllr;. 
zh I(A) 

Thus we obtain 

Ilg'(z)III(4)~ Ilgllr; (ZES). 

We therefore see that if Ilgllr; =0 then g is constant. This implies that ~ modulo 
constants is a normed space. We also see that (ZE So) 

Ilg(z)-g(O)III(A)~ Izlllgllr;. 

Now suppose that Ln Ilgnllr; < 00. Then Ln(gn(z) -gn(O» converges uniformly 
on every compact subset of So. The limit g(z) satisfies (i) and (ii). Moreover it 
follows that the series Ln(gn(j + it I) - gn(j + it 2» converges in A j' Thus 
g(j+it l )-g(j+it2)EAj and is the sum of the series Ln(gn(j+it l )-gn(j+it2» in 
A j • Therefore gE~, i.e. ~ is complete. 0 

We now define the space CO(A)=A[O] in the following way. For a given 8 
such that 0 < 8 < 1 we let A[O] consist of all a E 17(A) such that a = g'( 8) for some 
gE~(A). The norm on A[8] is 

Ilall[8] = inf {llg 11r;: g'(8) = a,g E~}. 

4.1.4. Theorem. The space A[8] is a Banach space and an intermediate space with 
respect to A. The functor C8 is an exact interpolation functor of exponent 8. 

Proof' Since Ilg'(8)III(A)~ Ilgllr;, we see that the mapping g->g'(8) from ~ into 
17(A) is continuous. The kernel ;V8 of this mapping is closed and the range is 
A[8]. The norm on A[8]. The norm on A[8] is the quotient norm on ~;';V8. Thus 
A[8] is a Banach space. Obviously, A[8]c17(A). If aEJ(A) we take g(z)=za and 
then we see that J(A)cA[8]. 



90 4. The Complex Interpolation Method 

In order to prove that CO is an exact interpolation functor of exponent 8, we 
assume that T: A r-+ Bj with norm M j for j = 0,1. Then we choose a function 
gE~(A), such that g'(8)=a, Ilgll(g~ Ilall[O)+E. Consider the function 

The integral is taken along any path in S which connects 0 and z. If the path has all 
its points in So except 0 and possibly z we may integrate by parts. In fact, if 1] E So 
we have d(T(g(1])))/d1] = T(g'(1])) and g'(1]) is bounded and continuous on So. Thus 
d(T(g(1])))!d1] is continuous on So and has bounded norm in l:(B). Thus we may 
integrate by parts, and we obtain, for any path in S, 

where in general the integral is to be interpreted as a vector-valued Stieltjes 
integral. It follows that 

Ilh(z)IIE(B) ~ c Izl· 

Next we note that T(g(j + it)) has its values in Bj and is a Lipschitz function in 
B j • Thus it follows that 

II h(j + it 1) - h(j + it2 )IIBj ~ Mj 1 S:: II T (dg(j + it))11 Bj 

if t 1 < t 2 • But the right hand side is bounded by 

It follows that 

Now 

This proves that T(a) = M6 -0 M~ h'(8)EB[°1, and that 

II T(a)II[O) ~ M6 -0 M~ Ilall[O) +E'. 

This gives the result. 0 

In general, the two spaces A[o) and A[O) are not equal. The question of the 
relation between these two spaces will be discussed in Section 3. The main interest 
will be attached to the space Aro)' We shall consider the space A[O) more or less as a 
technical tool. 
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4.2. Simple Properties of AU;I] 

We shall prove two simple results concerning inclusion and density properties 
of the spaces (Ao, A1)[0]' 

4.2.1. Theorem. We have 

(a) (Ao, A1)[0]=(Al,Ao)[1-0] (with equal norms}, 

(b) Al cAo=(Ao, A1)[0,]c(Ao, A 1)[00] if eO<e l , 

(c) (A,A)[o]=A if o<e<1. 

Proof" In order to prove (a), we have only to note that f(z)E3i'(Ao, AI) if and only 
if f(1-z)E3i'(Al' Ao)' Using (a), we shall obtain (b) if we can prove that Ao c Al 
implies_ (Ao, Alho]c(Ao,AI)[8] when e<i). If aE(Ao,_A1)[0] we can choose 
fE3i'(A) so that f(e)=a, Ilfll§~ Iiallro]+e. Put e=Ae where O~A<1 and 
cp(z) =f(8z)exp(e(z2 _A2)). Writing BI =(Ao, Alho], we have Ilf(8+it)IIB 1 ~ 
Ilfll,:F(ii)' It follows that 

It follows that Ilallrii]~C lIall[o]' (c) is obvious. D 

4.2.2. Theorem. Let 0 ~ e ~ 1. Then 
(a) L1(li) is dense in A[o]; 
(b) if AJ denotes the closure of L1(A) in Aj we have 

(c) the space Bj=A[Jl (j=0, 1) is a closed subspace of Aj and the norms coincide 
in B j ; 

(d) (Ao, Al)[O]=(Bo, B l )[8]' with Bj as in (c). 

The proof of Theorem 4.2.2 is based on the following lemma. 

4.2.3. Lemma. Let 3i' o(A) be the space of all linear combinations of functions of the 
form 
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Proof' Since Ilexp(bz2)f(z)-f(z)II,--+0 as b-+O (b>O) for all fE§(A), it is 
sufficient to show that all functions g(z)=exp(bz2)f(z) with f E§(A) can be 
approximated by functions in § o(A). Put 

Clearly gn is analytic on So, continuous on S with values in 1:'(A). Moreover, 
gn is periodic with period 2nin, and gnU+it)EAj for j=O,1. Furthermore 
IlgnU + it) -gU + it)IIA .-+0 as n-+ co uniformly on every compact set oft-values and 

J 

IlgnU+it)IIA. is bounded as a function of nand t. It follows that, for all s>O, 
we have ex'p(sz2)gn(z) in the space §(.4). Therefore, we can find sand n so that 

But now gn(z) can be represented by a Fourier series 

where 

Note that, by periodicity, the integral is independent of m. It is also independent 
of s. In fact, the integrand is analytic and bounded in 1:'(A). Thus the values of the 
integral for two values of s will differ very little if m is chosen large, due to the 
presence of the factor 11m. But the integral is independent of m. Thus the integral 
has the same value for the two given values of s. It follows that 

Then we have aknELI(A). Now we consider the (C, i)-means of the sum (1), i.e. 
we consider 

Then IICTmgnU+it)-gnU+it)IIAj-+O as m-+co, uniformly in n. Thus 
Ilexp(sz2)(CTmgn-gn)II,--+0 as m-+co and so 

Proof of Theorem 4.2.2: (a) If aEA[II] there exists a function f E§(A), such that 
f(()) = a. Then there exists gE§ o(A), such that Ilf-gll,- <e. Therefore 
lIa-g(())II[II]<e and since g(8)EA(A) the conclusion follows. 

(b) Follows at once from (a). 
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(c) Clearly, BocAo and Bl cAl' Let us prove that the norm on Bo 
coincides with the norm on Ao. Take aEBo. Then we can find alEA(A), such 
that Ila-alll Bo <e. Consider fiz)=a l ez2-nzEff(A). Then fn(O)=a l and 
Ilfnllg;~::;JalIIAo+el-nllalIIAI' Since Ila 1 1I Bo ::::;llfnllg; for all n, we conclude that 
IlaIIIBo::::;llalIIAo' But IlallAo::::;llallBo and so Ila-aIIIAo::::;lla-aIIIBo<e. Thus 
it follows that IlaIIBo::::;e+ Ila1 I1 Bo ::::;2e+ Ilall Ao ' and hence Ilall Bo ::::; Ilall Ao ' This 
proves that Ilall Bo = Ilall Ao ' _ _ 

(d) Obviously, (d) follows if we can prove that ff(A) = ff(B). Evidently, 
ff(B)cff(A). ~ut if f(Z)Eff(A) then fU+it)EBj (by the definition of B). 
Thus f(Z)Eff(B), proving (d). 0 

4.3. The Equivalence Theorem 

We shall now study the relation between the two complex interpolation methods 
C9 and C9• We shall prove that they are equivalent when applied to certain 
couples. 

4.3.1. Theorem (The complex equivalence theorem). For any couple A =(Ao, AI)' 
we have 

If at least one of the two spaces Ao and Al is reflexive and if 0<0<1, then 

- -[9) [9) 
A[9)=A and Iiall = lIall[9)' 

Proof' Take aEA[9)' andchoose fEff(A) so that f(O)=a and Ilfllg;::::;llall[9)+e. 
Then put g(z) = Jo fK)d(. Then it is readily seen that gE~(A), and that 
Ilgll-w::::; IIfIIg;· Moreover, g'(O)=f(O)=a. Consequently, Ilall[9)::::; Ilgll-w::::; IlfII§::::; 
II a II [9) + e, proving the first part of the theorem. 

The proof of the second part is much deeper. Let us denote by Pj,j=O,1, 
the Poisson kernels for the strip S. They can be obtained from the Poisson kernel 
for the half-plane by means of a conformal mapping. Explicitly, we have that 

e- 7t«-I)sin1ts 
PJ~s+it;r) = . 2 .. ( I) 2' j=O,1. sm 1ts+(cos1ts-e'J7t 7t< ) 

4.3.2. Lemma. If f Eff(A) we have 

(i) log Ilf(0)11[9)::::; Li=O,l J~ <Xl log IlfU + i'r)II AjPiO, r) dr 

(ii) Ilf(0)11[9)::::; (1 ~O J~ <Xl Ilf(ir)IIAoP 0(0, r)dr y -9 . (~ Ilf(1 + ir)IIA, P 1(0, r)dr Y 
(iii) II f(O) II [9) ::::; Li= 0,1 J~ <Xl II fU + ir)11 AjPiO, r)dr. 
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4.3.3. Lemma. If f E~(A) and iff has the property that 

1 h (f(it+ih)-f(it)) 

converges in Ao on a set of positive measure as h-+O (h real), then f'(e)EA[o] 
for o<e<1. 

Proof of Lemma 4.3.2: Let <Pj be an infinitely differentiable bounded function 
such that 

Let tP(z) be an analytic function such that 

Then RetPU+it)=<piit), j=O,1 and tP is continuous and bounded on S. Thus 
exp( -tP)IEff(A). Since 

II exp( - tPU + it))· fU + it)11 A/~ exp( - <pit))· II fU + it)11 A/~ 1 

it follows that Ilexp( -tP)fll.9'~1. Thus 

Ilexp( - tP)f 11[0] ~ 1. 

Therefore we conclude that 

Taking decreasing sequences of functions <Po and <PI converging to 10gllf(it)IIAo 
and log II f(1 + it)11 Al respectively, we get (i). In order to get (ii), we apply Jensen's 
inequality with the exponential function to (i). (Note that Ie:: ro P o(e, T)dT = 1 - e 
and I ~ ro PI (e, T)dT = e.) Finally, (iii) follows from (ii) by the inequality between 
the arithmetic and the geometric means. 0 

Proof of Lemma 4.3.3: Put 

fn(z) = (i/n) -l(f(Z + i/n) - f(z)) . 

Then II fn(it) - frn(it) II Ao -+0 as n, m-+ Cf) fo.! all t on a set E of positive measure. 
Further, we have that exp(sz2)fn(z)Eff(A) for all s>O. From Lemma 4.3.2 
we obtain 

log II e,02(fn(e)-frn(e))11 [0] 

~ Lj= 0,1 Ie:: ro log II e-'(j+ it)2(fnU + ir) - fmU + iT))11 AjPj(e, T)dT . 
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Since II fnv + it) - fmV + it)11 Aj ~ 211 f II~, and since II fn(it) - fm(it) II Ao --->0 for all tE E, 
we see that the right hand side tends to - 00 as n, m---> 00. (Note that Po >0.) 
Thus log Ilexp(e82)(fn(8)-fm(8))II[o]---> - 00 as n, m--->oo, and, consequently, 
Ilfi8)-fm(8)II[o]--->0. Therefore, fn(8) converges in A[o]' But j~(8) converges in 
L'(A) to 1'(8). Hence f'(8)EA[o]' 0 

Completion of the proof of Theorem 4.3.1,' We shall prove that if one of the spaces 
Ao and Al is reflexive then A[O]cA[o] and Ilall[o]~ Ilall[O]. By Theorem 4.2.1 we 
may assume that Ao is reflexive. 

If f E<§(A) then f(it) is continuous and therefore its range lies in a separable 
subspace V of Ao. Put fn(z) = (f(z + i/n)-f(z))·n/i and let Rm(t) be the weak closure 
of the set {fn(it):n~m}. Put R(t)=nmRm(t). Then Rm(t) and R(t) are bounded 
(uniformly in t and m) subsets of Ao. Since Rm(t) is bounded and weakly closed, 
and since the unit sphere of Ao is weakly compact (Ao is reflexive), we conclude 
that Rm(t) is weakly compact. Therefore R(t) is non-empty. Now let g(t) be a 
function such that g(t)E R(t) for each t. Since R(t) c V, the range of g is separable. 

We shall prove that 

(1) f(it)=f(O)+iHg(r)dr. 

Let L be a continuous linear functional on Ao, and put cp(t) = -iL(f(it)). Then 
the assumption f E<§(A) implies that cp is Lipschitz continuous. Moreover, 

L(fn(it)) = n(cp(t+ l/n)-cp(t)). 

The image of Rm(t) under L is the closure of the set {n(cp(t+ 1/n)-cp(t)): n~m}. 
The image of R(t) is contained in the intersection of these sets. If cp is differentiable 
at the point t, the image of R(t) under L will therefore be {cp'(t)}. Consequently, 
we have L(g(t)) = ql(t) whenever cp'(t) exists. But cp is Lipschitz continuous. There
fore, cp'(t) exists almost everywhere and is measurable. It follows that L(g(t)) 
exists almost everywhere and is measurable. Since the range of g is separable, it 
follows that g is strongly measurable. Since the sets R(t) are all contained in a 
bounded set, g(t) is also bounded. Thus 

L(f(it) = icp(t) = icp(O) + i J~cp'(r)dr = L(f(O)) + i J~L(g(r))dr. 

This implies (1). 
From (1) we see that f(it) has a strong derivative almost everywhere. Thus 

Lemma 4.3.3 implies that f'(8)EA[o]' But 1'(8) is a typical element in A[O]. 
Thus A[O]cA[o]' More precisely, if aEA[O] we can choose fE<§(A), such that 
f'(8)=a and Ilfll ~ Ilall[O]+e. Consider the function 
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Then hnE$'(A) and II h.ll ff ~ e' Ilfll~. Thus Ilhn(lm[8)~e'(llall[8)+8). But 
Ilh n(O)-exp(802 )all[8) tends to zero as n-+oo. Letting n-+oo and then 8-+0 

in the inequality 

we clearly obtain 

4.4. Multilinear Interpolation 

We prove two theorems concerning multilinear interpolation. The second of 
these will be applied later. 

4.4.1. Theorem. Let A(v) (v = 1,2, ... , n) and B be compatible Banach couples. 
Assume that T:l:~"v"nLl(A(V))-+LI(B) is multilinear and 

II T(a 1, ••• ,an)II Bo ~ MOn~=l IlavIIA~) 

II T(a 1,·· .,an)II Bl ~ M 1 n~=l II a vii AiV ). 

Then Tmay be uniquely extended to a multilinear mapping from L~"'v"'nAf~l to B[8) 
with norm at most M6 -8 M~ (O~ O~ 1). 

Proof (cf. the proof of Theorem 4.1.2): Put 

g(Z)=M~-l M~ T(fl (z), ... '/n(z)), 

II Tall[8)~M6 -8 M~ Ilgllff~M6-8 M~ n~= 1 II fvll ffv 

~ M6 -0 M~ (n~= 1 II a vii A!;j + 8), 

and, since 8 is arbitrary and LI (A(V)) is dense in Al~r, 1 ~ v ~ n, this yields the desired 
conclusion. D 
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4.4.2. Theorem. Let A(V), v = 1, ... , nand B be compatible Banach couples. Assume 
that T: 2:'(A(1) 812:':<:; v<:;n,1 (A(v»-->2:'(B) is multilinear, the restriction to AI1) 
having values in B;, i =0, 1, and 

II T(d1), ... , dn»IIBo~MoO~=111 a(V)IIAbV) (a(1)EAb1) , 

II T(a(1), ... , dn»IIB 1 ~ M 1 O~= llla(V)IIA\V) (a(I)EAl1». 

Then T may be extended uniquely to a multilinear mapping from 

(A(1)[O) cp" Ell A(v) WL.,,2<:;v<:;n [0) 

to B[O) with norm at most M~ -0 M~, 0< 8 < 1. 

Proof (cf. the proof of Theorem 4.1.4): Put 

where gl E~1 =~(A(1»,fvE~v=~(A(v» with values in A (A(v», 2~v~n, the 
integration being along any curve connecting ° and z and lying in So with the 
exception of (possibly both) the endpoints. We may extend (multi linearly) the 
definition of h to ~1 + I:<:;v<:;n~v by Lemma 4.2.3. Arguing as in the proof of 
Theorem 4.1.4, we may write 

for any path in S. Clearly, Ilh(z)lll'(jj)~Clzl, and, for t 1 <t2 ,j=0,1, we obtain 

IlhU + it2) -hU + it 1)11 B. 
J 

~ Mj 1 J:~ II T(dg 1 U + it), f2U + it), ... , fnU + it»11 Aj 

~ (t2 - t 1)llg 111~1 02 <:; v<:;n II fvll Fv' 

i.e., hE~=~(B) and Ilhll~~llglll~lOHv<:;.llfvllFv· C~Qosing g1E~1 ~nd 
j~E~ v such that a = (aI' ... , an) = (gl (8)J2(8), ... ,f.(8»E(A (1)[6)81 I:<:; v<:;n,1(A(V» 
with IlgllI~l OHv<:;. IlfvllFv ~ Ila1 11(A(1»[8) 0 Hv<:;n IlavllAf~1 +8, 8>0 arbitrary, it 
follows that T(a)=M~ -6 M~ h'(8)EB[6) and 

II T(a)IIjj[8) ~M~ -6 M~ Ilhll~~M~ -6 M~ Ilglll~l 02 <:;v<:;n IlfvllFv 

~M~ -6 M~(llalll(A(1»[8) OHv<:;. IlavllAf~1 +8). 

Because 8> ° is arbitrary and A (A(V» is dense in A!~l, 2 ~ v ~ n, the desired 
conclusion follows. 0 
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4.5. The Duality Theorem 

We shall now characterize the dual A[o) of the interpolation space A[o)' We utilize 
a multilinear result: Theorem 4.4.2, the equivalence Theorem 4.3.1 and a result 
concerning the dual L 1 (A)' of L 1 (A): the space of integrable functions on IR 
with values in the Banach space A. 

4.5.1. Theorem (The duality theorem). Assume that A = (Ao, A 1) is a compatible 
Banach couple, and that L1 (A) is dense in both A o and A l' Then 

4.5.2. Corollary. Suppose that, in addition, at least one of the spaces Ao and A1 
is reflexive. Then 

The corollary follows at once by the equivalence and duality theorems. 
For the proof of the duality theorem, we need a lemma. 

4.5.3. Lemma. Let A be a Banach space. The dual of L1 (A): the space of integrable 
A-valued functions on IR, is the space A(A'): the space of all functions g of bounded 
variation on IR such that g(s) - g(t)E A' for all sand t, and for which 

is finite. The duality is given by 

(1) <g,f) = J <dg(x),f(x) , 

or, if f(x)=h(x)'a and h is scalar-valued, by 

(2) 
d 

<g,f) = J h(x) dx <g(x), a) dx. 

ProofofThorem4.5.1: First, consider the bilinear functional <a',a) defined on 
17(A') 81L1(A) (cf. Theorem 2.7.1), and use the density assumption. From Theorem 
4.4.2 we infer that it has a unique extension to A'[O) EB A[o) such that, for a' E A'[O) 

and aEA[o), 

Thus, if a' E A'[O) then a' E A[o) and II a' II A[6) ~ II a' II A'[8) • 

Secondly, let IEA[~, i.e., 
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Since A[8) is identified with a quotient space of ~(A), / may be defined on the 
whole of ~(A) with the same norm. Then the mapping 

defined on E= {(fo,fI)ELI(Ao)EBLI(AI) 13fE~(A);.!j(r)=f(j+ir)Pj(O,r)} 
(Pj being the Poisson kernels in Section 4.3) is continuous in the norm 
IlfoIILMo)+ IlflIILMll' for we have (f(e)=a) 

by Lemma 4.3.2. E is a linear subspace of LI(Ao)EjJLI(At). Thus, by the Hahn
Banach theorem and Lemma 4.5.3, there is (go, gl)EA(A~)EBA(A'I) such that 

and 

Thus, taking .!j(r) = f(j+ ir) Pie, r), we obtain 

for fE~(A) with f(e)=a. It remains to prove that gir)=g(j+ir) are the 
boundary values of a function gE~(A') such that /(a)= <g'(e), a) for aEA[8). In 
order to find g, take aEL1(A), and let f(z)=h(z)·aE~(A), h being complex
valued. Obviously, by the representation formula (2), 

/(f) = h(e) /(a) = <go, h(ir) po(e, r)a) + <g I' h(l + ir) PI (e, r)a) 

d d 
= S h(ir)Po(e, r) dr <go(r), a) dr + S h(l + ir)PI (e, r) dr <gl(r), a) dr. 

Note that h(e)=O implies that the sum of the integrals vanishes. We shall see 
that this fact implies the existence of a function gE~(A') with the desired pro
perties. 

First we map the strip 0 < Re z < 1 conformally onto the unit disc Iw 1< 1, 
so that the origin is the image of the point e, using, for instance, the mapping 

J.1(z) = exp(inz) - exp(ine) . 
exp(inz) - exp( - in e) 

Let ka be the function defined on Iwl = 1 except at the two points 1 and exp(2niB) 
by the formula 
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Then 

if h is given by the formula hOf.1=h, where h(8)=0. We can for instance take 
h(z) = (f.1(z)texp(ez2), with e>O and n=1,2, .... Letting e->O we see that (3) 
holds (or h(w) = wn, n=1,2, .... Thus the Fourier series of ka (exp(i8» contains 
only terms with non-negative indices and so ka can be extended to an analytic 
function, still denoted by ka' on Iwl < 1. We now define a function ka on the 
strip 0< Rez < 1 by the formula kao f.1 = ka• Then the non-tangential limits of 
ka at the line Rez=j coincide (almost everywhere) with d<gir),a)ldr, U=0,1). 
Moreover, ka depends linearly on a. Furthermore, 

Ik.(z) I ~max {sup, I dd/go(r), a) I, SUPtI ddr <gl(r), a) I} 

~max {IIgollAollaIIAo' IIgl IIA,IIallAJ ~max {IIgollAo' IIgl IIAJ II a ll.1(A)· 

Thus 

Define now the function k by <k(z), a) =ka(z) (ZESo). Obviously 
k(Z)ELI(A)' = 1"(A') (see Theorem 2.7.1), and k is analytic and bounded in So. 
Integrating: 

g(Z) = n/2 k(z')dz' 

along a path entirely in So, we get a function g with values in 1"(A'), which is 
analytic on So. Also, since its derivative k is bounded, g has a continuous extension 
to S. Moreover, passing to the limit non-tangentially, we obtain 

<gU+ ir+ ih)-gU+ ir), a) = i<gir+h)-gir), a) U=0,1). 

By the density assumptions, we have 

gU + ir + ih) -gU + ir)= i(gir+ h)-gir»EAj U =0, 1). 

Furthermore, gE~(A') and IIgll<y=max(IIgollA(Ab),IIglllA(AJ. But for any 
gE~(A') and fEff'(A) 

/(a) = J <dg(ir),Po(8, r) f(ir»dr + J <dg(1 + ir)'P1 (8, r) f(1 + ir» dr 

= <g'(8),f(8» , 

because this is true for the generators of ff' o(A) (Lemma 4.5.3, Formula (2», and 
ff'o(A) is dense in ff'(A». Clearly a'=g'(8)EA'[81, and thus 

/(a) = <g'(8),f(8» = <a', a) 
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if f E~(A) with f(8)=a. Also, 

Proof of Lemma 4.5.3: First, assume that gEA(A'). We have to prove that 
S <dg(x),f(x) is meaningful, and defines a linear functional on L 1(A) with 
norm at most Ilgll A(A')' By a density argument, it is clearly sufficient to consider 
continuous functions f with compact support. The integral can then be inter
preted as the limit of Riemann sums 

The absolute value of each term is bounded by IlgIIA(A,)llf(r)IIA(tj + 1-t). Thus 
we obtain 

IS <dg(x},f(x)1 ~ IlgIIA(A') IlfIIL1!Al' 

which is the desired estimate. 
Conversely, let IE L 1 (A)', i. e. 

Clearly, with XI as the characteristic function of the interval I, I(X(o,t)a) = <g(t), a) 
defines an A'-valued function 9 for t~O and analogously -1(X(t,o)a)=<g(t),a) 
for t<O. It follows that 

Ilg(s)-g(t)IIA' = sUPllaIIA=ll<g(s)-g(t), a)1 ~ Is-tIIlIIlL,(A)' 

and thus IIgIlA(A')~ II I IIL1!A)" Moreover, we may write, with a Stieltjes integral, 

for any bounded interval I. The linear hull of functions of type Xla being dense in 
Ll(A), we conclude that this representation is valid also for fEL1(A). Now (1) 
and (2) follow. D 

4.6. The Reiteration Theorem 

Here we show that the complex interpolation method is stable for repeated 
use in the sense of the theorem below. For its proof, we invoke the equivalence 
theorem 4.3.1, and the duality theorem 4.5.1. 

4.6.1. Theorem (The reiteration theorem). Let A be a compatible Banach couple 
and put 
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Assume that L1(A) is dense in the spaces A o, Al and L1(X). Then 

X[9) = A[9) (0~17~1; equal norms), 

Proof" First we show that Ilall x ~ Iiali. if aEA[9)' Take aEA[9); then _ r~1 "rBI 
there exists a function fE~(A), such that f(())=a and IlfllJ'"~ IlaIIArBI+8, 8>0 
being arbitrary. Put fl(Z)=f((1-z)()O+Z()1)' Then fl(17)=a and 

f1U+ it)=f((1-j) ()o + it(() 1 -()o))EA[9 j ) =Xj U =0, 1), 

flU+it)-+O, Itl-+oo. 
Also 

II flll J'"(X) ~ II f II J'"(A) ~ II a II ArBI + 8. 

This gives IlalixrBI ~ IlaIIArBI' 
Similarly, we have Ilalli'r~I~llaIIArBI if aEA[9), where lj=A[9j ) U=0,1). 

To see this, choose gE~(A) such that g'(())=a and Ilgll~~ IlabBI +8,8>0 
arbitrary. Put gl(Z)=(()1-()O)-lf((1-z)()O+Z()1)' It is easily verified that 
gl E~(Y'), g~(17)=a und Ilglll~(i')~ Ilgll~(A)~ IlaII ArBI+8. Thus it follows that 
Ilalli'r~l~ IlaIIArBI' 

To prove the converse inequality 11~IIArBI:§ Ilallxr~1 (aEX[~)), we shall see that 
it is enough to prove that 11111 Ar61 ~ II 1 Ilxr,'1 (l EA[9;)' In view of the first part of this 
proof and the duality theorem it follows that 

11111 ArBj = 11111 A'rBI ~ 11111 (A'rBOI.A'rBll)r~1 = Illllx'r~1 = Illllxr~j (l EA[~)), 

since, evidently, L1 (X) is dense in X ° and in Xl' 
From the first part of th! proof ~nd from the ~nequality 11111 ArBj ~ 11111 Xr"1 it 

follows that _the norms <:n A[9) and X[~L agree on A[9)' By assum~tion, L1 (A) is 
<!ense in L1(~). Since L1(X) is dense in ~[~)' w~ conclude that L1(A) is dense in 
Xr~) and in A[9)' But then we must have X[~)=A[9) with equal norms. 

The last observation of the theorem follows from Theorem 4.2.1. D 

4.7. On the Connection with the Real Method 

Let A be a compatible Banach couple. The next two theorems provide connections 
between the complex and the real interpolation methods. 

4.7.1. Theorem. The following inclusions hold 

if 0<()<1. 
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Proof: Since C8 is an interpolation functor of exponent 0, the first part follows 
at once from Theorem 3.9.1. 

The second inclusion follows from the Phragmen-Lindelof extension of the 
maximum principle. Let aEA[81' i.e. there is a function fE%(A) with f(O)=a. 
By the Phragmen-Lindelofprinciple, we have, since K(t,f(j + ir); A)"';; II f(j + i'r)IIA' 

J 

IIal18,oo =sup,t-8 K(t,f(O); A) 

",;; sup, t- 8 sup, II f(ir)11 ~~8 t8 sup, II f(1 + ir)11 ~, ",;; II f II s>' 

Taking the infimum, this estimate completes the proof. D 

If 1 "';;Pi"';; 00 (i=O,1) and 1/p=(1-Y/)/Po+Y//Pl then 

Proof: The first assertion follows from Theorem 4.7.1 and the reiteration 
theorem 3.10.5. 

The second assertion we prove in two steps; the first step is the inclusion 
A8,pc(A8o ,po' A81'P,)[~1' Take aEA8,p Ja;60). Then there is ~ decomposition 
a= Lvuv (in 1'(:4)) such that uvEL1(A) and (Lv(T v8J(2 V,uv;AW)1/p",;;C Ilal18,p' 
Put (b>O;O",;;Rez",;;1) 

f(z) =exp(b(z-Y/f) Lv fv 

where 

We obtain 

Similarly, we have 

exp( -b(1 +it-y/)2)lllf(1 +it)II;t. ",;;CllaII A•· 
I,P! .p 

Now f E%(A8o ,po' A 81 ,P') and f(y/)=a. Thus the inclusion follows. 
Conversely, take aE(A8o ,po' A81'P,)[~1' Let f E%(A8o ,po' A 81 ,P') with f(y/)=a, 

and put 

Clearly, gvE%(A8o,po' A81,P') and gv(y/)=a. The Cauchy integral formula (in 1'(A)) 
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gives 

r v8 K(2V, a;.-4) ~ 2 - v8-v~(8o-8!l-~1 J P 0(11,7:) K(2v,f(i7:); A)d7: 

+ 2 -v8+v(1-~)(80-8!l+(1-~)1 J P 1(11, 7:)K(2V, f(1 + iLl; A)d7: 

~ C(J P 0(11,7:)2 - v80 K(2v,f(i7:); A)d7:)1-~ 

. (J P 1 (11,7:)2 -v8, K(2v,f(1 + i7:); A)d7:)\ 

if y is chosen appropriately. Using the inequalities of Holder and Minkowski, 
this estimate gives 

IlaI18.p~ C(J P 0(11, 7:)11 f(h)II~~o.PO d7:)(1-~)/po 

.(J P 1(11,7:)11 f(1 + i7:)II~~ d7:)~/P' ~ ell f 11,-, 
101'1 

which yields the required inequality. 0 

4.8. Exercises 

1. (Calderon [2]). Assume that A is a compatible Banach couple and that 
Ao and A1 are Banach algebras with the same multiplication in A (A). Prove that 
..1(A) is a subalgebra of Ao and A1 and that A[8] may be made into an algebra with 

for a, bEA[8]. 

Hint: Apply Theorem 4.5.1. 

2. Prove that A[8] is reflexive when both Ao and A1 are reflexive. 

·3. (Krein-Petunin [1]). Assume that T: Ai-+Bi is linear with norm M i , ;=0,1, 
A and B being compatible Banach couples. Show that if A c A[8] and B' c B;8] 
then T:A-+B with norm at most M~-8M~. 

Hint: Consider the function < Tj{z), g(z). 

4. (Stafney [1]). Prove that if A (A) is dense in both Ao and A l' and if A[OI = Ao 
for some () (O<()<1) then Ao=A1. (Cf. Chapter 3, Exercise 21.) 

5. Prove first inclusion of Theorem 4.7.1 directly, i.e. without recourse to 
Theorem 3.9.1. 
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4.9. Notes and Comment 

The complex interpolation method is based on the main idea in Thorin's proof of 
Riesz's interpolation theorem (cf. Section 1.1). It was introduced in about 1960 
by A. P. Calderon [1] and J. L. Lions [2]. Also, S. G. Krein [1] (see Krein and 
Yu.I. Petunin [1]) has considered "an analytic scale of Banach spaces", which 
yields the same spaces as the complex method. M. Schechter [1] has made a 
generalization of the complex method using certain distributions T instead of 80 
as in this chapter. These ideas were also partly considered by Lions [2]. 

The real methods in Chapter 3 are readily extended to the quasi-normed case 
for the complex methods, no corresponding extension has been made as far as we 
know. For results in this direction (mainly L p,O<p<1) see Postylnik [1] and 
Riviere [1]. The main point seems to be the question of a maximum principle. 
(Cf. Peetre [28].) Also, to the real method there is a discrete (equivalent) counter
part, but we do not know of any such counterpart to the complex method. 

4.9.1.-4.9.6. The theorems and the proofs of the first six sections are, except for 
superficial changes, taken over from Calderon [2]. Moreover, Calderon's paper 
contains additional material which is not included here. Applications, however, 
are given in the next two chapters. Of the results not included, we want to mention 
this: ".4[0],0<8<1, is reflexive if (at least) one of Ao and Al is reflexive". 

Let us also point out that several of the exercises in Chapter 1 have counterparts 
for the abstract method, notably 1.6.11. 

4.9.7. The first results connecting the real and the complex method were given by 
Lions-Peetre [1]. The second part of the proof of Theorem 4.7.1 is based on an 
idea in Peetre [28]. Note that Theorem 3.9.1 yields another proof of that inclusion 
under a supplementary density assumption. Theorem 4.7.2 is, in its present form, 
due to Karadzov [1] and to Bergh. 

In general, the real Koq-method and the complex Co-method yield different 
results. (Cf. Chapter 6.) Moreover, neither of the indices 1 and 00 in Theorem 
4.7.1 can be replaced with a q, 1 <q< 00. (See Chapter 6, Exercise 23.) 

Imposing a restriction on the spaces Ao and AI' Peetre [21] was able to 
demonstrate the inclusion 

where p is connected with 8 and with the conditions on the spaces Ao and AI. 



Chapter 5 

Interpolation of Lp-Spaces 

We investigate the real and complex interpolation of Lp-spaces and Lorentz 
spaces over a measure space. In particular, we prove a generalized version of 
the Marcinkiewicz theorem (the Calderon-Marcinkiewicz theorem). We also 
investigate the real and the complex interpolation spaces between Lp-spaces 
with different measures, thus extending a theorem by Stein and Weiss. In Sec
tion 6, we consider the interpolation of vector-valued Lp-spaces of sequences, 
thus preparing for the interpolation of Besov spaces in the next chapter. 

5.1. Interpolation of Lp-Spaces: the Complex Method 

Here we shall use the idea in the proof of the Riesz-Thorin theorem to prove 
the following result. 

5.1.1. Theorem. Assume that Po~1, PI~1 and 0<0<1. Then 

if 
1 1-0 0 
-=--+-. 
P Po PI 

ProoJ: It is sufficient to prove that 

for all bounded functions a with compact support. Put 

J(z) = exp(Bz2 - B(2) la(x)IP/P(Z)a(x)/la(x)1 , 

where 1/p(z)=(1-z)/PO+Z/PI. Assuming that Ilail L =1 we have JE!#' and 
p 

IIJlljO":(;exp(B). Since J(O)=a we conclude Ilall[8]:(;exp(B), whence lIall[8]:(; IlallLp. 
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The converse inequality follows from the relation 

IlaIILp=sup{l(a, b): IlblIL~ =1, b bounded with compact support}. 

In fact, put 

g(z) = exp(ez2 - e()2) Ib(x)IP'lp'(z) b(x)/lb(x)1 , 

where b is as above and 1/p'(z)=(1-z)/p~+Z/P'1' Writing F(z)=(f(z),g(z», 
we then have IF(it)l~exp(e), IF(1+it)l~exp(2e) provided that Ilall[8]=1. Thus, 
by the three line theorem, it follows that I(a, b)1 ~ IF«())I ~exp(2e). This implies 
Ilall Lp ~ Ilall[8]. 0 

Since we know that the complex interpolation method is an exact inter
polation functor of exponent (), we will get the Riesz-Thorin interpolation theo
rem as an immediate corollary of Theorem 5.1.1. 

It is possible to extend the previous theorem to vector-valued Lp-spaces. 
Let A be a Banach space and consider the space LiA)=Lp(U,dj1.; A) of all 
strongly measurable functions f such that 

SU II f(x)ll~ dj1.(x) < 00, 

where 1 ~p< 00. We shall denote by Loo(A)=Loo(U,d/.l; A) the completion in 
the sup-norm of all functions 

where the sum is finite and XEk is the characteristic function of the measurable 
disjoint sets Ek • Functions of the form (3) will be called simple functions if in 
addition /.l(Ek) < 00. The completion in Loo(A) of the simple functions is denoted 
by L~(A). Note that if A is the space of complex numbers then Loo(A) is the 
space of essentially bounded functions. 

5.1.2. Theorem. Assume that Ao and Al are Banach spaces and that 1~po<00, 
1~Pl<00, 0<()<1. Then 

where 1/p=(1-())/PO+()/Pl' If 1 ~Po< 00 we also have 

with 1/p=(1-())/po' 

Proof: Let S denote the space of simple functions with values in .1(A). S is dense 
in Lpo(Ao) n L p1(A 1), and thus also in (Lpo(Ao), L p1(A 1))[8] and in LiA[o])' by 
Theorem 4.2.2. From now on we consider only functions in S; this is clearly 
enough. 
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First we prove the inequality 

Since aES, there is a function g(·,x)Eg;(A), such that Ilg(·,x)IIS'(A):::;; 
(1 +1» Ila(x)IIA[9] (XE U; 1»0), and with g(8, X) = a(x) (XE U). 

Put 

For this function f, we have 

where some elementary calculations have been left to the reader. Similarly, 

and the desired inequality follows, since 1»0 was arbitrary. 
The other inequality follows from Lemma 4.3.2 and Holder's inequality 

(Po/p(1- 8» 1; pdp8> 1). In fact, if f(', x)Eg;(A) and f(8, x) = a(x) (XE U) then 

II aII Lp(A[9]) = (Ju Ila(x)11 ~[9] dll)l/p 

:::;; (Ju {(i - 8)-1 J~ 00 II f(ir, x)11 Ao P 0(8, r)dr)1-0 

. (8- 1 J~ 00 II f(1 + ir, x)11 A, P1 (8, r)dr)O}P dll)l/p 

:::;; sup, II f(ir)111;o~Ao)suPrll f(i + ir)llt,(Atl 

:::;; II f 11S'(Lpo(Ao).Lp,(Atl) • 

This gives the conclusion. 
The statement about L~ is proved in precisely the same manner. 0 

5.2. Interpolation of Lp-Spaces: the Real Method 

In this section, Lp will denote the space Lp(U, dll; A)=Lidll; A), consisting of 
all strongly II-measurable functions with values in the Banach space A which 
satisfy 

Ilfll~ = Ju Ilf(x)ll~dll< 00. 

To simplify formulas etc., all statements and their proofs are given for the case 
A = <C. However, it is not hard to see that the results hold also in the general 
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case. In this and the next section, we consider interpolation only of LidJ1; A)
spaces with A and dJ1 fixed. 

We shall identify the space (L po' L p .}8,q with a Lorentz space, employing an 
explicit formula for K(t,f; Lp' Loo) and the reiteration theorem. 

The reader is asked to recall the definitions of the decreasing rearrangement 
f* of a function f, and of the Lorentz space Lp,q' as they are given in Section 1.3. 
Note that these definitions have a sense also in the vector-valued case. 

5.2.1. Theorem. Suppose that fELp+Loo, O<p<oo. Then 

If p= 1 there is equality in (1). 
Moreover, with 0<PO<P1 :::;;00, 

Proof: First we prove ":::;;" of (1). Take 

{
f(X)- f*(tP)f(x)/lf(x)1 if If(x)1 > f*(tP) 

fo(x) = 0 otherwise 

and f1 = f - fo· Let E= {xlfo(x),eO}. Then J1(E):::;;tP, and we have, since f*(s) 
is constant on [J1(E), tP], 

K(t,f; Lp' Loo):::;; IIfollp+tllf111 00 

= (SE(lf(x)l- f*(tP))P dJ1)l/p + t f*(tP) 

= O:)(E)(f*(S) - f*(tP))P dS)l/p + (S~ (f*(tP))P dS)l/p 

=(S~(f*(s) - f*(tP))P dS)l/p + (S~(f*(tP))P dS)l/p 

:::;; C(S~(f*(s))p dS)l/P , 

where C = 1 if P = 1. For the converse inequality, assume that f = fo + f1 , 
foELp, f1 ELoo' Using the inequality m(ao +a 1,f):::;; m(ao,fo)+ m(a 1,11)' we 
obtain, by elementary calculations, 

Thus 

f*(s):::;;f~((1-B)S)+ f'f(BS) , O<B<1. 

(S~ (f*(s))p dS)l/P:::;; C {(S~ (f~(( 1 - B)S))P dS)l/p + (S~ (f'f(BS))P dS)l/p} 

:::;; C{(Sg'(f~((1 -B)S))P dS)l/P + t fi(O)} 

= C{(1-B)-l/P lifo lip + t IIfl II oo} . 
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Taking the infimum and letting B---+O, we get (1). Note that C=1 if p~1. 
In order to prove (2), we first establish (2) for PI = 00 and then we apply the 

reiteration theorem 3.5.3. Thus let PI = 00. By Formula (1), we have 

II f II (L po' LOO)6,q =(S~(COK(t,f; L po' L",))q dt/t)l/q 

""(S~ (t-oPo r;°(f*(sWOds)q/po dt/t)l/q 

= (S~(COPo+ Po S6 (f*(stPO))Po s ds/s)q/po dt/t)p°/q . 

Then, by the Minkowski inequality (q/po> 1), we get 

since 1/p=(1-fJ)/po' Conversely, because f* is non-negative and decreasing, 
it follows that 

II f II(L po' LOO)6,q ~ C(S~(t-OPOtPo(f*(tP°WO)q/po dt/t)l/q ~ C II f IILp,q . 

Thus, (2) is established for PI = 00. From this and the reiteration theorem 3.5.3, 
we infer that (PI <00) 

(Lpo' Lp.)o,q = ((L" L",)oo,po' (L" L a,)OI.P.)O,q 

=(L" Loo)q.q =Lp.q (equivalent norms), 

where O<r<po, and fJo, fJ I ,,, have their prescribed values. 0 

Note that there is another proof of the last statement of Theorem 5.2.1 in 
the case PI < 00, using the power theorem. In fact, we have the following result. 

The quasi-norm on (Lp)P is a constant multiplied by the quasi-norm on 
((Lpo)p°, (Lp1)Pl)q,l' 

Using Theorem 5.2.2 combined with the power theorem 3.11.6 we conclude 
that Lp=(Lpo' Lp.)o,p with equivalence of quasi-norms. 

Proof: We may assume that PO<PI' Let us write 

L(t,f) = K(t,f; (Lpo)p°, (Lp)Pl) . 

Then 

L(t,f) = infI=Io+ II S u(lfo(x)iP° + tlfl(x)JPl)dll 

= Su infI(x) = Io(x) + Il(x)(lfo(x)iP° + tlfl(x)JPl)dll· 
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But 

It follows that 

1If11«LPO)PO, (Lp1)Pl) •. 1 = S~ t-qL(t,f)dt/t 

= Sv If(x)IPo S~ t- q F(t If(x)IPl - PO)(dt/t)dJl. 

Writing 

we obtain 

Using Theorem 5.2.1 and 5.2.2, we can now prove the following version of 
the Riesz-Thorin interpolation theorem. 

5.2.3. Theorem. Write 1/p=(1-0)/Po+0/Pl' 1/q=(1-0)/qo+0/ql where 
0<0<1 and O<Pi' qi~ 00, i=O,1. Assume that p~q. Then 

T: Lpo(U, dJl)~Lqo(V, dv), 

T: LpJU, dJl)~Lql(V, dv), 

implies that 

T: L/U, dJl)~Lq(V, dv). 

If Mi is the quasi-norm of T: Lpi~Lqi and if M is the quasi-norm of T: Lp~Lq, 
then 

If Pi=qi<oo (i=O,1) then C=1. 

Note that the theorem holds in the quasi-normed case, but that we have 
the restriction P ~ q. 

Proof: Assume first that Pi =!= qi for some iE{O, 1}. By Theorem 5.2.1, Theorem 
3.4.1 and the interpolation property, we have 

II Tfllq ~C II Tfll(LQo,LQ1 )9,q ~ CM~ -6 Mf Ilfll(LPo,LP1 )9,Q 

~CM~-6Mf Ilfll(Lpo,LP1 )9,P ~CM~ -6Mf Ilfll p , 

where C depends on O. 
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If p;=q;, i=0,1, we use Theorem 3.11.8 to obtain 

With (1-I'/)Po=(1-(J)p and I'/PI=(JP we obtain, by Theorem 5.2.1, 

which gives the result. 0 

We conclude this section with a proof of the following complement to the 
reiteration theorem. (This is an extension of Theorem 3.5.4.) 

5.2.4. Theorem. Assume that Ao and Al are Banach spaces. Then for O<qo~oo, 
O<ql ~ 00 we have 

where 0<1'/<1 and 

Proof: Using Theorem 5.2.1 we see that 

(3) 

(The case qo=ql~1 is a consequence of Theorem 3.4.1.) Write X j =A8,qj' 

We shall prove that 

Clearly this implies the result, since (3) implies 

(See Lemma 3.1.3.) 

In order to prove (4) we assume first that aEXq,q. Let a= L/lu/l with 

II (J(2/l, u/l; X))/lll ).., q ~ Cliallx., q • 

Then 
II (K(2V, a; A))vII ().", qo, ).",q1).,q 

~ II(L/lK(2V, u/l; A)UU,",qO, ).",q1).,q 

~ C(L/l(2 - /l~J(2/l, (K(2V, u/l; A))v; ;..8,qO, )..8,q,))Q)I/q 

= C(L/l(r/l~J(2/l, u/l; X)~)l/q ~ c Ilallx •. q • 
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Conversely, assume that (K(2V, a; A))vE (AO,qO, A O,q')~"f" Choose, using the funda
mental lemma 3.3.2, a = Lvuv such that J(2V, uv; A) ~ CK(2V, a;.4), We shall 
prove 

Obviously, this implies the desired inequality: 

To prove (5), let J(2V, uv; A) = aov + a 1 v' aivEAO,q,. Put ai = Lv(J(2V, uv; A))-laivuv' 
Then aO+a 1 =a and 

Ilaill x, ~ C(LJr vo J(2V, (J(2V, uv; A))-laivuv; A))q,)l/q, 

~ C(LJrVo!aivl)q,)l/q, = ClI(aivUIAB,q, . 

This clearly proves (5). 0 

5.3. Interpolation of Lorentz Spaces 

In this section we shall characterize the space (L pOqO ' Lp,q)o,q, and then we shall 
prove a generalization of Marcinkiewicz's interpolation theorem (Theorem 1.3.1). 

5.3.1. Theorem. Suppose that Po, PI' qo, ql' and q are positive, possibly infinite, 
numbers and write 1/p=(1-I7)/Po+I7/Pl where 0<17<1. Then, if PO i=Pl' 

This formula is also true in the case Po = PI = p, provided that 1/q =(1-I7)/qo +17/ql' 

Proof: In the case Po i= PI we use Theorem 5.2.1 and the reiteration theorem 
3.5.3. With O<r<min(po, PI) and 1/Pi=(1-8;)/r, 8=(1-17)80+1781 we obtain, 
noting that 1/p=(1-8)/r, 

In the case PO=Pl =p, we use Theorem 3.5.5 instead. 0 

As a consequence of Theorem 5.3.1 we have the following interpolation theo
rem, which contains the Marcinkiewicz interpolation theorem. 

5.3.2. Theorem (The general Marcinkiewicz interpolation theorem). Suppose that 

T: Lporo(U, dJ.1)-+Lqoso(V, dv), 

T: Lp,r,(U, dJ.1)-+Lq,s'(V, dv), 
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where Po =I P1 and qo =I q l' Put l/p = (1 - ())/Po + ()/P1 and l/q = (1 - ()/qo + ()/q l' 
Then 

In particular, we have 

provided that p~q, 

Note that the theorem holds also in the vector-valued case, i. e. when all 
spaces are spaces of functions with values in a fixed Banach space. 

Proof: The conclusion (4) follows at once from Theorem 5.3.1 and (5) then follows 
from the inclusion Lqp c Lqq . 0 

The most general consequence of Theorem 5.3.1 is that if 

then 

provided that 1/p=(1-())/Po+()/P1' 1/q=(1-()/qo+()/q1' PO=lP1' qO =lq1 and 
that O<r~s~ 00. A particular case is the following result. 

5.3.4. Theorem (Calderon's interpolation theorem). Suppose that (p>O) 

Then 

if r ~ s and if Pi' qi' P and q satisfy the assumptions of Theorem 5.3.2. 

5.4. Interpolation of Lp -Spaces with Change of Measure: Po = P1 

In the preceding sections we considered interpolation of Lp-spaces with a fixed 
measure /1 and varying values of p. Here we shall let /1 vary but keep P fixed. 
In the next section we shall let both /1 and P vary. 

We shall characterize the space (L/d/1o), L/d/11»O,q, where /10 and /11 are 
two positive measures. We may assume that /10 and /11 are absolutely continuous 
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with respect to a third measure J1. Thus we suppose that 

dJ1o(x) = wo(x)dJ1(x) , 

dJ11(X)=w1(x)dJ1(x) . 

Let us write 
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5.4.1. Theorem (The interpolation theorem of Stein-Weiss). Assume that O<p~ 00 

and that 0 < e < 1. Put 

Then 

(with equivalent norms). Moreover, if 

T: Lp(U, wodJ1)~Lp(V, wodv) , 

T: LiU, wldJ1)~Lp(V, w1dv) 

with quasi-norms M 0 and M 1 respectively, then 

with quasi-norm 

Proof: We shall consider the functional 

Let us write 

II f Ilo,q; p = if>o,q(Kp(t, f)). 

Then we have (Exercise 1) 

Ilf Ilo,q; p-Ilf Ilo,q . 

Moreover, since obviously 
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we have 

II Tfllo,q; p~M6 -oM~ Ilfllo,q;p· 

Therefore the theorem will follow if we can prove that 

(2) Ilfllo,p;p=c IlfIILp(W)· 

In order to prove (2), we shall prove that 

where 

Here F is defined as in the proof of Theorem 5.2.2, i. e. 

F(s) = infyo+ Yt = 1 (IYoI P + s Iy liP) . 

Indeed, if (3) holds, we conclude that 

II fllo,p; p=(SO' t- Op Sv If(xWwo(x)F(tPw 1 (x)/wo(x)) dll(X) dt/t)l/p 

=(Svlf(xW SO' t-OPwo(x)F(tPw 1 (x)/wo(x)) dll(X) dt/t)l/p . 

Now the last integral is equal to cPw6 -ow~ where 

Note that c < 00, since F(s) '" min(l, s). This gives (2). 
The proof of (3) is quite similar to the proof of Theorem 5.2.2. In fact, 

Kp(t,j) = (infJ =fo + ft Sv(lfolPwo + tPlflIPw1)dll)1/P 

= (S v (inff = fa + ft (lfolPwo + tPlfll pw1) dll)l/P . 

The rest of this section is devoted to the problem of finding all interpolation 
functions in the sense of our next definition. 

5.4.2. Definition. The positive function h is called an interpolation function of 
power p if 

with quasi-norms (M 0' M 1)' implies 
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with quasi-norm 

Clearly h(t) = t8 is an interpolation function of power p. This follows from 
the previous theorem. 

Let us assume that h is an interpolation function of power p. Choose U = {O, 1 } 
and let II- be the measure Jo + J1 (carrying the mass 1 at each of the two points). 
Put wo(0)=wo(1)=1, w1(0)=s, w 1(1)=t and let T be defined by 

(Ta)(O) =0, (Ta)(l) = a(O) . 

In this case 

and thus it follows that 

(4) h(t):( C max(1, tis) h(s) . 

We call a function h quasi-concave if it is equivalent to a concave function, 
i.e. h(t)~k(t) for some concave function k. 

5.4.3. Lemma. Let h be a positive function. Then the following three conditions 
are equivalent: 

(i) h is quasi-concave; 
(ii) h(t)~a+f3t+ JO'min(r, t)dmo(r), where a~O, f3~O, and mo is an increasing 

junction bounded from above and with limt~otmo(t) =0; 
(iii) h satisfies (4). 

Proof: We prove the following implications: (i) = (ii) = (iii) = (i). 
Now (ii) = (iii) is obvious, since the right hand side in (ii) clearly is concave. 
To prove (i) = (ii), we assume that h(t) ~ k(t) with k concave. We shall show 

that we may write 

k(t) =a+ f3t+ JO'min(r, t)dmo(r), 

with a suitable choice of a, 13, mo. Take a = limt~ok(t) and 13 = limt~ok(t)/t. Then 
the function k(t) - a - f3t is obviously also positive and concave. Moreover, it 
follows by partial integration that 

k(t) - a - f3t = J~(k'(r) - f3)dr = t(k'(t) - 13) - J~ rd(k'(r)) 

= JO'min(r, t)d( -k'(r)), 

since k' is non-negative and decreasing, O:(t(k'(t)-f3):(k(t)-a-f3t-'>O as t-'>O. 
Taking mo(t) = -k'(t), we have proved (i) = (ii). 
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For the remaining implication (iii) = (i), we assume that h satisfies (4). Define 
the function k by 

Clearly, k is concave and h(t)~k(t). Conversely, by (4), we obtain 

LiAih(ti) ~ CLiAi max(1, tjt)h(t) 

~C(LiAi+t-l L)iti)h(t)~Ch(t). 

Thus h(t) ~ k(t), with k concave, i. e. h is quasi-concave. 0 

5.4.4. Theorem. A positive function h is an interpolation function of power p 
if and only if it is quasi-concave. In particular, if h is an interpolation function of 
power p for some p, the same is true for all p. 

Proof: It remains to prove the sufficiency. Let us introduce the function f/J, 
defined by 

f/J(cp(r)) = (11 limr_ oocp(r)p + f3limr_o( cp;r)Y + S~r- Pcp(r)p dmo(r- P)YIP . 

The assumption is that h is equivalent to the function given in Lemma 5.4.3. 
Note that 

(6) f/J(cp(sr))~max(1,s)f/J(cp(r)). 

We shall now prove that 

This is easily done if we use Formula (3) (note that F(s)~min(1,s)) and Lemma 
5.4.3. In fact, we have 

f/J(Kir,f)) ~ f/J((J u IflPwo min(1, rPw dwo)d,u)l/p) 

=(SulfIPwo( 11+ f3 :: + S~r- pmin0,rp ::)dmo(r- P))d,u ) lip 

~(SulfIPwoh(wl/wo)d,u)l/p . 

Next, we shall prove that 
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This follows at once from (5), (6) and (1), since 

From (7) and (8) we conclude that 

This completes the proof. 0 

5.5. Interpolation of Lp -Spaces with Change of Measure: Po '* Pi 

In this section, we shall investigate the interpolation space (Lpo(wo), LpJwl))o,p, 
where Po # Pl' Here is our result: 

5.5.1. Theorem. Assume that O<po<oo and O<Pl <00. Then we have 

where 

1/p=(1-())/PO+()/Pl' 

Proof: Using the power theorem 3.11.6, we see that 

where Yf = ()P/Pl' The norm of f in the space on the right hand side is 

SO' t-~infJ = 10 + II S u(lfolPowo + tlfllPlwl)dll dt/t 

= Su {SO' t-~infl = 10+ II (lfolPOwo + tlflIPIW1)dt/t} dll· 

Su IflPowo {SO' t-~ F(twllfl PI - po/wo)dt/t} dll 

= SO' s-~ F(s) ds/s' Sulfl(l -~)pO+~PI W6 -qwi dll· 

Since 1-Yf = p(1- ())/Po and (1-Yf)Po + YfPl = p, and since F(s) ~min(1, s), we 
obtain the result. 0 

As a corollary we get the following extension of the interpolation theorem 
of Stein-Weiss. 
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5.5.2. Corollary. Assume that O<Po<oo, O<Pl <00 and that 

T: Lpo(U, wodj.l)-+Lqo(V, wodv) , 

T: Lpl(U, wldj.l)-+Lq/V, wldv) 

with quasi-norms M 0 and M 1 respectively. Then 

where 

and 

1 1-8 8 1 1-8 8 
-=--+-, -=--+-, 
P Po Pl q qo ql 

w=wg(l-O)/powfO/P1 , 

W=Wb(l-O)/qOwio/ql. o 

p~q 

U sing the complex method, we can drop the restriction P ~ q and we get 
sharper inequalities for the operator norms. However, we have to exclude the 
case O<PO,Pl <1. 

5.5.3. Theorem. Assume that 1 ~po, Pl < 00. Then we have, with equal norms, 

where 

The mapping f -+ j is obviously an isometric isomorphism between 
(Lpo(wo), Lpl(wl)) and:li' (Lpo' LpJ Now the argument in the proof of Theorem 

5.1.1 goes through with evident modifications. 0 

5.5.4. Corollary (Stein-Weiss). Assume that 1 ~Po, Pl' qo, ql < 00, and that 

T: Lpo(U, wodj.l)-+Lqo(V, wodv) , 

T: LpJU, wldj.l)-+Lq/V, wldv) , 

with norms M ° and Ml respectively. Then 



5.6. Interpolation of Lp-Spaces of Vector-Valued Sequences 121 

with norm M, satisfying 

where 

1/p=(1-0)/Po+8/Pl' 1/q=(1-8)jqo+8/ql' 
- _ -q(I-8)/qo -q8/ql 
W-Wo WI' o 

5.6. Interpolation of Lp-Spaces of Vector-Valued Sequences 

It is possible to extend many of the previous results to vector valued Lp-spaces. 
(Cf. Theorem 5.1.2.) However, these extensions will be complicated by questions 
of measurability. In order to avoid these difficulties, we shall consider Lp-spaces 
of sequences only. 

Let A be a Banach space and let s be an arbitrary real number and q a positive 
real number. Then we denote by i~(A) the space of all sequences ((J(v)~oo' avEA 
such that 

is finite. Clearly, i~(A). is a quasi-normed space. Note that if A = lR( = space of 
real numbers), then 1;8(lR)=A8,q. We also introduce the space 1~(A) of all se
quences (aJO', avEA such that 

We shall also work with the space c~(A) of all (av)~oo such that 2vs llavliA->O as 
v->±oo and the space c~(A) of all (aJO' such that 2vs llavliA->O as v->oo. The 
norms on c~(A) and c~(A) are the norms of i'oo(A) and l'oo(A) respectively. 

Let IN denote the set of non-negative integers and 7L the set of all integers. 
Let dll be the measure Lv;,o2vsbv (t5 v = pointmass 1 at x=v) and djt the measure 
Lv2vsbv' Then 

1;/q(A) = Lq(JN, dll; A), ct(A)=L~(JN, dll; A), 

i;/q(A) = Li7L, d/t; A), ct(A)=L~(7L, dll; A). 

Using Theorem 5.1.2, we therefore obtain 

(l;~qO(Ao), 1;~ql(Al))[8]= 1;/q((Ao, A 1)[8]) , 

(l;~qO(Ao), ct(A 1))[8] = 1;/q((Ao, A 1)[8]) , 

and similarly for the dotted spaces i; and c~. Here 1 ~ qo < 00, 1 ~ q 1 < 00 and 
1/q =(1- 8)jqo + 8/ql' 
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We shall now prove analogous results for the real interpolation method. 
We start with the case Ao=A1 =A. 

5.6.1. Theorem. Assume that O<qo~ 00, O<q1 ~ 00, and that SO#S1' Then we 
have, for all q ~ 00, 

where 

If SO=S1 =s we have 

provided that 

1 1-8 8 
-=--+-. 
q qo q1 

The same stateme!lts hold for the dotted spaces i;. In the case qo < q 1 = 00, we 
can replace l~ or 1'00 by Co and c~ respectively. 

Proof: We first consider the case SO#S1' qO=q1 =r<q. Let a denote the se
quence (aJ Then 

Kr(t, a; I~O(A), 1~'(A)) = (Iv infav =aV O+avl (2VSO Ilavoll AY + (t2 VS1 IIav1 11 A)')1!r 

""(Iv(min(2VSO , t f VS 1 ) IlavII A)')1!r. 

Thus it follows that 

and hence 

Just as in the proof of the reiteration theorem, we now obtain 
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provided that s=(1-8)so+8s1. In order to prove the converse inequality, we 
note that if '1 = s - So then 

Ilall(l~o(A), lP(A» •. q ~ C II K/21')" a; l~o(A), 1~'(A))111~ 

~ CIIQ::v(min(1, 2 -v),)2(v+ I')SO II av+ I'll A)')1/rll,~ . 

With p=q/r> 1, we obtain, by Minkowski's inequality, 

This gives the converse of (3). 
In order to prove (1), we now use the reiteration theorem, wntmg 

l;~=(l~o, 1~')oO,qO and I;: =(l~o, I~')o"q" with 0'0<min(so,s1)<max(so,s1)<0'1 and 
sj=(1-8)0'0+8p1' Since then 801'81, we can apply the reiteration theorem, 
which clearly gives (1). 

Using Theorem 5.2.4, we also get (2), since then we have to take 80=81, 
The last part of the theorem, concerning the spaces c~(A), follows from Theo

rem 3.4.2. It is clear that the proof also works for the dotted spaces. 0 

Using the idea from the first half of the proof of the previous theorem, we 
prove the following result. 

5.6.2. Theorem. Assume that 0 < q 0 < 00 and 0 < q 1 < 00. Then 

Proof: Clearly, 

and thus 

L(t, a) = K(t, a; (l;~(Ao))qo, (l;:(A 1))q,) 

= Lv infav ;avo +av,((2VSO II avoll Ao)qO + t(2VS , II av 111 A,)q,) , 

cP~,1 (L(t, a)) = Lv2vsoqo SO' t-~K(t2v(s,q, -soqo), av; (A oro, (A 1)q')dt/t 

= Lv 2Vsq Il avll«Ao)qo,(A,)ql) •. ,· 

By the power theorem the result now follows. 0 

Finally, we give a result for the complex method. 

5.6.3. Theorem. We have, with equal norms, 

(l;~(Ao), 1;:(A 1))[o) = 1;(.A[o)) 

(0<8<1; SO,S1EIR; 1~qO,q1 ~oo), 



124 

where 

1/Q=(1-8)/Qo+8/Ql' 

s=(1-8)so+8s l · 

5. Interpolation of Lp-Spaces 

~roof: _ Let f E.9'(l:~(Ao), I:: (A 1))' where f(z) = (fk(Z))'k= o. Then we define 
f(Z)=(fk(Z))k by 

imitating the proof of Theorem 5.5.3. The mapping f --> j is an isometric iso
morphism between $'(l;g(Ao),I;:(A l )) and $'(lqo(Ao),lq1(A l)). This implies the 
result in view of Theorem 5.1.2. 0 

5.7. Exercises 

1. Consider a linear operator T, defined for complex-valued measurable func
tions on, e. g., the real axis, and with values in a Banach function space X. 

A Banach function space is a Banach space of complex-valued measurable 
functions with the following properties: 
(i) If(x)l:::; Ig(x)1 a.e., gEX = fEX, Ilfllx:::; Ilgllx; 

(ii) O:::;fn-l:::;fn, fn-->f a.e., fEX=SuPnllfnllx=llfllx· 
Prove that (O<p:::; 1) 

iff 

where XE is the characteristic function of the measurable set E. 

Hint: Consider first the simple functions. 

2. (Holmstedt [1 ]). Prove that if the measure f.1 is non-atomic and 0 < Po < P 1 < 00 

then 

where l/oc = t/po -l/Pl' by straight-forward estimates. 

Hint: Choose a set E such that f.1(E)=t~ and If(x)l~f*(t~) for xEE, and put 

fo(x) = {~(X) XEE 

x¢E. 
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3. (Holmstedt [1]). Prove that if O<PO<Pl <00 then (1/e<=1jPo-1/Pl) 

In particular this gives a formula for (qi = Pi) K(t,f; Lpo' Lp). 

Hint: Use 3.6.1, 5.2.1 and Minkowski's inequality. 

4. (O'Neil [1]). Consider the convolution operator 

Tf(x) = JlRnk(x- y)f(y)dy. 

Assume that kEL; =Lpoo. Then 

where 1/q= 1/p-1/p' and 1 <p<p'. 

Hint: Cf. the proof of Young's inequality 1.2.2, and use Theorem 5.3.1. 

5. Define the potential operator Pa by 

Show that 

if 1/q=1/p-e</n and 1 <p<n/e<. 

Hint: Use the previous exercise. (Cf. Peetre [29] for a detailed account.) 
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6. (Goulaouic [1]). Consider the positive real axis and the usual Lebesgue 
measure. Put (O<f3~e<) 

and 

h(n) = {eoxP((logn)P1a) if n ~ 1 
if n< 1. 

Show that if 

then 
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where 
w(x)=exp(xP) . 

Hint: Show that h is concave and apply Theorem 5.5.4. 

7. Consider the positive real axis and the usual Lebesgue measure. Put Ao=L1' 
A1 =Loo , Xi=Ao;,qi (i=0,1; 0<00 <01 <1). Show that if 

f(X)={X ~f 0<x~1 
o If x> 1 

then 

show that 

II fllx IlfII::- 1 ",n-1/QO(1_n)-1/ql 
tl.q Ae,q " "f • 

Hint: Employ Theorem 3.6.1, 5.2.1 and Exercise 3 to estimate K(t,f). 

8. As an application of Exercise 16, Chapter 3, we suggest the following: Let 
Q be the semi-group of all non-negative decreasing sequences and consider Q 
as a sub-semi-group of 100 , 

(a) Prove that (llnQ, loonQ)o,q=lpqnQ if 1Ip=1-0. 

(b) Consider the operator T given by 

Prove that 

T: 11-+L oo(0, n), 

T: 100 n Q-+L 100(0, n). 

(c) Deduce that 

11p' = 1-1Ip, 1 < p < 00. (This is a classical theorem by Hardy and Littlewood. 
For more general results of this kind see Y. Sagher [2,3]') 

9. Prove that (Lpq)' = Lp'q' if 1 < p < 00, 1 ~ q < 00, and (using Exercise 17, Chap
ter 3) that (Lpl=Lp'oo if 1<p<oo, O<q<1. (Cf. Haaker [1] and Peetre [26] 
for O<p<1. See also Sagher [1] and Cwikel [2].) 
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10. Put 

and K(t,f)=K(t,f; Lp(wo), Liwl))' Prove that (Liwo), Liwl))O,q is the space 
of all measurable functions such that 

(S;;' (l A(s, f))q/p dS/S)l/q < 00 . 

11. Prove that (Liwo), Liwl))O,q is a retract of lq(Liwo)), where 
(For the definition of retract see Exercise 18, Chapter 3.) 

Hint: Exercise 10. 

12. (Peetre [20J). Consider the couple (CO, C l ) as defined in 7.6. Show that the 
mapping T defined by 

Tf(x) = f(x)- f(y) 

is an isometric (K-invariant) isomorphism between the couple (CO, C l ) and a 
subcouple of the couple (loom, loo(lx - yl-l )). Cf. 3.13.13. 

Hint: Apply the formula for the K-functional and Exercise 3.13.1. 

13. Assume that h is a non-negative function defined on the positive real axis. 
Show that the function k, defined by 

is the least concave majorant of h. 

14. (Sedaev-Semenov [1]). Consider the couple (Ao, A l ), where A o=A l =lR3 

(as sets) with norms 

IlxllAO=xi +x~, 

IlxllAl =xi· 

Here (x~)i is the decreasing rearrangement of (Ixvl)i and x=(x l , x 2 , X 3)ElR3. 

Show that 

{

tx* 

K(t, x) = xil+(t_1)X~ 
xi+x~ 

(O<t~1) 

(1 <t~2) 

(t>2) . 
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Put x=(3,2,1) and y=(3,2,2). Evidently, K(t,x)=K(t,y) for all t>O. Let the 
norm of A be defined by 

IlzIIA=inf{max(IITllo, IITlll)lz=Tx, TEL(A)}. 

Verify that A is an exact interpolation space with respect to A, but that 

Hint: Show that yi: Tx when max(11 Tllo, II Tlll)~ 1, TEL(A). 

15. State and prove multilinear interpolation theorems for bounded linear 
mappings from products of Lp-spaces to Lp-spaces, using the real and the com
plex method. 

Hint: See the general theorems and the exercises in Chapter 3 and 4. 

5.8. Notes and Comment 

As we noted in Chapter 1, the study of interpolation of Lp-spaces, or, rather, 
of operators between Lp-spaces, previews retrospectively the theorems of Riesz 
and Marcinkiewicz. It is these latter theorems and some of their generalizations 
which are the theme of this chapter-now, of course, seen in the light of the 
complex and real methods. 

Other methods have been introduced by Bennett [2]. His methods are 
adapted to couples of rearrangement invariant Banach function spaces, and are 
equivalent to the real method. 

Interpolation of Orlicz spaces is the subject of Gustavsson-Peetre [1]. They 
consider the problem of putting necessary and sufficient conditions on qJ in 
order that L'" be an interpolation space with respect to the couple (L"'O, L"'l). 
The corresponding problem for Orlicz classes is essentially solved in Peetre [18]. 
Bennett [1] has shown that (Llog+L,La,)o,pcLp (strict inclusion) if 1/p=1-0, 
0<0<1. 

Throughout this chapter we have identified spaces obtained from a given 
Lp-couple by the complex and the real interpolation methods. There is, of course, 
also a converse problem: Can "all" interpolation spaces with respect to a fixed 
couple of Lp-spaces be obtained by the complex/real interpolation methods? This 
problem, for the couple (Ll' La,) (Loo being the closure of the simple functions), 
has been treated by Mitjagin [1], and, later, by Calderon [3]' They showed that 
"all" interpolation spaces with respect to (Ll' Loo) are K-spaces in the following 
sense: Assume that A is a rearrangement invariant Banach function space, which 
is an exact interpolation space with respect to (Ll' Loo). Then 

K(t,J; Ll , Loo)~K(t, g; Ll , Loo) for all t>O, gEA 

= fEA and IlflIA~ IlgiIA' 
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The corresponding problem for the couple (Lp, Loo) has been explored by Cotlar 
(personal communication) and Lorentz and Shimogaki [1] (see also Bergh [1]). 
Recently, Sparr [2] has shown that all quasi-Banach function spaces which are 
interpolation spaces with respect to the couple (Lpo(wo), Lpt(w t )), where O<Po, 
P1 < 00 and Ilfllt(w) = S~lf(x)w(xWdx, are equivalent to a K-space (in the sense 
above). Sparr's results contain a result by Sedaev [1]: the case 1~PO=P1<00. 
Sedaev-Semenov [1] exhibits an example of a couple and an interpolation space 
with respect to that couple which is not a K-space (see Exercise 14). In other 
words: given an arbitrary couple, the K-method does not necessarily exhaust 
all interpolation spaces with respect to that couple. Moreover, returning to the 
original problem, Lorentz and Shimogaki [1] have given necessary and suf
ficient conditions for a Lorentz spaces A(q» to be an (exact) interpolation space 
with respect to the Lorentz couple (A(q>o), A(q>t)), where IlfIIA(<p)= Jbf*(t)q>(t)dt, 
q> being positive and decreasing. In fact, their conditions say that A(q» can be 
obtained from (A(q>o), A(q>1)) by the K-method, see Bergh [1]. Also, we remark 
that Lorentz and Shimogaki admit even Lipschitz operators, not only linear 
operators. (Cf. also 3.14 and 2.6, and especially the result of Cwikel concerning 
the K-monotonicity of the couple (L pOllo' LptqJ) 

5.8.1. Section 5.1 is essentially taken over from Calderon [2]. However, Calderon 
studies interpolation of general Banach function lattices and then simultaneously 
covers e.g. Lp-, Lpq- and Orlicz spaces L<P. This is done by introducing a space A: 

where A is a compatible couple of Banach function lattices over the same measure 
space. A is denoted by A~ -8 Af and is also a Banach function lattice with norm 
II f II A = inf A. Under supplementary assumptions on A and using vector-valued 
functions, Calderon shows that, e. g., (Ao(Bo), A 1 (B 1))[8) c A~ - 8 Af ((Bo, B 1)[8))' 
where A(B) denotes the Banach space of B-valued measurable functions f(x), 
such that Ilf(x)IIBEA and IlfIIA(B)= 11(llf(x)IIB)IIA" The inclusion becomes norm 
equality if fEA, If.I~lfl, f.-40 a.e. implies Ilf.IIA-40. Also, he proves an an
alogous result for C8, and, using this, he gives an example of a couple for which 
A[8)"= A[8). However, Sestakov [1] has found that if Bo = B 1 = <C then A[8) co
incides with the closure of ,1 (A) in A~-8Af, and that A[8) is a closed subspace 
of A[81, on A[8) the norms being equal. 

5.8.2-3. Section 5.2 and 5.3 are originally due to Lions-Peetre [1] and Peetre 
[10]. Formula 5.2.(1) in the case p=1 was found by Peetre [10], and, in general, 
by Kree [1] (see Oklander [1] and Bergh [2]). Also, the idea of considering the 
functional L is Peetre's [18]. (In connection with Theorem 5.2.4, see also Beren
stein-Kerzman [1].) 

The Lorentz spaces Lpq were introduced by G. G. Lorentz [1,2] in 1953. 
Calderon [3] indicated their full significance in interpolation theory. (See also 
Krein [1] (q=1), and 1.7.) Sharpley [1] considers "weak interpolation" of a 
generalization of the spaces Lpq. 
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Using Formula 5.2.(1) and his Theorem 3.6.1, Holmstedt [1] proved the 
formulas in 5.7.2 and 5.7.3. In that paper, he was also able to determine with 
more precision the constants in the norm-inequalities of the generalizations of 
the Riesz (5.2.3) and the Marcinkiewicz (5.3.2) theorems. His tool was the sharp 
form of the reiteration theorem (cf. 3.13.15), and his results were that in the Riesz 
theorem (5.2.3) the constant is independent of 0, and in the Marcinkiewicz theo
rem (5.3.2), the constant is o(oao(1- o)a,), where !Xi = min(O, l/s -l/q) + 
min(O, l/p -l/r;). In a sense, these constants are the best possible (see Exercise 
5.7.7). 

Let us also point out that there is a close connection between Theorem 5.2.1 
and Hardy's inequality. General forms of Hardy's inequality are found in, e.g., 
Andersson [1], Tomaselli [1]. (Cf. also the proof of Theorem 1.3.1.) 

5.8.4. In Section 5.4 the original result (5.4.1) is due to Stein and Weiss [1]. 
The interpolation functions have been treated in several papers, e.g., Foia~ 

and Lions [1], Donoghue [1], Peetre [13] (for more references see, in particular, . 
Peetre [13]). Theorem 5.4.4 was given by Peetre [13]. For exact interpolation 
functions, i. e. C = 1 in the norm-inequality, the problem of determining all 
interpolation functions is still open, except for P = 2 (see Donoghue [1 ]). 

Gilbert [1], following Peetre [6], has obtained a characterization in the off
diagonal case. Gilbert studied thus the spaces (Lp(wo), Lp(w1))o,q for p#q. In 
particular, he was able to complete the identification of the Beurling spaces 
with interpolation spaces (Lp(wo),Liwl))O,q begun by Peetre. Lemma 5.4.3 is 
in part due to Lorentz [3] (see also Peetre [16]). Note that the function k, con
structed in the last part of the proof, is the least concave majorant of the function 
h; this is Exercise 12. 

5.8.5. Theorem 5.5.1, varying both the measures and the exponents, was shown 
by Peetre [18]. 

Lizorkin [1] has characterized the interpolation space (Lpo(wo), Lp,(w1))o,q 
as a certain weighted Lorentz space. Theorem 5.5.1 is thus a corollary of Lizorkin's 
result. However, Lizorkin considers only the case 1 ~Po, PI' q ~ 00. 

5.8.6. Early results on interpolation of spaces of vector-valued functions are found 
in Gagliardo [1] and Lions-Peetre [1]. 

Note that Theorem 5.6.2 is valid also for non-discrete measures. For in
stance, we have 

(Lpo(A o), Lp,(A1))o,p=Li(Ao, Al)O,P) ' 

if 1/p=(1-0)jPo+OPl (cf. Lions-Peetre [1]). Cwikel [1] showed that there is 
no reasonable generalization of this formula to other values of p. 



Chapter 6 

Interpolation of Sobolev and Besov Spaces 

We present definitions, interpolation results and various inclusion and trace 
theorems for the Sobolev and Besov spaces; our approach follows Peetre [5]. 
In the first section, we introduce briefly the Fourier multipliers on L p ' and we 
prove the Mihlin multiplier theorem. In Section 8, we discuss interpolation of 
semi-groups of operators. Many other topics are touched upon in the notes and 
comment, e. g., interpolation of Hardy spaces H p" 

6.1. Fourier Multipliers 

Throughout the chapter we shall discourse within the framework of the tempered 
distributions. The test functions for the tempered distributions are the infinitely 
differentiable functions f from IRn to <C, such that 

is finite for all m and all a. By D~ we mean 

where lal=a1+"'+an is the order of the multi-index a=(a1, ... ,an), i.e. 
the order of the derivative D~ f The class of these functions f is denoted by !/'; 
it is a topological vector space, the topology being given by the seminorms 
p m.~(f), m=O, 1, ... , lal ~O. The dual of !/', the space of tempered distributions, 
is denoted by !/". 

The Fourier transform is defined on!/' by the formula 

ff' f(~)=jm = JlRnexp( -i <x, O)f(x)dx. 

By Fourier's inversion formula, we have 
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On f/', the Fourier transform is given by 

<$' f,g)=<f,$'g), 

where /Ef/' and gEf/. This has a meaning, since gEf/ implies that $'gEf/. 
F or a proof of this statement and for more facts concerning the tempered 
distributions, we refer to L. Schwartz [1 J. 

In this chapter Lp will always mean Lp(R.n,dx), with norm 1I'll p : 1~p~oo. 
(For the case O<p<1, see Notes and Comment.) Moreover, derivatives are to be 
interpreted in the distribution sense: D~ / (f E f/') is given by 

<D~ f, g) = (-1)1~1 <f,D~g) (gEf/), 

where, of course, D~g are derivatives as above. Also, equality is to be interpreted 
in the distribution sense, i.e. /1=/2 means that </1,g)=</2,g) for all gEf/. 

6.1.1. Definition. Let PEf/'. Ii is called a Fourier multiplier on Lp if the convolution 
($'-1 p)*/ELp /orall /Ef/, and if 

sUPllfllp=111($'-1 p)* /Ilp 

is finite. The linear space 0/ all such p is denoted by M p; the norm on M p is the above 
supremum, written II' liMp' 

Since f/ is dense in Lp (1~p<oo), the mapping from f/ to Lp:/-+($'-1 p)* / 
can be extended to a mapping from Lp to Lp with the same norm. We write 
($'-1 p)*/ also for the values of the extended mapping. 

For p = 00 (as well as for p = 2) we can characterize M p' Considering the 
map: /-+ ($'-1 p) * / for / E f/, we note that it commutes with the translations. 
Therefore, pEM 00 iff 

But this inequality also means that $'-1 p is a bounded measure on R.n. Thus 
Moo is equal to the space of all Fourier transforms of bounded measures. Moreover, 
IlpllMoo is equal to the total mass of $'-1 p. In view of the inequality above and the 
Hahn-Banach theorem, we may extend the mapping /-+$'-1 p*/ from f/ to 
Loo to a mapping from Loo to Loo without increasing its norm. The extended 
mapping we also write as /-+$'-1 p*/ (/ELoo). 

6.1.2. Theorem. 1/ 1lp+ 1lp' = 1 we have (1 ~p~ (0) 

(1) M p=M p' (equal norms). 

Moreover, 

M 1 = {p E f/' I$' - 1 P is a bounded measure} 
(2) 
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and 

(3) M 2 = Loo (equal norms). 

For the norms (1 ~Po, PI ~ co) 

if 1/p=(1-0)/Po+O/PI (O~O~1). In particular, the norm Hlp decreases with p 
in the interval 1 ~ p ~ 2, and 

Proof' Let fELp,gELp' and pEMp. Holder's inequality gives 

From this we infer that g;-lp*gELp" and that pEMp' with IlpIIMp.~lIpIIMp' 
This proves (1). The assertion (2) has already been established. Parseval's formula 
immediately gives (3). In fact, 

Invoking the Riesz-Thorin theorem, (4) follows, since the mapping f ->(g;-I p) * f 
maps Lpo ->Lpo with norm IlpllMpo and Lp!->Lp! with norm lip liMp!' Using (4) 
with Po = p, PI = p', we see that 

from which (5) follows. 0 

Considering (3) and (5), we may clearly multiply PIE M p and p 2 E M p (1 ~ p ~ CXl ) 

to get a new function pELoo:p(~)=PI(~)'P2(~)' Obviously, we get pEMp and 

Note also that M p is complete. Thus M p is a Banach algebra under pointwise 
multiplication. 

In order to clarify the next theorem we write M p = M p(]R") for Fourier 
multipliers which are functions on ]R". The theorem says that M p(]R") is iso
metrically invariant under affine transformations of ]R". 

6.1.3. Theorem. Let a:IRn->]Rm be a surjective affine transformation. Then the 
mapping a*, defined by 

(a* p)(~)= p(a(~)) (~E IR"), 
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from M p(JRm) to M p(JRn) is isometric. If m = n, the mapping a* is bijective. In 
particular, we have 

IIp(t-)IIMp(IR")= IIp(-)IIMp(IR") (t#O) 

IIp(<x,-))IIMp(IR")= IIp(-)IIMp(lR) (x#O). 

Proof" It is easy to see that M p is isometrically invariant under nonsingular 
linear coordinate transformations. Therefore, we may choose coordinate systems 
in JRn and JRm, such that a(~)j= ~j' j = 1, ... , m. Then 

a*p=p®1, 

where ~l' ... , ~m are acted on by p and the remaining n-m (~O) variables by 1. 
Thus, with f E[Il, we obtain 

Ilff-l(a* p) * flip = II(ff- l p ®b) * flip ~ IlpllMp II flip' 

by inspection of the integrals. This gives 

Finally, taking 

equality in (6) follows. 0 

The Fourier multipliers can be defined also on certain vector-valued Lp 
spaces. We will use results for Fourier multipliers on' Lp with values in a Hilbert 
space. Therefore we consider only this case. Let H be a Hilbert space, and consider 
the space [Il(JRn ; H) = Y(H) of all mappings f from JRn to H, such that 
(1+lxlrIIDa f(x)IIH is bounded for each rx and m. The space L(y(Ho),Hl) 
consists of all linear continuous mappings from Y(Ho) to HI' where H o and HI 
are Hilbert spaces. This space is Y' if H 0= HI = <C. Clearly, we may define the 
Fourier transform on [Il(Ho) and on L(Y(Ho), HI) in the same way as before. 
The integrals converge in H 0' and it is obvious that the inversion formula holds. 
We shall also use the notation Y'(Ho, HI) for L([Il(Ho), HI)' 

6_1.4_ Definition_ Let H ° and H 1 be two Hilbert spaces with norms II-11o and II-Ill 
respectively. Consider a mapping pE[Il'(Ho, HI)' We write pEMp(Ho, HI) if, 
for all fE[Il(Ho), we have (ff-lp)*fELp(H l) and if the expression 

is finite. The last expression is the norm, IlpIIMp(Ho.HIl' in Mp(Ho,H l). 
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Theorems 6.1.2 and 6.1.3 have obvious analogues in this general situation. 
The proofs are the same with trivial changes. 

6.1.5. Lemma. Assume that L is an integer, L > n/2, and that p e L2(L(H 0' Hi» 
and D"peL2(L(Ho,H1)), IIXI=L. Then peMp(Ho,H1), 1~p~00, and 

where ()=n/2L. 

Proof' Clearly, peY'(Ho, Hi)' Let t>O. By the Cauchy-Schwarz inequality 
and the Parseval formula, we obtain 

Slxl >t 11~-1 p(x) II L(Ho.Hlldx ~ Slxl >t Ixl-LlxlL 11~-1 p(x)IIL(Ho.H,)dx 

~ Ctn/ 2 - L sUPI"1 =L II D" p II L2(L(Ho.H Il)' 

Similarly, we have 

Choosing t such that IlpIIL2=t- LsuPI"I=L IID"pIIL2' we infer that 

Here the first inequality is a consequence of Theorem 6.1.2. 0 

Our main tool when proving theorems for the Sobolev and Besov spaces is the 
following theorem. Note that 1 <p< 00 here in contrast to the case in Lemma 
6.1.5. 

6.1.6. Theorem (The Mihlin multiplier theorem). Let H ° and Hi be Hilbert 
spaces. Assume that p is a mapping from IRn to L(H 0' Hi) and that 

for some integer L>n/2. Then peMiHo,H1), 1<p<00, and 

In the proof we use the following two lemmas. The first is frequently used later, 
and the second is essential to the proof of the theorem. 

6.1.7. Lemma. There exists a function <peY(IRn), such that 
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(9) qJ(e»o for 2- 1 <lel<2 

(10) Lk=_ooqJ(2- ke)=1 (e#O). 

Proof· Choose any function fE[/', such that (8) and (9) are satisfied. Then 

Therefore the sum 

contains at most two non-vanishing terms for each e#O. Clearly, FE[/', and 
F(e»O for e#O. Put qJ=flF. Clearly, qJE[/', and satisfies (8) and (9). Since 
F(2- i e)=F(e), qJ also satisfies (10). 0 

6.1.8. Lemma. Let fELl and O">O.1hen there are cubes Iv, v=1,2, ... , with 
disjoint interiors and with edges parallel to the coordinate axes, such that 

O"<I1(1V)-l Jlv If(x)ldx~2nO", 

If(x)1 ~ 0" a.e. x¢U:'=lIv. 

Proof· Choose cubes I~O) (v = 1,2, ... ) with disjoint interiors and edges parallel 
to the coordinate axes, and such that 

(11) 

Split each I~O) into 2n congruent cubes. These we denote by I~l), v = 1,2, .... 
There are two possibilities: either 

or 

In the first case we split I~l) again into 2n congruent cubes to get I~2) (v= 1,2, ... ). 
In the second case we have 

in view of (11), and then we take I~l) as one of the cubes Iv. A repetition of this 
argument shows that if X¢U:'=lIv then xEIV]U=0,1,2, ... ) for which 

I1(1V])-..O 

and 

I1(1V»)-l JIU) If(x)ldx~ 0" U=O, 1, ... ). 
J Vj 
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Thus If(x)l:S;;a a.e. x~U:'=IIv by Lebesgue's differentiation theorem (see, e.g., 
Dunford and Schwartz [1]). 0 

Proof of Theorem 6.1.6: Obviously, pEg"(Ho, HI)' and, taking IX=O in (7), 
also (Theorem 6.1.2) 

If, in addition, we prove 

then it follows that 

by the Marcinkiewicz theorem, and thus pEMp(Ho, HI) (1 <p< (0) by Theorem 
6.1.2. 

In order to simplify the notation, we shall give the rest of the proof for the case 
Ho=Hl =cc. 

Thus, we need prove only (12). For fEg', (12) takes the form 

Now we decompose f into two terms (a>O fixed): 

{
f(X}- /1(1.)-1 kf(t}dt, 

fo(X} = 

o elsewhere 

{
/1(1.)d kf(t)dt, xEIv, 

fl(X) = 

f(x) elsewhere 

where Iv are the cubes of Lemma 6.1.8. Since 

XEI.. V= 1,2, ... , 

v=1,2, ... , 

for any decomposition f = fo + fl' it is enough to prove (13) with the functions fo 
and fl respectively on the left hand side. 

In order to estimate m(a/2,ff-1 p*fo}, we first note that the mean value of fo 
over each Iv vanishes. We have, with av as centres in Iv and 2Iv as the result of 
enlarging I v to double its edges, 

(14) 
m(a/2, ff- 1 p * fo} 

:s;; a({lff- 1 p * fol ~ a/2} n (lRn\U:'= 12I.)} + /1(U:'= 1 2Iv}· 
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Now, since the mean value of fo over Iv vanishes, 

S IR"\U~= ,2I. Iff-I P *fo(x) I dx 

(15) ~ I~; I k(jIR"\u~= 12I. Iff- 1 p(x - y) -ff- I p(x -av)1 dx)lfo(y)ldy 

~ CI~; I k 1f~(y)ldy~C Ilflll' 

if we prove that 

(16) SIR"\U~= 121. Iff-I p(x- y)-ff- I p(x -aJldx ~ C, YEIv. 

We postpone the proof of (16) in order to conclude the estimates. By (14), (15), (16) 
and Lemma 6.1.8, we obtain 

By the inclusion L2 cL200 , ({JEM2 and Lemma 6.1.8, it follows that 

a2m(aj2, ff-Ip*fl)~C Ilff-Ip*flll~ = C Ilflll~ 

(18) = C {I~; I fl(l v) -II kf(x)dx I2 + SIR",u;7= I IJf(x)1 2dx} 

~ Ca {I~; Ilkf(x)dxl + SIR",u;7= IIJf(x)ldx} 

~ Callflll· 

The estimates (17) and (18) yield (13) as we noted earlier. 
There remains the proof of (16). Clearly, it is sufficient to prove that 

(19) Slxl;;' 2t Iff-I p(x - y) -ff- I p(x)ldx~ CA (Iyl ~ t, t>O). 

We may obviously assume that p(O)=O. Then, writing Pk(~)=({J(2-k~)p(~), 
we have If'; -ooPk= p. Thus 

Slxl;;' 2t Iff-I p(x- y)_ff- 1 p(x)ldx 

~ Ie:' wSlxl;;' 2t Iff-I Pk(X - y)-ff- I Pk(x)ldx, 

and (19) will follow if we prove 

(20) 
Slxl;;' 2t Iff- 1 Pk(X - y)- ff- 1 Pk(x)ldx 

~ CAmin((t· 2kt/2 - L,t· 2k) (Iyl ~ t, L> nj2). 
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To complete the proof, we now have to prove (20). Using the Cauchy-Schwarz 
inequality and Parseval's formula, we get 

Slxl;' 2t 1,?-1 pix - y) _,?-1 Pk(x)ldx ~2Slxl;'t 1,?-1 Pk(x)ldx 

~ C(Slxl;'t 12kxl- 2Ldx)1/2(Slxl;'t 12kxI 2L I,?-1 Pkl 2 dX)1/2 

~ C(t'2kt/2 -L2 -kn/2(S 2k- 1 < 1<:1 < 2k+ 1 Llal =L22klallDa pi~Wd~)1/2 

~ CA(t· 2kt/2- L, 

since, as is easily verified, 1~lalDa Pk(~)1 ~ CA (Ial ~ L, ~E lRn, k=O, ± 1, ... ). Simi
larly, we obtain (Iyl ~ t) 

Slxl;' 2t I,? - 1 Pk(X - y) -,? - 1 Pk(X) I dx 

~ S6JlRnl<y,grad,?-l Pk(X -ry» Idxdr~ Ct L'i= 1 Ilo,?-l pJoX j l1 1 

~ CtLJ= 1 (J(1 + 12kXI2)-Ldx)1/2(S(1 + 12k XI2)Llo,?-1 Pk/ox/dx)1/2 

~ CtI'i= 12 -kn/2(S2k_ 1 < 1<:1 <2k+ 1 LlaIH22klaIIDa~jPi~Wd~)1/2 

~CAt·2k. 

The last two estimates give (20), and so the proof is complete. 0 

6.2. Definition of the Sobolev and Besov Spaces 

We give Peetre's definition of the Besov spaces, and also a definition of the 
generalized Sobolev spaces. 

U sing the standard function qJ of Lemma 6.1.7 we define functions qJk and !/J by 

,? qJk(~)= qJ(rk~) (k =0, ± 1, ±2, ... ) 

'?!/J(~)= 1-D"= 1 qJ(rk~). 

Evidently, qJkEY' and !/JEY'. 
Moreover, we shall use two operators J' and P, both from Y" to Y", defined by 

jS j= ,?-1 {(1 + 1'1 2y/2,? f} (SE lR,J EY") 

P j=,?-l{I'ls ,? f} (SElR,JEY",O¢supp,? f). 

The operators ]-S and ]-S are often called the Bessel and Riesz potentials of 
order S respectively. 

Some simple properties of the objects just defined are collected in the following 
lemma. 
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6.2.1. Lemma. LetfE!/", and assume that ({Jk*fELp. Then (1~p~CXl;sER) 

(1) IIJS({Jk*fllp~e2skll({Jk*fllp (k~1), 

(2) lII'({Jk*fllp~e2skll({Jk*fllp (all k), 

and in addition if '" * f E Lp 

where the constants e are independent ofp and k. 

Proof· Note that 

holds for all k. Thus, if we establish that 

(4) 

(5) 
(/=0, ±1) 

then (1) and (2) follow. 
To prove (4), we note that the function 

has the same norm in M p as the function 

by Lemma 6.1.2. Using Lemma 6.1.5, it is evident that the latter function in fact 
belongs to M p with norm at most e2ks (k ~ 1), and thus (4) is established. 

Formula (5) is easily proved in a similar way. 
Finally, to prove (3), we note that 

We need prove only that .fF(JS",)EMp, but this is obvious by Lemma 6.1.5. 0 

The previous lemma provides a background for the following definition of the 
Besov and the (generalized) Sobolev spaces. 

6.2.2. Definition. Let SE JR, 1 ~ p, q ~ 00. We write 

Ilfll~q= ""'*fllp+(L~=1(2Sk II({Jk*fll p)Q)l/\ 

Ilfll~ = IIJS flip" 
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The Besov space B~q and the generalized Sobolev space H~ are defined by 

B~q = {f:fE!/', Ilfll~q<oo}, 

H~ = {f:fE!/', Ilfll~<oo}. 
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Clearly, B~q and H~ are normed linear spaces with norms 11·II~q and II·II~ 
respectively. Moreover, they are complete and therefore Banach spaces. To 
prove that H~ is complete, let Un) be a Cauchy sequence in H~. Then gELp exists 
(Lp is complete) such that 

Clearly, j-SgE!/' and thus H~ is complete. From this, Theorem 3.4.2 and (10) 
below, it follows that B~q is complete. Thus H~ and B~q are Banach spaces. Finally, 
the definition of B~q does not depend on the choice of the function qJ, i. e. with 
another choice we get an equivalent norm. This follows similarly from (10) below. 

We give some elementary results about H~ and B~q. First we consider H~. 
In the following theorem there appears an alternative definition of H~ for positive 
integral values of s in terms of the derivatives Daf (Iocl!(s) of fEH~. (Note that 
H~ =Lp (1 !(p!( (0).) 

6.2.3. Theorem. If SI <S2 we have 

Moreover, if N:;::: 1 is an integer and if 1 < p < 00 then 

and 

Finally,!/ is dense in H~ (1 !(p< (0). 

Proof" Suppose that fEH~2. We shall see that ],,-S2 maps Lp into Lp. From 
this we get the first part of the theorem, since 

II fll~1 = 11]'1 fllp= IIPI-S2 j S2 fllp!( C 11]'2 fllp= C II fll~2. 

In order to see that j-':Lp-+Lp if 8=S2-S1>0, we use Lemma 6.2.1 and 
obtain 

Ilr'fllp!( Ilr'l/J*fll p+ Lk"=lll r 'qJk*fll p 

!( C(III/J *f lip + Lk"= 12- Ek IlqJk *f IIp)!( C(1 + Lk"= 12-,k) Ilf lip" 

This completes the proof of the first part of the theorem. 
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To prove the second part, we invoke the Mihlin multiplier theorem to obtain 
~f(1 + 1~12)-N/2EMp (1 <p< co). Thus 

lioN f/oxfllp= 11§-1 gf § J}ll p 

= 11§-1 gf(1 + 1~12)-N/2 §(jN f)} Ilp~C Ilfll~ (1 ~j~ n). 

This gives one half of (6). For the other half of (6), we use Mihlin's multiplier 
theorem once more and an auxiliary function X on IR, infinitely differentiable, 
non-negative and with X(x)=1 for Ixl>2 and X(x)=O for Ixl<1. We obtain 

(1 + 1~12t/2(1 + Li= 1 x(~)I~jIN)-1 EM p 

(1 <p< co). 

Thus 
IljN fllp~CII§-I{(1+ Lf=IX(~)I~X)§ J}ll p 

~ c(llfll p + LJ= 111 §-1 {x(~)I~jIN~jN §(oNf/oxf)} lip) 

~c(llfllp+ LJ=lll oNf/oxfllp). 

It remains to prove the density. Take f E H~, i. e. J' f E Lp. Since Y' is dense in 
Lp (1 ~ p < 00), there exists agE Y', such that 

is smaller than any given positive number. Since j-SgEY', Y' is therefore dense 
in H~. 0 

The results for the Besov spaces B~q correspond in part to the previous theorem 
for the Sobolev spaces H~. We split up these results into two theorems. 

6.2.4. Theorem. If SI <S2 we have 

Moreover, 

(9) B~1 cH~cB~oo (SEIR., 1 ~p~ 00). 

If So # S 1 we also have 

where s = (1 - O)so + 0 S 1. Finally, if 1 ~ p, q < 00 then Y' is dense in B~q. 



6.2. Definition of the Sobolev and Besov Spaces 143 

Proof' The formulas (7) and (8) follow at once from the definition of B~q. The 
density statement is a consequence of (10), Theorem 3.4.2 and Theorem 6.2.3. 
The inclusions (9) are obviously implied by the inequalities in Lemma 6.2.1. 

It remains to prove (10). Let ! E(H~O, H~')9,q, and put !=!o + !l' /;EHi (i =0, 1). 
By Lemma 6.2.1, we obtain 

and, taking the infinum, 

This gives 

Similarly, we see that 

and thus 

11!II~q::;; e 11!II(H$o,H$l)o,q' 

The other half of (10) follows easily from the inequalities (Lemma 6.2.1) 

2k(s-sO) J(2k(Sl -so), CfJk *!; H~o, H~')::;; e2ks il CfJk *! II p' 

J(1, I/I*!; H~o, H~')::;; e 111/I*!ll p, 

where! E B~q. It remains to show that 

! =.I,*!+""oo m *! in Hso+HS! 'I' L...,k=l'f'k p p' 

111/1 *! 11~0 + Lf'= 1 II CfJk *! II~O::;; C(III/I *! II p + Lf'= 1 2k(so-S)2kS II CfJk*! lip) 

::;;ell!ll~q, 

by Holder's inequality, since so<s. 0 

The next theorem points to an alternative definition of the Besov spaces 
B~q (s > 0) in terms of derivatives and moduli of continuity. The modulus of 
continuity is defined by 
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where LI; is the m-th order difference operator: 

LI; f(x) = L/:'= o( ~) ( -it f(x + ky). 

6.2.5. Theorem. Assume that s> 0, and let m and N be integers, such that m + N > s 
and O~N<s. Then, with 1~p~c.o, 1~q~oo, 

Proof" We note that w; is an increasing function of t. Therefore it is sufficient to 
prove that 

First we assume that fEB~q. Put Py(~)=(1-exp(i(y,O))m. We shall prove 
that for all integers k 

and that 

Before proving these estimates, we shall show that they give the desired con
clusion. 

Thus suppose that (11) and (12) hold. Then clearly 

2i(s-N)W;(2- i, aNflax7) 

~ C(Lf'= 12(i-k)(s- N)min(1,2 -(i-k)m)2sk II <fJk *f II p + min(1, 2- im) 111/1 *f II p). 

The right hand side is a convolution of two sequences, namely the sequence 
(2k(S-N)min(12- km))00 and the sequence (a)oo where a =2sk 11 m *fll if , k=-oo kk=-oo' k"t'k p 

k~ 1, ao= III/I*fli p and ak=O if k<O. Since 

we conclude that 

In order to prove (11) we note that pyEM l and pi·)(y,·>-mEM l and 

IlpyIIM,~C 

Ilpi·)(y,·> -mII M , ~C 
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for all y#O. This follows from Lemma 6.1.5 and Theorem 6.1.3. Similarly 

which implies 

It follows that 

llpy *CPk*ONf /oxfllp:::; Cmin(1,lylm2mk )11 CPk *oNI/oxfllp 

:::; Cmin(1,lylm2mk)2Nk llcpk*fll p' 

This proves (11). The estimate (12) follows in the same way. 
The converse inequality will follow if we can prove the estimate 
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where Pjk=P(2-kej)' ej being the unit vector in the direction of the eraxis. In fact, 
if (13) is valid we have (since I/J E M 1) 

llfll~q:::; c(llfll p + (L/;"; 1 (2k(S-N)LJ; 1 IIPjk *oNI/oxf II p)Q)l/q) 

:::; c(llfll p + LJ; 1 (2:/;"; 1 (2k(s-N) w;(rk, oNI/ox7))Q)1/Q), 

which implies the desired inequality. 
In order to prove (13) we need the following lemma. 

6.2.6. Lemma. Assume that n~2 and take cP as in Lemma 6.1.7. Then there 
exist functions XjE9"(1Rn) (1 :::;j:::; n), such that 

LJ;lXj=1 on suppcp=g[r 1:::;lel:::;2} 

sUPPXjc gE1Rnllejl ~(3Vn)-1} (1 :::;j:::;n). 

Proof of the lemma: Choose kE9"(1R) with suppk=gE1Rllel~(3Vn)-1} 
and with positive values in the interior of supp k. Moreover, choose IE 9"(1Rn - 1) 
with supp 1= g E 1Rn- 11Iel :::; 3} and positive in the interior. Writing 
~j = (e 1, ... , ej - 1, ej + l' ... , en) and putting 

where L'j;lk(OI(~j»O on suppcP, only routine verifications remain to com
plete the proof of the lemma. D 
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We now complete the proof Theorem 6.2.5, i.e. we prove Formula (13). By 
the previous lemma we obtain the formula 

IIq>k*fllp~ 11~-1 {q>(2k.)~ !}ll p 

~Lj=l II~-1{Xp-k.)q>(2-k.)~ !}II p 

~ crkNLJ= 1 IIPkj*ONf/ox711 p, 

since, by Theorem 6.1.3 and Lemma 6.1.5, we have 

for 1 ~j ~ n, 1 ~ p ~ IX) • 0 

We also have the following consequence of Lemma 6.2.1. 

6.2.7. Theorem. J" is an isomorphism between B~q and B~;a, and between H~ 
and H~-a. 

Proof" Obvious, in view of Lemma 6.2.1. 0 

6.2.8. Corollary. If 1 ~ p < IX) we have 

If, in addition, 1 ~ q < 00 we also have 

Proof: The first formula follows from Theorem 6.2.7 and the fact that (Ll = L p ' 

if 1 ~ p < 00. The second formula is implied by the first one, Theorem 6.2.4 and 
the duality theorem 3.8.1. 0 

6.3. The Homogeneous Sobolev and Besov Spaces 

Sometimes it is convenient to work with symmetric sums of the form 

where ({Jk are the function defined in the previous section and f E[/'. The space 
of all f E [/' for wh!ch II f ~~q is finite will be denoted by B~q. homogeneous Besov 
space. Note that B~q is a semi-normed space and that IIfII~q=O if and only if 
suppj= {O}, i.e. if and only if f is a polynomial. 
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There is also an analogous notion of a homogeneous (generalized) Sobolev 
space H~. The elements of H~ are those fEY' for which L~G()ff-l(I¢lsffcpk*f) 
converges in Y' to an Lp-function. We write 

(Note that 1¢ISff(cpk*.j) is always a tempered distribution.) Again H~ is a semi-
normed space and II f II ~ = ° if and only if f is a polynomial. . 
. Several results for the spaces B~q and H~ carryover to the spaces B~q and 
H~. For instance we have the following theorem, which corresponds to Theorem 
6.2.4 and Theorem 6.2.5. 

6.3.1. Theorem. If 1 ~ql <q2 ~ 00 we have 

Moreover, 

and 

For s>O, and m, N integers such that m+N>s and O~N <s we have 

(1 ~p~ 00, 1 ~q~·oo). 

Finally, for any positive integer N, 

• N ~n N N 
Ilfllp ~ L,.j=llio ,!/OXj lip (1 <p< 00), 

if 1 vanishes in a neighbourhood of the origin. 

Proof: The first inclusion is obvious. In order to prove that H~ c B~G()' let f E iI~. 
Then L~G()ff-l(I¢lsffcpk*f) converges ill Y' to a function gELp. Define 
Xk by the formula ffXk(¢) = 1¢I-scp(2-k¢). Then, for any hEY, 

Since IlffXklIM' ~crsk we conclude that 
p 



148 6. Interpolation of Sobolev and Besov Spaces 

Next we prove that B~l ciI~. Take fEB~l' Then easily 

Therefore L~ 00 g; -l(I~IS g; IPk * f) converges in Lp and thus f E iI~. 
The proof of the interpolation result is the same as that of Formula (10) in 

Theorem 6.2.4. 
The equivalent representation of the semi-norm on B~q follows at once from 

the proof of Theorem 6.2.5 (see Formula (11) and (13». 
For fEY' we have 

(with convergence in Lp) and since ~fl~I-NEMp for 1 <p< 00, we obtain 

Conversely, let ljJ be defined as in Section 6.2 and let X be as in the proof of Theorem 
6.2.3. Then 

llg;-l {1~IN g; f}llp=b N 11~-l{(IWbt $(~/b)g; f}llp 

~Cc5NLJ=lllg;-l{X(~/b)(l~ybtg; f}llp 

~ CLi= 1 II 8Nfl8xf II p' 

Next we investigate the connection between the dotted and the non-dotted 
spaces. 

6.3.2. Theorem. Suppose that fEY" and O~ supp J. Then 

Moreover, 
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Proof: IfJ(~)=O in a neighbourhood of ~=O and if fEB~q, then t/J*f (being 
a finite sum of the form Ik t/J * CPk *f) belongs to Lp. Thus f E B~q. Conversely, 
if fEB~q then CPk*f=CPk*t/J*f if k<O. ,!hus CPk*fELp for all k and, since 
(Ik<0(2Sk II C(?k *f II p)q)l/q is a finite sum, fEB~q. 

If still f(~)=O in a neighbourhood of ~=O then f=Ik~koCPk*f for some 
integer ko. Noting t~at (1 + I~ 12)s/21~ l-s2>~ko-1 cp(2 - I ~)E M 1 (see Exercise 3 or 4), 
we see that for f E H~ 

II f II~ = 11~-1 {(1 + I~ 12y/21~ I- s Il~ ko-1 cp(2 - I ~) Ik :>ko 1~ls ~ CPk *f} II p 

~Cllfli~. 

Conversely, if f EH~, then we note that 1~IS(1 + 1~12)-s/2EM 1 (see Exercise 3 
or 4). Thus 

(This holds without the assumption J(~)=O in a neighbourhood of ~=O.) 
In order to prove (1) we first note that it is obvious that for all SEJR 

then fEB~q. 
If f E Lp n H~, then we obtain as above 

II fII~ ~ 11~-1 {(1 + 1~12y/21~ l-sII:> ocp(2 -I ~) Ik:> 0 1~ls ~ CPk *f} lip 

+ 11~-1 {(1 + 1~12y/2 Ik<Ocp(2-k~)~ f} Ilp~ c(llfil~+ Ilfllp)' 

(This holds for all SE JR.) Conversely if S > 0 and f E H~, then clearly f E Lp and 

Ilfil~ ~ II ~-1 {1~IS(1 + 1~12)-s/2 ~Ik:> 1 CPk*JS f} lip 
+ Ik~02sk 11~-1 {(2-kl~lYcp(2-k~)~ f} lip 

~ c(IIIk:> 1 cpk*fII~ + II flip) ~ CII f II~. D 

6.4. Interpolation of Sobolev and Besov Spaces 

We have already established that if So'= Sl then (Theorem 6.2.4) 
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where s=(1-0)SO+OS1' We shall now prove some other interpolation results 
using theorems from Chapter 5 on interpolation of Lp spaces. To bring out 
the connection we introduce the concept of retract. For other terminology, 
see Chapter 2. 

The results throughout this section are stated for the non-homogeneous 
spaces H; and B~q. However, it is easy !o adapt. the proofs so that all the theorems 
hold when the homogeneous spaces H~ and B~q are substituted for H~ and B~q 
respectively. (Cr. Notes and Comment.) 

6.4.1. Definition. An object B, in a given category, is called a retract of the object 
A, if there are morphisms oF:B-+A and ?JJ: A-+B, in the category, such that 
?JJ 0 oF is the identity on B. 

If B is a retract of A we have the following commutative diagram 

the letters oF and ?JJ being used to remind the reader of the words injection and 
projection. 

6.4.2. Theorem. Assume that B is a retract of A in the category AI 1 (of all compatible 
couples of normed linear spaces), with mappings oF and ?JJ. Then B[8] and B6 ,q are 
retracts in AI of A[8] and A6 ,q respectively. 

Proof' The theorem follows at once from the interpolation properties. D. 

We shall now introduce two mappings oF and ?JJ. The mapping oF maps [1" 

to the space of all sequences of tempered distributions. It is defined by . 

(1) 

The mapping ?JJ is given by 

iPo = 1/1 + ({J1, 

iP j = r)= -1 ({Jj+l' j=1,2, .... 

We are not saying that ?JJ is defined on all sequences (rxl,i= 0 of tempered distri
butions, but only on those sequences for which the series defining?JJrx converges in 
[1". Clearly ?JJoFf= f,fe [1", since iP j*({Jj=({Jj,j=1,2,3, ... and iPo*I/I=I/I. 
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6.4.3. Theorem. The space B~q is a retract of 1;(Lp) (SE1R., 1~p,q~oo), and 
H~ is a retract of Lil~), (SE1R., 1 <p< (0). The mappings f!}J and J are defined by 
(1) and (2). 

Proof" First we note that 

i.e. 
II fll~q"'(11 t/! *fll~ + Ll= 1 (2jS II qJj *f IIp)q)l/q =(Il= o (2jS II(J fMp)q)l/q, 

Ilfll~q'" IIJ flll~(Lp)' 

Thus J: ~q-+l:(Lp). Moreover, since t/!*[JJa.=t/!*a.o and qJk*f!}Ja.=qJk*a.k 
for k ~ 1, we have 

11f!}Ja.II~q = II t/! * a.o II p + (Ik~ 1 (2ks II qJk * a.kll p)q)l/q 

~ c(11a.o lip + (Ik~ 1 (2ks IIa.kllp)q)l/q) ~ C 11a.11'~(Lp)· 

Thus B~q is a retract of 1~(Lp). 
Next we prove that J:H;,-+Lp(l~),1<p<oo. We may write 

where XE9"(CC,~)=L(9'(1R.",CC),I~) is defined by 

Then 

(x(e))j= (1 + leI2)-s/2<7J ie), j = 1,2, ... , 

(X(Wo =(1 + leI2)-s/2~(e). 

since the sum consists of at most two terms for each e. Thus J: H~-+Lil~) 
by Mihlin's multiplier theorem (1 <p< (0). 

Finally, we establish that f!}J : Lp(l~) -+ H~, or, which is equivalent, that 
JSf!}J: Lil~)-+Lp. We may write 

Clearly, KE9"(l2,CC)=L(9'(1R."; 12 ), CC) and 

leli"iIID"K(mL(12'CC)~ Ie P"i(Il=o(r jSID"(1 + leI2)s/2tPie)1)2)1/2 ~ c" 
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since the sum consists of at most four terms for each ~. By Mihlin's multiplier 
theorem it follows that JS f!P: Lil~)-+ Lp' 1 < P < 00. The proof is complete. 0 

We also note the following important inclusion theorem. 

6.4.4. Theorem. We have the inclusions 

Proof' By Theorem 6.2.7, we need consider only the case s=O. Let 1 <p~2 
and take fEB~p. Since f!P:LiI2)-+Lp and Ipcl2 we obtain 

Ilfllp= 11f!P J fllp~C II J fIILp(12)~CII J J,IILp(lp) 
= C(JRnLj;'O I(J f)J{x)IPdx)l/P~ ClIJ flllp(Lp)~ CIIfll~p. 

Thus B~pcLp for 1 <p~2. 
Next we prove that LpcB~2 for 1 <p~2. Using Minkowski's inequality 

and the fact that J: L p -+ L p(l2) and f!P: l~ (L p) -+ B~2 we see that 

II fll~2 = II f!P J fll~2 ~ CII J fII19(L p)= C(Lj;.o(JRn I( J f)J{XW dX)2IP)1/2 

~C(JRn(Lj;.ol(J f)i xW)PI2dx)1/P= CII J f IILp(h)~ CIIfllp" 

The case 2~p< 00 is settled by means of Corollary 6.2.8 and what was proved 
above. 0 

The following theorem, which is a consequence of Theorem 6.4.3 and the 
theorems of Chapter 5, contains the main interpolation results for generalized 
Sobolev and Besov spaces. 

6.4.5. Theorem. Let {} be given so that O<{}<1. Moreover, let S,SO,Sl,P,PO,Pi,q,qO'% 
and r be given numbers subject to the restrictions given in the formulas below. In 
addition, put 

1 1-{} {} 
.=--+-, 
P Po Pi 

1 1-{} {} 
.=--+-. 
q qo qi 

Then we have 

(1) (BSQ BS1) - B"-* 
pqo' pql 6,r - pr' 
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(2) (B~qO' B~q)8.q* = B~q" 

(3) (BSo BS,) - Bs* 
poqo' PIQl (J,p. - p*q*' 

(4) (HSO HS,) - Bs* 
P' P 8,q- pq' 

(5) (H~o' H~)8.p.=H~*, 

(6) (BSO BS' ) - BS* poqo' Plql [8]- p*q*, 

(7) (HSO HS,) - HS* 
Po' PI [8]- p" 

Proof' The first two formulas follow from Theorem 6.4.3 and Theorem 5.7.1. 
Formula (3) follows from Theorem 6.4.3 and 5.7.2. Formula (4) is contained in 
Theorem 6.2.4, while Theorem 6.2.7 and Theorem 5.2.4 imply (5). Finally, (6) and 
(7) follow from Theorem 6.4.3 and Theorem 5.6.3 and Theorem 5.1.2. 0 

6.5. An Embedding Theorem 

Consider the space 

w~ ={fEg"lllfllw~< OO}, 

where N is a positive integer and 

This space is the one originally defined by Sobolev. In Theorem 6.2.4, we state 
that H~=W~ (1<p<oo). 

It is well known that 

which is the Sobolev embedding theorem. In this section we shall prove a cor
responding theorem for the spaces H~ and B~q. We remark that, a~ in the p.revious 
section, all results are valid also for the homogeneous spaces H~ and B~q, the 
proofs being easily modified to cover these cases. 

6.5.1. Theorem (The embedding theorem). Assume that s-nlp=s! -nip!. Then 
the following inclusions hold 

B~qcB~',q, 

H~cH~\ 
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Proof: In order to prove the first inclusion, we use the estimates 

They are immediate consequences of Young's inequality, Theorem 1.2.2, and 
the fact that Ilcpkllq~C2kn(1-1/q) (k~O). Similarly we see that 

II t/! * f II p, ~ C II t/! * f II P • 

By Theorem 6.2.4 we therefore infer that 

Ilfll~\q, = 1It/!*fllpl +(Lk;' 1(2kS 'IICJJk*fll p l,)1/q , 

~ CUlt/! * f II P +(Lk;' 1 (2ks II CJJk *!II p)q,)1/q,) ~ C II f II~q , 

since q ~ q l' This gives the first inclusion. 
The second inclusion is proved using interpolation, with the aid of the first 

one. Clearly, we need only consider the case S1 =0, in view of Theorem 6.2.7. 
Invoking Theorem 6.2.4, we have the inclusions 

Interpolating (with fixed p) the inclusions 

B~1CLp" (s'-njp=-njp'1)' 

B~'1CLpi' (s"-njp=-njp~), 

we obtain (Theorem 6.4.5) 

where () is chosen appropriately. It follows that 

again by Theorem 6.2.4. Interpolating (with fixed s) the inclusions 

H~,cLqioo (s-njq'= -njq(1), 

H: .. cLqi,oo (s-njq" = -njq'{), 

we obtain (Theorem 6.4.5, 5.3.1, P~P1) 

where, again, () is chosen suitably. 0 
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6.6. A Trace Theorem 

In this section we use the notation B~q(IRn) for the Besov space on IRn. The spaces 
H~(IRn), .'/'(IRn) and so on are defined analogously. We shall consider the trace 
operator 

defined by 

(TrJ)(x') = J(O, x'), x'=(x2 , ••• , x,). 

We shall prove the following result. 

6.6.1. Theorem (The trace theorem). Assume that 1 < p < 00, 1 ~ q ~ 00, s> 1lp. 
Then the trace operator can be extended so that 

Tr' BS (IRn)--+Bs-l/p(IRn-l) . pq pq , 

Tr: H~(IRn)--+B~; 1/p(IRn - 1). 

ProoJ: We shall prove that 

(1) Tr:H;(IRn)--+B;p-l/P(IRn- I), m=1,2, .... 

In view of Theorem 6.4.5 (Formulas (1), (4), (6) and (7)), this implies the theorem 
for s> 1. By density we need consider only functions in .'/'. 

Let IR: be the half-space Xl >0 and let H;(IR:) denote the space of all 
JELp(IR:) such that ir f!oxjELiIR:) for j=1, ... , n. The norm on H;(IR:) is 

Let f!Il be the restriction operator for IR:. Then, by Theorem 6.3.3, f!Il: H;(IRn)--+ 
H;(IR:). Moreover TrJ=Trf!llj. Thus (1) will follow if we prove 

(2) Tr: H;(IR:)--+B;p-l/p(IRn- I). 

Now put 

Then 

Bm-1/p(IRn-I)=A if 8= 1lmp 
" ~p • 

Put u(t)=J(t,x') for t>O if JE.'/'. Clearly u(t)--+TrJ III LiIRn-l) as t--+O. 
Using Corollary 3.12.3 we see that 
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But the right hand side is equivalent to the norm of f in H;(IR~). Thus (2) follows. 
It remains to prove the theorem for 1/p<s~1. By the embedding theorem 

we know that B!~(IR)cLoo(IR), so that 

ITrf(x')1 ~ C Ilf(-' x')IIB:?: (IR) 

for all x' E IR"-l. Integrating over IR"-l and using Theorem 6.2.5 and Minkowski's 
inequality we deduce that 

i.e. 

Using (1) and Theorem 6.4.5 this implies the theorem for ~q(IR"), s> 1/p. 
By Theorem 6.4.4 we know that 

Thus the theorem for H~(IR") follows from what we have already proved in the 
case 2~p<oo. 

From what we have already proved we also see that 

Tr: H~O(IR")--+B~o2-l/2(IR"-l), so> 1/2, 

Tr' Hl (IR")--+Bl-l/P'(IR"-l) 1<Pl<oo. • p, p,p, ' 

Thus by Theorem 6.4.5 (Formula (6) and (7)), 

(4) Tr- HS(IR")--+B".-l/P(IR"-l) . P pp , 

if 
1 1-0 0 
-=-+-, s=(1-0)so+0. 
P 2 Pl 

But if 1 <p<2, s> 1/p are given we can find Pl' (1 <Pl <p) so that So, given by 
the relations above, satisfies so> 1/2. Thus (4) holds as soon as 1 <p<2, s> 1/p. 0 

6.7. Interpolation of Semi-Groups of Opemtors 

A reader who is not familiar with semi-groups of operators might substitute the 
group of translations in IR" for the general semi-group in a first reading. In fact, 
the group of translations in IR" is, in a way, the generating case for the semi
group approach. After the definitions, we give an example to illustrate what semi-
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groups comprise. Together with an interpolation result, we use this example to 
obtain yet another characterization of the Besov spaces B~q. 

Let A be a Banach space, and let {G(t)} (t > 0) be a family of bounded linear 
operators from A to A. Then we shall say that {G(t)} is an equi-bounded, strongly 
continuous semi-group of operators on A if the following three conditions hold: 

(i) G(s+t)a=G(s)(G(t)a) (s, t>O, aEA), 

(ii) IIG(t)aII A ~MllallA (t>O, aEA), 

(iii) lim,-++oIIG(t)a-aIIA=O (aEA). 

Routine verifications show that t-->G(t)a is a strongly continuous function 
on IR+. 

The infinitesimal generator A of the semi-group {G(t)} is defined by the formula 

lim,-+ +ollt- 1(G(t)a -a)- Aall A =0. 

The domain D(A) of A is obviously the space of all a E A, such that 
lim,-++ot- 1 (G(t)a-a) exists. Also, A is a linear operator, and, in non-trivial 
cases, it is not bounded. 

Example: We let A stand for any space among LiIRn, dx) (1 ~p< (0) or the 
closure of Y in Loo, the latter space consisting of all continuous functions which 
tend to zero at infinity. 

H denotes an infinitely differentiable positive function on IRn\{O}, which is 
positively homogeneous of order m>O, i. e. H(t~)=ltlmH(~) (tEIR, ~EIRn\{o}). 

The family {G(t)}, defined by 

G(t)a=ff- 1 {exp( -tH)ffa} (aEY, t>O), 

is a semi-group on A. To prove this, we have to verify that G(t) are operators 
from A to A, and that the conditions (i)-(iii) are satisfied. First, we note that 
exp(-tH)EMp (1~p~00,t>0), with a norm which does not depend on t, by 
Theorem 6.1.3, Lemma 6.1.5 and the homogeneity of H (cf. Exercise 4). It follows 
that G(t) may be extended to a mapping from A to A (sic), and that (ii) holds, 
since its domain is dense in A. Clearly, (i) is also satisfied. To prove (iii), take 
aEY. Then we have 

G(t) a -a = J~ G(S)ff-l( - Hff a)ds 

and thus, using (ii), we obtain 

Since Y is dense in A, (iii) follows by using (ii) once more. 
It is clear that the infinitesimal generator of G(t) is the operator A, defined by 
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More exactly, the infinitesimal generator of G(t) is the closure in A of the opera
tor A. This is a consequence of the next lemma (see below). 

As particular cases of this example, we mention H(~) = I~ 12 and H(~) = I~ I. 
If H(~)=1~12, the semi-group is given by 

G(t)a(x) = (4m)-n/2 SRnexp( -lul 2 /4t) a(x -u)du 

(see Butzer and Behrens [1] for details). This integral is usually called the Gauss
Weierstrass singular integral. If H(~)= I~I the semi-group is defined by means 
of a convolution with the Poisson kernel for the half-space IRn x IR+: 

G(t) a(x) = n-(n+ 1)/2 r((n + 1)/2) SR n t(t2 + lul 2 ) -(n+ 1)/2 a(x - u)du 

(see Butzer and Behrens [1]). 
Now we return to the general situation. The following lemma displays fre

qllcentiy used properties. 

6.7.2. Lemma. Let {G(t)} be an equi-bounded, strongly continuous semi-group of 
operators on A, with A as its infinitesimal generator. Then A is closed, and its do
main D(A) is a Banach space in the graph norm 

In addition, if aED(A) then G(t)aED(A), and 

(1) d(G(t)a)/dt=AG(t)a=G(t)Aa, 

(2) G(t)a-a= J~G(s)Aads. 

Finally, D(A) is dense in A. 

Proof: Formula (1) follows at once from the definitions. (2) follows from (1), 
since if a' E A' then 

<G(t)a-a, a') = J~(d<G(s)a, a')/ds)ds= J~<G(s)Aa, a')ds 

= <J~ G(s)Aa ds, a') . 

To prove the density of D(A) in A, take aEA. Then we have, by Formula (2), 
that 

h - I(G(h) -1) J~ G(s)ads = h- I J~(G(s + h) - G(s))ads 

= h -I (J~+h G(O') ad - J~ G(O') adO') = h -l(J: +h G(O')adO' - Ji G(O')adO') 

=h- I J~G(s)(G(t)-1)ads ...... (G(t)-1)a in A 
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as h--+ + O. Thus J~ G(s)adsE D(A). But 

t-lJ~G(s)ads--+a in A as t--++O, 

and the density follows. 
It remains to prove that A is closed. Assume therefore that an --+a in A and 

Aa .. --+b in A as n--+ + 00. Then we have 

G(t) an - an = J~ G(s) Aands--+ J~ G(s)bds in A (n--+ + 00) . 

It follows that 

G(t) a - a = J~ G(s)bds , 

and thus aED(A) and Aa=b. Consequently, A is closed and, with the graph 
norm, D(A) is a Banach space. 0 

We shall now give a characterization of the interpolation space (A, D(A»9,p' 
This is the main result of this section. 

6.7.3. Theorem. Let {G(t)} be an equi-bounded, strongly continuous semi-group 
of operators on A, with infinitesimal generator A. Then we have 

(3) K(t, a; A, D(A»-w(t, a)+min(1, t) Ilaii A (aEA), 

where 

w(t, a) = sUPs<tIIG(s)a-aIIA, 

and also 

If A is reflexive we have 

or, equivalently, (A, D(A»l,oo =D(A). 

Proof: (4) is clearly a consequence of (3). To prove (3) let a=aO+al , where 
aoEA and al ED(A). Then 

w(t, a)= sups<t II G(s)a-aII A ::;;;suPs<t IIG(s)ao -aoll A 

+suPs<tIlG(s)a1 -alll A ::;;;(M + 1) Ilaoll A +MtIIAalII A, 

by (iii) and (2). Noting that min(1,t) IlaIIA::;;;K(t, a), we have one half of (3). For 
the other half of (3), we have to find a suitable decomposition a=aO+a1 
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(aoEA, a1 ED(A)) of a. If t;;:: 1 then K(t, a) = Ilaii A (see the proof of Theorem 3.4.1) 
and the inequality follows. If 0 < t < 1 we put 

Then, as in the proof of Lemma 6.7.2, a1 ED(A), and 

K(t, a) ~ Ilaoll A + t Ila 1 1ID(A) 

= Ilt- 1 S~(G(s)a - a)dsll A + II S~G(s)adsIIA + IIA S~ G(s)adsII A 

~w(t, a)+M· t lIallA + IIG(t)a-aII A ~ C(w(t, a)+t IlaII A), 

which completes the proof of (3). 
There remains the proof of (5). Assume therefore that A is reflexive. Then 

D(A) is reflexive too, since it may be identified with the closed subspace 
{(a, Aa)laED(A)} of Ax A, and A x A is reflexive. One half of (5) is obvious, 
since t- 1 K(t, a) ~ IlaIID(A). 

For the other half of (5), we choose a, with sup,t- 1 K(t, a) finite, and a de
composition a=aO(t)+a 1(t) of a, such that 

Then, since D(A) is reflexive and its closed unit ball is accordingly weakly com
pact, there is a subsequence (b)i= 1 of the sequence (a 1(1/n));:"= l' which con
verges weakly in D(A) to an element b. But a1(t)=a-ao(t)--.a in A (t--. +0), 
and thus bn --'a weakly in A (n--. + CX)). Since D(A) is dense in A, it follows that 
a=b, and thus aED(A). This completes the proof of (5). D 

As an application of the previous theorem, consider the translation group, 
defined by G(t)a(x)=a(x+t) on LiIR,dx) (1~p<oo). Then the infinitesimal 
generator is given by Aa(x)=a'(x) and w(t, a)=sups<,IIL1sallp. From Theorem 
6.2.5, we infer that (equivalent norms) 

An analogous result holds for the general semi-groups we considered in the 
example at the beginning of this section. This result gives another characteriza
tion of the Besov spaces. 

6.7.4. Theorem. Let {G(t)} and A be as in Example 6.7.1. Then, with s=(Jm, 
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Proof: Let aEB~q, and let 1/1 and CPk be defined as in Section 6.2. As in the proof 
of Theorem 6.2.5, we see that 

IIAI/I *alI A ~C 111/1 *all p, 

IIACPk*aII A ~ C2mk Ilcpk*all p' 

Thus by Lemma 6.7.2 we obtain 

w(t, a) = sUPs<t II G(s)a -aliA 

~ C(min(1, t) 111/1 *all p + Lk~ 1 min(1, t2mk) II CPk*all p) . 

For s=(}m we conclude that 

by Theorem 6.7.3 and the fact that B~qcH~=Lp. 
Next, we assume that aE(A,D(A))e,q' We have the estimates 

II CPk *all p = Ilff- 1 {ipk • (exp( - H(2 -k .)) _1)-lff(G(2 -mk)a -a)} lip 

~ Cw(2- mk, a) (k~ 1), 

111/1 *allp~ C lIall p= C IlalI A , 

since cp(2- k .)(exp(-H(r k .))-1)-lEMp (1~p~oo), with norm independent of 
k. These estimates imply that 

Ilall~q~ c(llall A +(L~= 1 (2skw(2- mk, a))q)l/q)~ C Ilall(A,D(A)).,q' 

by Theorem 6.7.3. 0 

6.8. Exercises 

1. Give an example to show that the conclusion in the Mihlin multiplier theo
rem (6.1.6) does not remain valid for p=1. 

2. State and prove the analogue of M. Riesz's theorem on conjugate functions 
with IRn instead of the torus Y. (See Exercise 4 in Chapter 1.) (Use, e.g., the Riesz 
transforms e/I~I U=1,2, ... , n).) 

3. Prove that if, for all integers k and all oc with loci ~ L for some integer L > n12, 
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4. (Lofstrom [2]). Let g be an infinitely differentiable function on (0, OCJ), such 
that for j=O, 1,2, ... 

where (X> 0, f3 > O. Moreover, let H be an infinitely differentiable and positive 
function on JRn\{O}, which is positively homogeneous of order m>O. Put 

and prove, using the previous exercise, that P E MI' 

The following four exercises indicate other possible ways of defining the 
spaces B~q and H~. 

5. Prove that (fEY') 

Ilfllp+ Llal=NIIDafllp~ Llal<::NIIDafll p 
~ Ilfllp + Lj= IlioN flox711p (1 <p< (0). 

6. (Peetre [32]). Let the sequence (I/lv)v of functions I/lvEY be such that 

suppl/lv C [ _2-v, 2-V], 

II/lV)(x)l:( Cj 2V (1+ j) (j =0,1,2, ... ), 

SlRxjl/l/x)dx=O (j=O,1, ... ,k-1), 

L~= _rol/l/x )=£5(x). 

Prove that (fEY') 

where the definition of II· il~q is the obvious extension to 0 < p, q:( OCJ of that in 6.3. 

Hint: Superpose sequences of the type (I/l~h»)v to get a sequence as in Lemma 6.1.7, 
and conversely. 

The following definition is essentially Besov's [1 J. 

7. Let O<s<1. Show that 
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where B~q is defined in Section 2. State and prove an analogue for arbitrary 
S>O. 

Hint: (A, n~= 1 D(A~»8,p = n~= 1 (A, D(A~))8,p, see Section 9. 

8. (Taibleson [1 ]). Assume that 0 < s < 1. Let u = u(x, t) be the solution of the 
initial value problem: 

Prove that 

(t>O) , 

(t=O). 

where B~q is to be interpreted as in Section 2 (Cf. Exercise 24.) 

9. Prove that 

(a) Bn/PeL 
pl 00' 

(b) B~l is a Banach algebra under pointwise multiplication if s~nlp, 

(c) ~q is a Banach algebra under pointwise multiplication if s> nip. 

What can you prove about H~? 

10. Show that if f E B;/f then (LxE Z" If(xW)l/p is finite, where 7l denotes the set 
of all integers. (Cf. Peetre [32].) 

Hint: Interpolate between H~ and Loo. Use B;re(H~, L oo )8,p' 

11. ("Riemann's second theorem": see Zygmund [1 ]). Consider 

where an = 0(1). Put 

Show that FEB~oo" Generalize to the case where 

12. (a) Let fE!/" and assume that II f il ~q < 00 (see 6.3). Show that 
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for all (X with I(XI > s - nip. (This obviously means that f = L.1:= _ oc/Pk * f (in 9"') 
if f is taken modulo polynomials of degree at most [s - n/p]') Moreover, if q = 1, 
show that 

for all (X with I(XI ~ s - n/p. 

(b) State and prove the analoguous result for II· ~~. 

13. Verify that L.~ooq>k*f converges in iI~o+iI~l if feE~q, SO<S<S1' (This is 
a part of the proof of Theorem 6.3.1.) 

14. Show that spaces iI~ and B~q are not, in contrast to H~ and B;,q, monotone 
in s. 

15. Show that 

B;,q=Lp+E~q (s<O, 1 ~p, q~ 00), 

H~=Lp+iI~ (s<O, 1~p~oo). 

Hint: Cf. the proof of Theorem 6.3.2. 

There is a classical result by Bernstein [2] concerning absolutely convergent 
Fourier series. (See Zygmund [1].) The following three exercises extend Bern
stein's result. (For applications, see Peetre [4] (summability of Fourier integrals) 
and LOfstrom [2] (approximation).) 

16. Prove that 

Verify that this implies the inclusion 

17. Show that 

where 1/p=(1-(})/Po+(}P1' 1~Po,p1~00 and O<(}<1. Deduce from this the 
inclusion 

where 1/q>1/2-1/p and 2<q<00. 

18. Peetre [4]. Prove that if peE;/! then peMp' provided that 1/q>1/p-1/2 
and 2<q< 00. 
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Hint: Use Exercise 16 and 17. 

19. Show that if p satisfies the conditions in the Mihlin multiplier theorem 
(6.1.6) then 

20. (Brenner-Thomee-Wahl bin [1]). Let G be a given function with G being 
infinitely differentiable with compact support on [ -1, 1] and G(O) = 1. Put 

Ga,b(X) = I~ 1 exp(i2jx)2-ajr bG(x) , 

Ha,b(x) = Ixla(log(1/lxl))- bG(x) . 

Find necessary and sufficient conditions for Ga,bEB~q and Ha,bEB~q respectively. 

21. Show that the inclusions (Theorem 6.2.4) 

are the best possible in their dependence on the second lower index. (This means 
that 1 and 00 cannot be replaced with a q, q > 1 and q < 00 respectively.) 

Hint: Use Exercise 20. 

22. Show that the inclusions (Theorem 6.4.4) 

B~pcH~cB~2 (SElR, 1 <p~2), 

B~2 cH~cB~p (SElR, 2~p< 00) 

cannot be improved, i. e. the second lower index p and 2 in the first line cannot 
be replaced with a q, q>p and q<2 respectively. 

Hint: See Exercise 20. 

23. Show that the inclusions (Theorem 4.7.1) 

where A is a compatible Banach couple, cannot be improved, i. e. 1 and 00 cannot, 
in general, be replaced with a q, q> 1 and q < 00 respectively. 

Hint: Use Exercise 22. 

24. (Taibleson [1]). Put 

(G(t)f)(x) = n-(n+ 1)/2 r((n + 1)/2) J Rnt(t2 + lyI2)-(n+ 1)/2 f(x - y)dy 
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and define the space A(a; p, q) for a>O by means of the norm 

where ii is the smallest integer > a. Show that 

A(a; p, q) = B~q (equivalent norms) . 

25. Let G(t) be defined as in the previous exercise and let X be a given function 
such that XE CO'([ -1, 1 ]), X(O) = 1. Put 

(L+f)(t, x)= x(t)(G(t)f)(x) , O~ t < 00 • 

Prove that 

if Jl + lal = m and 1 < p < 00. Deduce that 

26. Put 

( )( ) ={g(t, x) if t~O, xEIRn, 
Fg t, x ,\,N . 

L.j= 1 ajg( -)t, x), if t<O, XEIRn, 

and choose au ... , aN so that 

for m=O, 1, ... , N. Then put L=FL+, where L+ is as in the previous exercise. 
Show that Tr Lf = f and 

L: B~; l/p(IRn)--+ H~(IRn+ 1) 

L" Bs - 1/P(IRn)--+Bs (IRn+ 1) • pq pq , 

for 1 < p < 00, 1 ~ q ~ CXl and s> 1. 

27. (a) Let G be a strongly continuous, equi-bounded semi-group on a Banach 
space A and let A be the infinitesimal generator of G. Let Am be the domain of 
Am and, for m= 1,2, ... , put 

Prove that there is a positive constant Cm>O such that 

c;;; 1 K(t, a; Am-\ Am)~Pm(t, a)+min(1, t) lIall Am - 1 

~CmK(t, a; Am- 1, Am). 



6.8. Exercises 

(b) (Peetre [10]). Put 

Wm(t,a) =suPo<s';;tll(G(s)-1tIII, 

and prove that there is a positive constant Cm such that 
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28. (a) (Butzer-Berens [1]). An equi-bounded, strongly continuous semi-group 
G with infinitesimal generator A is said to be holomorphic if G(t)aED(A) for all a 
and 

IIAG(t)all:::;Ct- 1 1Iall, t>O. 

Prove that the space (A, Am)o,q' 0 < f:J < 1, is given by the condition 

where O<IX<m, lX/m=f:J. 

(b) Prove that the semi-groups on LiIRn) discussed in Section 6.7 are holo
morphic. 

29. (Triebel [3]). Let F~q be the space of all IE51" such that I has the representa
tion I=Li=ofj where (f)'OELil~) and suPpJjcg:2j-l:::;I~I:::;2j+l} for 
j=1,2, ... , suPPJocg: 1~1:::;2}. The norm on F~q is 

II I II FJ,q = inlJ =If} II (f)'O II Lp(l~) • 

Prove that 

Moreover, show that (F~q)'=F;~, if 1<p,q<00 and that F~2=H~. Prove 
also that 

(F~~o' F~~)o,q=B~q, 

(F~~qO' F~11q)O,p=B~p, 

(F~Oq, F~lq)O,p=F~q, 

(F~~qO' F~llq)[Ol = F~q, 

for suitable values of the parameters. 

30. Let P = P(D) be an elliptic partial differential operator of order m with 
constant coefficients in IR", such that P(t~) = tm P( ~), t> 0, ~ E IR". Show that 
(fEY') 

IIIli~+m~ IIP(D)Iil~ (SEIR, 1 <p< (0), 

IIIli~;m~ IIP(D)Ili~q (SEIR, 1 :::;p:::; 00,1 :::;q:::; (0). 

(Cf. H6rmander [2], for example.) 
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31. Show that the following inequality of Gagliardo-Nirenberg type holds: (f E 9") 

where 

In Exercise 1.6.14 we defined the space H llf), by means of the norm 

Similarly, H iIR.) is the space of all functions holomorphic in the upper half-plane 
Imz > ° such that 

There are of course n-dimensional versions of these spaces. The following three 
exercises are meant to point out some recent extensions of classical results to 
the case n~ 1. 

32. (Fefferman-Riviere-Sagher [1 ]). Let T be a linear operator, such that 

Prove that 

if 

Hint: Use Formula (2) in Section 9. 

33. (Peetre [28]). Prove that if f E H p (0 < p:::; 2) then 

(SRn Iff f(~)IP 1~I-n(2 - p)d~)l/P < 00 . 

Hint: Use the fact that fEHp (O<p< 1) implies Iff f(~)I:::; CI~ln(l/p-l) and 1.4.1. 

34. (Peetre [28]). Prove that (e>0,0<p<1) 

provided that 1/q= 1/p-e/n>0, p>O. 

Hint: Show that t: Hp-+B:oo if 1/q= 1/p+(s-e)/n, and that B~p cHq • 
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35. (Mitjagin-Semenov, personal communication). Consider the spaces 
consisting of j times continuously differentiable real-valued functions on 
interval [-1,1]. The (semi-) norm is given by Ilfllj=suPxIDjf(x)1 (fECj). 

Define the family of operators T, (0<8~1) by the formula 

SI X 
TJ(x) = -1 2 2 2 (f(y)- f(O))dy. 

x +y +8 
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Use these operators to show that C1 is not an interpolation space with re
spect to the couple (CO, C2 ). (Cf. Section 6.9 for additional results.) 

Hint: Show that T,: (CO, C2 )--+(CO, C2 ) with norms independent of 8, but that 
(TJJ'(O)--+ + 00 as 8--+ +0, where f,(x)=(x 2 +82)1/2, although II f,lIj~ C, j =0,2, 
for all 8 (0<8~1). 

6.9. Notes and Comment 

The study of Sobolev and Besov spaces has its roots in questions concerning 
the regularity of solutions of elliptic partial differential equations. Many of the 
results in this chapter are due to Hardy and Littlewood in the case n = 1, see 
Hardy-Littlewood-P6Iya [1]. Another early result is the embedding theorem by 
Sobolev [1] discussed in 6.5. These works were published before 1940. Sobolev [1] 
defined spaces W~ involving weak derivatives of integral order. There are several 
possibilities of extending the definition to cover the case of fractional derivatives 
too. Besov [1] used moduli of continuity (see also Nikolski [1]-a survey article), 
and Taibleson [1] the solution to an initial value problem for the definition of 
B~q. These definitions are essentially equivalent to the one given in Section 2 
(see the exercises and Theorem 6.2.5). The spaces H~ (p # 2) were introduced by 
several authors around 1960. For p=2 they are much older. In contrast to the 
spaces B~q (p # 2), the spaces H~ are equivalent to Sobolev's spaces W~ for non
negative integral values of s and for 1 < p < 00 (Theorem 6.2.3 and the exercises). 
Other ways of defining B~q are, e. g., via interpolation: 

as in Theorem 6.2.4, or via approximation as in Theorem 7.4.2. The latter ap
proach is found in Nikolski [1] and is based on the Jackson and Bernstein 
inequalities. As we have already remarked, the present definition of the spaces 
B~q in Section 2 is due to Peetre [5].Cf. Nikolski-Lions-Lizorkin [1]. 

Applications of the results of this and the previous chapter to analysis, e. g., 
partial differential equations and harmonic analysis, can be found in, e. g., 
Magenes [1] and in Peetre [2,4,7,8], which also contain many references. 
Cf. 6.8 and 7.6 for additional references. 
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We remark here that there is a collection of twelve open problems under the 
heading "Problems in interpolation of operations and applications I-II" in 
Notices Amer. Math. Soc. 22, 124-126 (1975); ibid. 199-200. 

We note that the results in this chapter also hold, mutatis mutandis, when 
IRn is replaced by r, the n-dimensional torus. (Cf. 7.5.) 

Artola [1] proves the following interpolation result after Lions [1]: Let A 
be a compatible Banach couple with Ll(A) dense in both Ao and A l' Assume that 
Mihlin's multiplier theorem holds in Lp.(Ai) (1<pi,i=0,1). If uELpo(Ao) and 
DmUELp,(A 1) then DjuELiA[o]), where 8=j/m, 1/p=(1-8)/Po+8PI and 0<8<1. 
We do not know whether there is a version with the real interpolation method. 

Zafran [1] has given an example which shows that the answer is 'no' to the 
following question posed by E. M. Stein: Let PES' be such that 

Does it follow that P EM / This negative answer is evidently important for a 
consideration of the relation between the Riesz-Thorin and the Marcinkiewicz 
theorems, or between the complex and the real methods. 

Interpolation of the Hardy spaces H p' it may be argued, deserves a chapter 
of its own. However, we think that a summary of the main results, with references, 
should be sufficient. Our reason for this is that the interpolation techniques 
which have been used are displayed in the previous chapters, in particular in 1.6. 

The classical approach to H p-spaces is via complex function theory (cf. 
Duren [1] and Zygmund [1] for the one-dimensional case, and Stein [2] for 
the n-dimensional case). This approach was complemented in 1972 by a real 
variable characterization (0<p<1) introduced by Fefferman-Stein [1]. Another 
important result of Fefferman-Stein [1] is that the dual space of HI is the space 
BMO, consisting of functions of "bounded mean oscillation". 

The first results concerning interpolation of H p-spaces were obtained by 
Thorin [2] in 1948 and by Salem-Zygmund [1]. (Cf. 1.6 and 1.7.) Using the 
results of Fefferman-Stein [1], it is possible to obtain the following theorems: 

(1) (HI' Loo)[o]=Hp (1/p=1-8,0<8<1), 

(2) (Hpo' Hp)o.p=Hp (1/p=(1-8)/Po+8/PI' O<po, PI < 00, 0<8<1) 

where the functions in H p depend on n (~1) variables. (1) is found in Fefferman
Stein [1] and (2) in Fefferman-Riviere-Sagher [1]. Some applications are given 
as exercises. A general reference, for the results about Hp-spaces mentioned 
above, and containing many references, is Peetre [28]. 

The spaces B~q with 0<p<1 have been discussed by Peetre [32]. (Cf. 7.6 for 
details.) These spaces appear also in Exercise 35 concerned with H p-spaces. 
Connected with this is the following result by Peetre [31]: Consider the real line 
IR, and let pES'. Assume that 
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for some p, 0 < p < 1. Then p is a discrete measure of the form 

where lJ is the Dirac measure, (xJ is an at most countably infinite family of distinct 
points in JR. and Llc«IP is finite. 

If, instead of L p' the Lorentz spaces Lpq are used in the definition of B~q, 
the spaces are denoted by B~.~, i.e. 

B~.~={fES'III"'*fIILpq +(Lr~1(2kSllqJk*fIILpqnl/r < oo} 

(s E JR., 1::::;; p, q, r::::;; 00). 

Inclusion and interpolation theorems for these spaces are found in Peetre [9] 
for example. 

An attempt to unify the theory of some different spaces of functions subject 
to certain growth restrictions is the construction of the spaces L p ,;" 

going back to Morrey [1]. Interpolation of (a generalization of) these spaces 
have been treated by Spanne [1] (see also Peetre [12]). In particular, Spanne [1] 
treats simultaneously interpolation of L p-' C«- and Lp,;,-spaces. (Cf. also Miranda 
[1], who applies complex methods, and Brudnyi [1].) 

Another notion has been proposed by Peetre [5] and investigated by Triebel 
[3], viz. spaces of Lizorkin type: 

Note that 

(Cf. also Peetre [30], who treats the case O<p, q::::;; 00 and proves a multiplier 
theorem analogous to Mihlin's. Another definition is found in Exercise 29.) 

Quite recently, B. S. Mitjagin has personally communicated a result, which 
he found together with E. M. Semenov, viz. C1 is not an interpolation space 
with respect to the couple (CO, C2 ) (cf. Exercise 35). He also states that they have 
proved that to any pair of integers k, n with 0 < k < n, there exists an operator T, 
such that (Ci=Ci(Sl)) 

T: Ci-+Ci (O::::;;j::::;;n,j#k) , 

T(Ck)¢.Ck . 

Moreover, the same statement holds with W{(Sl) instead of Ci(Sl). 

6.9.1. The outstanding result here is, of course, the Mihlin multiplier theorem. 
This theorem appeared in 1939 in Marcinkiewicz [2] involving Fourier series 



172 6. Interpolation of Sobolev and Besov Spaces 

for functions on the n-dimensional torus 1[n. His assumptions are the analogues 
of those in Theorem 6.1.6. Calderon-Zygmund [1] give another version: suf
ficient conditions for the Lp-continuity of convolution with certain singular 
kernels in 1R". The Calderon-Zygmund theorem is an important result in the 
theory of partial differential equations. In contrast to Marcinkiewicz, Calderon
Zygmund use real variable methods. (In fact, our proof is essentially that of 
Calderon-Zygmund, in the version of Hormander [1].) The real variable ap
proach is based on their covering lemma (6.1.8). Mihlin [1] extends Marcinkie
wicz' result from 1[n to IR n. Hormander [1] then presents a theorem containing 
both the Mihlin and the Calderon-Zygmund results. In particular, he makes 
the assumption expressed by Formula (19), and his proof is founded on the 
ideas in Calderon-Zygmund [1]. Hormander also treats the applications to 
partial differential equations. Several extensions to the vector-valued case have 
been made (see, e. g., Triebel [3]). 

Let us point to the fundamental role of covering lemmas in the present proof 
of the Mihlin multiplier theorem. (Cf. also Stein [2] for a discussion of covering 
lemmas in this context.) Firstly, we invoked the Calderon-Zygmund covering 
lemma. Secondly, in the proof of this lemma, we referred to the Lebesgue dif
ferentiation theorem. For the proof of the latter theorem, another covering lemma 
is used, e.g., F. Riesz's "sunrise in the mountains" lemma (cf. Riesz-Nagy [1]). 
However, Riesz's lemma is a special case of the Calderon-Zygmund lemma. 

Theorem 6.1.3 is found in Hormander [1]. 
As a general reference for this section, we mention Stein [2]. (See Section 1.7 

for additional references.) 

6.9.2. The idea of using a sequence (CPk)':' 00 for the definition of the Besov spaces 
is taken from Peetre [5]. In the case p = q = 2, this idea has also been used by 
Hormander [2], and, in the general case, by Lizorkin, see Nikolski [1]. (Cf. 
also Shapiro [2].) 

Let us also point out here that not all the alternative definitions are valid 
as such when 1 ~ p ~ 00. This is a consequence of our recourse to the Mihlin 

. multiplier theorem for the proofs of some of those statements. (Cf. the exercises 
and Nikolski-Lions-Lizorkin [1].) 

6.9.3. The presentation of this section caused a dilemma. Either we had to do 
everything in tiresome detail, using quotient spaces etc. (cf. Exercise 12), or 
present the results with semi-norms, as they now stand. The drawback of the 
latter alternative is that we have not treated the real method in the case of semi
normed spaces. However, it is essentially the equivalence theorem that is needed 
here. A proof of this can be found in Gustavsson [1], and it exhibits no un
expected features. In fact, the homogeneous spaces iI; and B;q are constructed 
mostly for convenience. The philosophy is: Anything that is true for the homo
geneous spaces is true, mutatis mutandis, also for the inhomogeneous spaces, 
and it is technically easier to work in the homogeneous case. 

6.9.4. The results given here for the real method are due to Lions-Peetre [1] 
and to Peetre [5], and those given for the complex method to Calderon [2]. 
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Note that Formula (4) and Formula (7) of Theorem 6.4.5 indicate that the func
tors Co and KO,q are not the same (cf. Exercise 22). 

6.9.5. In 1938, Sobolev [1] proved a first version of Theorem 6.5.1. See also 
Schwartz [1]. 

The inclusions in Theorem 6.5.1 cannot be improved; cf. Exercise 20-23. 

6.9.6. As we pointed out in 3.14, the trace theorems were the forerunners of 
the abstract real interpolation method. These early results are due to Lions [1]. 
Subsequently, Lions- Peetre [1] developed the real method. 

Recently, lawerth [1] has proved trace theorems in the case 0<p<1, using 
direct methods. 

6.9.7. For an introduction to the theory of semi-groups, see Butzer-Behrens [1]. 
The potential to use interpolation, with the real method, rests on Theorem 6.7.3, 
Formula (3), describing the functional K(t, a; A, D(A)). The interpolation results 
are due to Lions [1] (see Lions-Peetre [1] and Peetre [10]). In Peetre [10], the 
couples (A, D(Am)), (A, n~= 1 D(A~)) and n~= 1 (A, D(A~)) (m? 1) are considered. 
In particular, if the semi-groups commute, 

(Cf. Section 3.14 and the references given there.) However, Grisvard [1] proves 
that 

where A is a Banach couple, A 1 C Ao and D(T) is the domain of the closed opera
tor T contained in Ao, under certain restrictions on the resolvent of T and on AI; 
in particular A1 must be invariant. If A1 =D(U), the domain of another closed 
operator U, the result holds under conditions on T and U, which do not imply 
commutativity. (Cf. also Peetre [15,27].) 



Chapter 7 

Applications to Approximation Theory 

There is a close connection between the classical approximation theory and the 
theory of interpolation spaces. We indicated this in 1.5. We discuss the link in 
more detail in the first two sections. In the first section, the main result is that 
every "approximation space" is a real interpolation space. The theorem makes 
the K-method (Chapter 3) available in approximation theory. This is then 
utilized in Section 2 to obtain, i.a., a classical theorem (of Jackson and Bern
stein type; see 1.5) concerning the best approximation of functions in Lp(JRn) 
(1 ,,;; p";; ex)) by entire functions of exponential type. In the following sections, 
3 and 4, we prove other approximation theorems, using interpolation techniques 
developed in Chapter 3, 5 and 6. In particular, we treat approximation of oper
ators by operators of finite rank, and approximation of differential operators 
by difference operators. Additional applications are indicated in Section 7.5 
and 7.6, e. g., approximation by spline functions. 

7.1. Approximation Spaces 

The basic notion of classical approximation theory is the concept of best ap
proximation E(t, a) to a given function a. We now extend this notion to a more 
general situation. 

We consider the category of all quasi-normed Abelian groups (cf. 3.10). 
Given a couple A =(Ao, At) and an element aEl:(A) we put 

The E-functional just defined does not have any norm property. However, 
it has the following sub-additivity property. 

7.1.1. Lemma. Assume that Aj is crnormed. Then E(t, a) is a decreasing function 
of t and 

for 0<1><1. Moreover if E(t,a)=Oforall t>O then a=O. 
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In order to make the notation less cumbersome, the reader could put 
Co = C I = 1 in a first reading. 

we get the first part of the lemma. In order to prove the second part, we note 
that if E(t,a)=O for all twecan find anEAo,n=1,2, ... such that lIa-anIIAl~O 
and IlanllAo~O as n~CXJ. Thus an~O in Ao and an-+a in AI· But Ao and Al 
are compatible which implies that there is a Hausdorff topological vector space 
.s1 containing Ao and AI. Thus an-+O and an-+a in.s1 and hence a=O. 0 

We now investigate the connection between the K- and E-functionals. We 
shall use the concept of the Gagliardo set r, defined as follows. Let A be a given 
couple of quasi-normed Abelian groups. To every element aEl"(A) we associate 
a plane set, the Gagliardo set of a, defined as the set of all vectors x = (xo, XI)E IR2 

such that a=aO+a l , for some aoEAo and a l EAI' with 

This set will be denoted by r(a) or r(a; A). In general r(a) is not convex (cf. 7.1.4 
below). If Aj is crnormed we have, however, the following sub-additivity property: 

It is also plain that 

In terms of r(a), we have 

Kit, a) =infxEiJT(a)(xg + txf)l/p= infxET(a)(xg + txf)I/P, 0 <p~ 00, 

E(t, a)=infxEiJT(a)xI =infxET(a)x I , 
xo~t xo~t 

where ar(a) denotes the boundary of r(a). The second formula means that the 
intersection of r(a) with the line xo=t is a half-line (closed or open) with end
point (t, E(t, a)). To put it in another way, ar(a) is the graph of the function E(t,a) 
completed, if need be, with vertical lines where E(t, a) is discontinuous. In par
ticular, 

(1) K(t, a) =infs(sP+ t(E(s, aW)I/P, O<p~ 00, 

see Figure 4. 
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Xl 

Fig. 4 

By Formula (1) we can express the Kp-functional by means of the E-func
tiona!. We shall now consider the converse question of expressing the E-func
tional by means of the Kp-functional in the cases p=1 and P=CIJ. 

7.1.2. Lemma. Given s>O, there is a t>O such that 

Koo(s, a)=t and E(t+O, a)~tls~E(t-O, a), 

where E(t+O, a)=lim sUPT~t+oE(r, a) and E(t-O, a)=lim inft~t_oE(r, a). In 
particular, if E(t) is continuous then Koo(t) is the inverse of tIE(t). 

Proof: Clearly, max(xo,sxt)=t represents, for xo?:O and X 1?:0, the finite 
segments of the lines Xo = t and Xl = tis, see Figure 5. By Formula (1), we have, 
in addition, 

These two remarks and an inspection of Figure 5 give the lemma. 0 

7.1.3. Lemma. Let E*(t, a) be defined by the formula 

E*(t, a) = sUPss- t(K(s, a) - t) . 

Then E*(t, a) is the greatest convex minorant of E and 

E*(t, a)~E(t, a)~(1-e)-1 E*(et), O<e< 1. 
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Proof: Writing chr(a) for the convex hull of r(a), we note that 

xo~t xo~t 

which follows at once from the definition of E*(t, a) and the above expression 
for Kl(t, a) in terms of r(a). (In the expression for Kl(t, a) we may clearly sub
stitute chr(a) for r(a).) This representation of E*(t, a) gives the lemma. 0 

(tIE(t))¥~ 

~r 

Fig. 5 

7.1.4. Corollary. If A is a normed couple 

Proof: Clearly, r(a) is convex if A is normed. Then E*(t, a)=E(t, a) by the 
above proof. 0 

We now give the definition of an approximation space. 

7.1.5. Definition. Let A =(Ao, A l ) be a given compatible couple of quasi-normed 
Abelian groups. The approximation space E.q(A) is the space of all aEL(A) for 
which 

Ilall.q;E=<P_.)E(t, a))< 00. 

H ere we take 0 < Q( < 00 and 0 < q ~ 00 or 0 ~ Q( < 00 and q = 00. 

7.1.6. Lemma. Assume that A =(Ao, A l ) and that Aj is crnormed. Then 
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defines a c-norm on Eaq(A) with 

Proof: If Ilallaq;E=O we must have E(t,a)=O for all t and hence a=O. By 
Lemma 7.1.1 we also have 

Writing d=2clmax(c~, c~)max(1,rl/q') we see that 

Choosing s so that the two terms on the right hand side are equal we obtain 

This gives the result. 0 

Next, we compare the approximation spaces EajA) with the interpolation 
spaces Ko)A). 

7.1.7. Theorem. Let A be a quasi-normed couple and put 8=1/(0:+1), r=8q. 
Then 

Proof: The norm of a in the space Ko)A) is equivalent to cfJo)Koo(s, a» (see 
3.11). Let us start with the case q=oo. Then r=oo. Now we choose t according 
to Lemma 7.1.2. Then we get 

which gives Kooo(A) c (Eaoo(A)t The converse inclusion IS equally obvious, 
since we have 

In the case q < 00 (and r < (0), we integrate by parts and change variables, 
writing s = t/E(t,a). Note that sO(Koo(s,a)--+O as s--+O or s--+oo and that taE(t,a)--+O 
as t--+O or t--+oo. Thus 

S~(s-OKoo(s, a»qds/s~ - S~ Koo(s, a)q ds- Oq = S~s-OqdKoo(s, a)q 

= S~(t/E(t, a»-Oqd(tq)~ S~(taE(t, a»Oqdt/t 

which gives the result. 0 

As a consequence of the reiteration and power theorems, we obtain 
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7.1.8. Theorem. If oc=(1-(})oco+(}oc1 and OC O #oc1 then 

and 

where r=(}q and /3=(oc 1 -oc)/(oc-oco) or, equivalently, (}=1/(/3+1). 

72. Approximation of Functions 

In this section we determine the approximation space Ea.iA) for certain couples 
A. We will get other proofs of some of the results of Chapter 5 and 6, thus 
giving another interpretation of these results. 

Let (U, fl.) be a measure space. We recall the definition of the space Lo. The 
quasi-norm on Lo is 

IlfIILo=fl.(suppf) , 

where f is measurable and its support, suI1pf, is any measurable set F such that 
f =0 outside F and f #0 almost everywhere on F. We shall now find the value 
of E(t,f; Lo, Lex,). 

7.2.1. Lemma. Let f* be the non-increasing rearrangement of f. Then 

Proof: By definition E(t,f) is the infimum of all numbers of the form II! -gil 00' 

where the fl.-measure of the support F of g is at most t. Now put g(x) = f(x) on 
F and g(x)=O outside F. Then II! -gil 00 ~ II! -gil 00' Next, we consider the 
function 

(x) = {f(X) if If(x)1 > 0" , 

gao otherwise. 

Writing T=sup{lf(x)l: xf/;F} we have suppg,cF. Thus fl.(suppg,)~t. Clearly 
II f - g,11 00 ~ T and II f -g II 00 = T. Thus we see that 

But the right hand side is just the definition of f*(t). 0 

From Lemma 7.2.1 and Theorem 7.1.7 we get the following complement of 
Theorem 5.2.1. 
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7.2.2. Theorem. For any p>O and q>O we have 

E1/p,iLo, Loo)=Lpq (equal norms). 

If O=p/(p+1) and r=Oq we therefore have 

K8,iL O' Loo)=(Lpl· 

7.2.3. Corollary. If O=1/(P+1), r=Oq and 1/p=(1-0)/Po+O/Pl then 

Ep)Lpo' Lp)=(Lp.i I8 . 

The corollary is an immediate consequence of Theorem 7.1.8. 

Next, we shall consider approximation spaces between Lp (1 ~p~ 00) and 
the space Iff p of all entire functio!ls in Lp of exponential type. Thus Iff p consists 
of all functions f E Lp for which f has compact support. Let us write 

The space Iffp becomes a quasi-normed (1-normed) vector space if we introduce 
the functional 

We shall make use of the following classical inequalities: (N =0,1,2, ... ) 

(1) E(t,f; Iffp, Lp)~CNt-NllfIIHg, (Jackson), 

(2) II f II Hg ~ C Nil f II ~ II f II Lp' (Bernstein). 

For completeness, we give the proofs here. In order to prove Jackson's inequality, 
we choose a function XE 9'(R), such that 

{ 1' 
X(u) = 0, 

Put q,t(~)=x(t-NI~IN) and tfrt=~I~I-N(x(t-NI~IN)-1). Obviously, tfrtEMp, 
1 ~p~ 00, by Lemma 6.1.5, with IIt/ltIIM independent of t (Theorem 6.1.3). 

p 

Moreover, cpt*fEEp and cpt*f - f=t-Nt/lt*I N f. Thus 

E(t,f; Iff P' Lp)~ IltfrtllMpt- N pN fllL p' 

which gives (1). In order to prove Bernstein's inequality, we put iN(~)=x(lW2t)N, 
with X as in the above proof and t= Ilfllc. Then, arguing as for tfrt above, we 
have 

IIIN fllp= IIINXN*fll p= Ilff-l{(I~lx(IW2t)tg;J}lIp~ CtNllfll p, 

which proves (2). 0 
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In view of Theorem 7.1.7, (1) is equivalent to 

Similarly, (2) implies that 

(1IfIIHN)l/(N+ 1)~ eNllfll} -l/(N+ 1) Ilflli/(N+ 1) • 
p p p 

Thus (H:)l/(N+ 1) is of class rc l/(N+ l)(C P' Lp). Using the theorems, the numbers 
of which stand above the equality signs, we obtain, with a>O, 

(Theorem 3.7.1 is valid in the quasi-normed case too, as we remarked in Sec
tion 3.11.) Therefore we have proved 

7.2.4. Theorem. For any a>O we have 

This is a classical result on the best approximation by entire functions. A 
particular case (r=oo, O<a<1) is 

if and only if 

7.3. Approximation of Operators 

There is an analogy between the question of finding the approximation space 
E~,q(Lo, Loo) and the question of approximation by means of operators of finite 
rank. We sketch this analogy briefly. 
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In this section, we let 6 oo(A, B) stand for the space of all bounded linear 
operators from the Banach space A to the Banach space B. We let 6 o(A, B) 
denote the space of all such operators of finite rank. The norms are defined by 

II TI16oo(A,B)=suPllaIlA~ 111 TaII B, 

II TI1 6o(A,B)=rank T=dimBT(A). 

Now we consider the approximation number 

E(t, T)=inf{IIT-SI16oo(A,B): rankS~t}, 

and the space 6/A, B) (0 < P < (0) of all T such that 

II TI16 p (A,B) = (J~ E(t, T)P dt)l/p . 

From Theorem 7.1.7 and 7.1.8 we now infer that 

(6o(A, B), 6 oo(A, B))o,Plo=(6/A, B))O 

if 8=p!(p+1) and thus 

(6po(A, B), 6 p,(A, B))o,p= 6 p(A, B) 

if 1!p=(1-8)!Po+8!Pl' 
If A and B are Hilbert spaces, then 6 p(A, B) consists of the p-nuclear opera

tors from A to B. A linear operator T from A to B is p-nuclear if it can be repre
sented in the form 

where 

7.4. Approximation by Difference Operators 

In this section we consider the rate of convergence of difference operators. 
Let G(t) be the solution operator for the initial value problem 

(1 ) {
au 
a~+P(D)U=O: 

u- j, xElR, 

XElRn, t>O, 

t=O. 
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We assume that the differential operator P(D), with D as in 6.1, has constant 
coefficients and that the polynomial P(~) is positive for ~ #0 and positively 
homogeneous of order m>O. The solution U of (1) is u=G(t)f. Clearly, G(t) 
is the semi-group of operators considered in the example of Section 6.7. Thus 

i. e. (1) is correctly posed. 
We shall now approximate to the solution u of (1) by means of a function uh , 

which is constructed as the solution of a discrete initial value problem of the 
form 

(2) {
Uh(X, t+k)= LaeaUh(X+cxh, t), 

Uh(X, 0)= j(x), 

t=O, k, 2k, 3k, ... , 

where k>O, and where cxEIRn are chosen with regard to P. Clearly, Uh depends 
linearly on f, so we can write uh(x, t)=(Gh(t)f)(x) where t=k, 2k, 3k, .... Gh(k) 
is given by the formula 

From (2) we see that 

Uh(x, t)=(Gh(kt f)(x), t=Nk, N =1,2, .... 

The operator Gh(t) can be characterized by means of the Fourier transform. 
In fact, we clearly have 

where 

(the symbol of the difference scheme (2)). Therefore 

Assuming that Uh-+U in Lp and using the principle of uniform boundedness, 
we see that the difference scheme (2) must be stable in the sense that 

In terms of Fourier multipliers, this condition could be rephrased as 

(3) SUPN= 1.2, ... IIe(~tIIMp < W . 
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Example: Let us consider the equation 

{
OU 02U 
ot = OX2' XEIR, t>O, 

U= f, XEIR, t=O. 

In order to approximate to the solution u, we replace the differential operators 
by difference operators. For instance, we may replace ou/ot by k- 1(Uh(X, t+k)
uh(x, t)) and 02U/OX2 by h- 2(Uh(X+h, t)-2uh(x, t)+uh(x-h, t)). Assuming that 
kh - 2 = A. (a positive constant), we thus replace the continuous initial value prob
lem above by a discrete counterpart 

{ Uh(X, t+k)=Uh(X, t) + A.(uh(x + h, t)-2uh(x, t)+uh(x-h, t)), 

uh(x, 0) = f(x) . 

In this case we therefore have 

i.e. 

Here we have stability if 0 < A::::; 1/2. In fact, 

Thus, by Theorem 6.1.2, if 0 < A::::; 1/2 then 

We now return to the general case. Our objective is to study the rate of the 
convergence of Uh--U as h--O. More precisely, we want to find the space A~ 
of all fELp such that II Gh(t)f -G(t)!IILp::::;ChO', h--O (uniformly in t=k, 2k, ... , 
k = Ahm). Clearly, we shall have to make some assumption on how fast Uh con
verges to u, when f is a nice function. This can be specified by means of assump
tions on the difference e(h~) - exp( - kP(~)) or, equivalently, by means of assump
tions on Ph(~)-P(~), where 

7.4.1. Definition. Assume that k=Ahm, m being the order of P(~). Then we say 
that Ph approximates P with degree exactly s>O, if 
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where Q(I]) is infinitely differentiable on 0 < II]I < 1:0 and has bounded derivatives 
there, and if 

In the example considered above, we have 

and 

Then it is easily seen that 

where c;.=O if and only if A=1/6 and d1/6 ",,0. ThusPhapproximatesPofdegree 
exactly 2 if A"" 1/6 and of degree exactly 4 if A = 1/6. 

7.4.2. Theorem. Assume that Gh(t) is a stable difference operator in the sense of (3), 
and that Ph approximates P with order exactly s > O. Then 

Moreover, if fELp (1 ~p~ 00) and 

then f=O. 

Proof: In order to prove B~co c A~ we write, with <{Jo = t/I, 

We shall establish the estimates 

Ilexp( -tPh)-exp( -tP)IIMp~C 
and 

II (exp( -tPh)-exp( -tP))LJ=-l (Pj+ lllMp 

~C(exp( -Dt2mj)-exp( -At2mj))(h2jy, h2j~I:<l:o/2, 

where A> D > 0 if I: is small enough, and (P _ 1 == O. These two estimates give 
the desired inclusion, since '5J=-l<{Jj+l*<{Jj=<{Jj, 

h -s II Uh - ull p~ Lj;' oh -s II (Gh(t) - G(t))<{Jj *f II p 

~ C(Lh2 i ",,(exp( - Dt2mj) -exp( - At2mj)) 

+ Lh2 i >,(h2 j )-S) II f II~oo ~ CII f II~co· 
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and thus, by interpolation, 

There remain the two estimates. The first one follows directly from the stability. 
F or the proof of the second one, we write 

exp( -tPh(~))-exp( -tP(~)) 

= tl~lm(h I~ IYQ(h~)exp( - tP(~)) Sbexp(rt I ~ 1m (hl~IYQ(h~))dr. 

Invoking Theorem 6.1.3 and Lemma 6.1.5, we obtain 

II(exp( -tPh)-exp( -tp))IJ= -1 (Pj+ lllMp 

~ Ct2mj(h2j), exp( - At2mj) S6eXp(Brt2mj(h2j),)dr 

~ C(exp( - Dt2mj) - exp( - A t2mj))(h2j), , h2j ~ G < Go/2, 

where A> 0, D = A - &S, B> o. Clearly, D > 0 if G is small enough. This is the 
second estimate. 

The converse inclusion A~ c B~oo is implied by the following estimate, a 
consequence of Theorem 6.1.3 and Lemma 6.1.5. We have, with t=Nk=2- mj, 
h=12- j, U~2) 

since 

II ({Jj* f Ilp~ C II (exp( - tPh)-exp( _tP))-1 IJ= -1 (Pj+lIIM p 

. II Gh(t)f -G(t)fll p 

~ Ch" Ilexp(tP)(exp( - thSI~lm+sQ(h~))_1)-1 IJ= -1 (Pj+lIIM p 

~Ch"(h2j)-S, for N large enough, 

if 1= h2 j < Go/4, i. e. N is large enough. Note also that if we know that 

SUPt II Gh(t)f-G(t)fIIL =o(hS) 
p 

then it follows that ({Jj*f=O for allj, i.e,. that f=O. 0 

7.5. Exercises 

1. Let k be a given infinitely differentiable function such that k(~) = 1 for 
1~1<1/2 and k(~)=O for 1~1>1. Put k;,<X)=Ank(AX), xEJRn• Prove that 
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if and only if 

Ilk.< *1-11I p =O(A -S), A--+OO. 

2. (Lofstrom [2]). For kEMp let k.< be given by $'(kJ(~)=k(~/A) (A > 0). Prove 
that the implication 

holds if and only if for some B > 0, C > 0 

(Here qJ is the standard function in the definition of Besov spaces.) Prove also that 
if (1) holds then we have for O<O"<s 

3. (Shapiro [1 ]). For fr E Moo we define 0".< as in the previous exercise. Put 

D,,(t,f)=sUP.<t:;' 1110".< *111· 

Prove that if fr(~)#O on 1~1=1 and if pEMoo can be written p(~)=fr(~)i(~) 
in a neighbourhood of ~=O, with iEM oo' then there are constants C>O and 
B>O such that 

4. (Shapiro [1 ]). Let 0" be a real, bounded, non-vanishing measure on the real line 
and assume that D ,,(t,f) = O(tq) as t--+O. Prove that the modulus of continuity 
wm(t, f) of order m on Loo is given by 

{
O(tq) if q < m, 

wm(t,f) = O(tq ln1/t) if q=m, 

O(tm) if q > m. 

5. (Lofstrom [2], Peetre [4]). Put 

k(~)=(1-H(~))~, ~ElRn 

where H is infinitely differentiable and positive outside the origin and H(t~) = tm H(~) 

for t> O. Prove that k E Moo if IX> (n -1 )/2. Prove also that 

if and only if 1 E B'oo 00. 

Hint: Use Exercise 18 in Chapter 6 and Exercise 3 above. 
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6. In this and the next three exercises we conside the n-dimensional torus If". Let 
cP be the standard function in the definition of the Besov spaces and let CPk be the 
function whose Fourier coefficients are cp(2 -k ~), ~ E 7l" (71 is the set of all integers). 
Let 1'0 be the operator defined by 

where J(~) are the Fourier coefficients of f. 
(a) Prove that 111'Ocpk*fllp~C2sk Ilcpk*fll p. 

(b) Define H~('If") by means of the norm 

Ilfll~= 111'Ofllp. 

Prove that the norm on 

is equivalent to 

(c) Define the space B~r(lf") by means of differentiability conditions as in 
Theorem 6.2.5. 

7. Let gO be the space of all trigonometric polynomials on If". Let 
EmU) = E(m,f; gO, Lp) be the best approximation off (in Lp-norm) by trigono
metric polynomials of degree at most m. Prove, using the method of Section 7.2, 
the classical result 

Also, find the space of all f E Lp(lfr) such that 

8. (Lofstrom [2]). Prove by imitating the proof in Exercise 4 of Chapter 6, that if 
g is infinitely differentiable and satisfies 

where IX> 0, f3 > 0, then g(tH(~)), ~E 7l" are the Fourier coefficients of a function 
Gt EL 1(lfn) and that 
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9. (LOfstrom [2]). Put 

for fELp(yn). Prove that 

11ft - f II p = O(tS
) if and only if f E B~oo(yll). 

10. Show that 

Deduce from this the inequality in the proof of the Marcinkiewicz theorem 
given in 1.3. 

Hint: Theorem 7.2.2. 

11. (Peetre-Sparr [1]). Denote by % p = % p(A, B) the space of all p-nuciear 
operators (cf. 7.3) from the Banach space A to the Banach space B. Prove that 

Hint: Use the result in Section 3, and apply Auerbach's lemma: If rank(T)::::;n 
then 

where Ila;IIA,=1, Ilbi II B::::;1, and there exist b;EB' such that <bi,bj)=bij and 
Ilb;IIB'::::; 1. 

12. (Peetre [19]). Denote by A~p(A,B) the set of (bounded linear) operators T: A -+B, 
A,B being Banach spaces, such that the induced operator T: A~(A)-+IP(B) is bounded, 
where IP(B) = {(bn):= lII:= 1 Ilbnll~< oo} and A~(A) = {(an):= lIIII:= 1 Gnanll A::::; C for 
all (Gn):=l;I:=lIGnl~' ::::;1,1/rx+1/rx'=1}. Show that 

TEA~p(Ao, Bo)nA~p(Al' B 1 ) 

implies that 

TEA~lA(p),OO;K' B(fI),P;K) 

if .it is quasi-linearizable (see Exercise 6, Chapter 3) and SO' (O'(t)/ p(t»P dt/t < 00. 

Here 

and p is positive function; p = 00 has the usual meaning. 
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Hint: Note that if a>1 then A~(A)=L(l~"A), 1/a+1/a'=1, and, interpolating 
t, show that T: (A~(Ao), A~(A l))(P),oo;K->(Ip(Bo), IP(B l))(p),oo;K c (lp(Bo), Ip(B 1))(a),P;K = 
Ip(B(a).P;K)' 

13. Consider the torus T. Show that the couple (CO, C 1) is quasi-linearizable 
(see 3.13.6). Generalize to the semi-group case. 

Hint: Put Vo(t)f(x)=1/2tf_t(a(x)-a(x+h))dh and use the formula for 
K(t,f; Co, C1 ) in Section 6. 

14. (Bergh- Peetre [1]). Let Vp be defined as in Section 6. Show that 

(Vpo' Vp,)9,pc Vp (0<8< 1) 

if 1/p=(1-8)/Po+8/Pl and 1/k~Pi~ w. 

15. (Bergh-Peetre [1]). Prove that iffis an entire function of exponential type at 
mostrandfELp(1/k~p~1) then 

Ilfllvp ~ Cr 1/p IlfllLp' 

Hint: (i) By Plancherel and P6lya (see Boas [1]) Ilpk)IILp ~ CllfllLp (r = 1). 
(ii) For any discrete subset XcR, such that Ix-yl~1 if X,YEX and x;6y, 
(LXEX If(xW)l/p ~ Cli f IILp' (iii) Split J into two families, one containing pre
cisely those intervals I, for which III ~ 1. 

16. (Bergh-Peetre [1]). Prove that if 1/k~p~ 00 then 

where P* = min(1, p). 

Hint: (i) Use the two previous exercises and interpolate. (ii) Use Exercise 6 in 
Chapter 6. 

For the exercises 17-22 we give Brenner-Thomee-Wahlbin [1] as a general 
reference. In that work the reader will find a complete list of references. 

17. Consider the one-dimensional heat-equation ou/ot = 02U/OX2 with the 
initial value u = f at t = O. Let Gh(t) be a stable difference operator on Loo and 
assume that the corresponding operator Ph approximates P = - D2 with order 
exactly s. Then we know from Theorem 7.4.2 that if 

IIGh(t)f-G(t)flloo~Cha uniformly in t=Anh2 , 

then f E B':n 00' Now prove that if 0' > 1 and 

II Gh(t)f-G(t)fll 00 ~ Cha, t=Anh2 fixed 



7.5. Exercises 191 

Hint: Take t= 1 and start with the estimate 

18. Let the assumptions of the previous exercise be satisfied and assume in addition 
that if e(~) is the symbol of the difference scheme then leWI ~exp( _C~2), where 
c>O. Prove that 

II Gh(t)f-G(t)fll 00 ~ Ct- 1/2 hIT Ilfll~lx 

if 1 <(1~s. 

Hint: Note that Ilff-1alII00~CllalldfI11' Use the proof of Theorem 7.4.2, 
but estimate the L 1-norm of exp( -tPh(~))-exp( _t~2). 

19. Consider the one-dimensional Schrodinger equation ou/ot = jjJ 2U/OX 2 with 
the initial value u=f at t=O. Let Gh(t) be a stable difference scheme on L2 
and assume that the corresponding operator Ph approximates iD2 with order s. 

(a) Prove that 

Deduce that for 0 < (1 < s 

(b) Prove that 

and for O<(1<s, 

20. Let Q,be the set of all ~=(~l""'~n) such that I~jl~r for j=1, ... ,n. Write 

(Pf)o=Po(f)= SQI f(X+IX)dx, 

(Ec)(x) = LocoX(x -IX), 

where X is the characteristic function of Q l' 

(a) Writing Ta for the mapping f~ff-1al prove that PTaE is the mapping 
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(b) Prove that there is an infinitely differentiable function q> with compact 
support such that 

provided that b vanishes outside Q". Deduce that 

(c) Suppose that a is infinitely differentiable and 2n-periodic. Let IJ be infinitely 
differentiable and assume that lJ(x) = 1 on Q", lJ(x) = 0 outside Q5,,/4' Prove that 

21. Assume that e is the symbol ofa difference operator and that e(~)=exp(i8(~)) 
where 8 is real, twice differentiable on 1~1<1 and 8"(~)#0 for 1~1<1. Use the 
previous exercise to prove that 

Ile(·)"IIM ~CnP, P= 11/2-1Ipl· p 

22. Consider the one-dimensional wave-equation oulot=oulox, u=f at t=O. 
Let Gh(t) be a difference operator with symbol e(~) satisfying the assumptions 
of the previous exercise and assume that Ph approximates D with order s. Prove 
that 

where 

{ -if O<a< (s+ 1)p, 
q(a) = :~(~+1) if (s+1)p<a<s+1 

and O<a<s+1. 

23. (Lofstrom-Thoffil~e [1], Peetre [17]). Prove, using induction on N, that 

if 0<8= lyllN ~ 1, q=218. (The norms are the norms in Lq(JRn), Loc,(JRn) and 
H~(JRn) respectively.) Use this result to show that 

if IIXI =N, wELoonH~ and f Eg. Show that if in addition f(O)=O, then 

(s;?; nI2). 

(Cf. Exercise 9 and 10 of Chapter 3.) 
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24. Consider the non-linear initial value problem 

{
aUlot=CUIOX+Pur+l, t>O, xEJR, 

u(O, x) = w(x), xEJR 

where p is a non-vanishing constant and r a positive integer. Prove that for a 
given wELoo=Loo(JR) there is a unique solution u(t,x), defined and bounded on ° ~ t ~ T, XE JR for some T Find the upper bound for T, in the three cases 

(i) p>O, (ii) p<O, r odd, (iii) p<O, r even. 

Finally prove that if wEB~l then u(t, ·)EB~l for s~ 1/2. 

7.6. Notes and Comment 

The possibility of applying interpolation techniques, as we have described them, 
to approximation theory was indicated by Peetre [10] in 1963. Since then, inter
polation has been used in connection with, e. g., approximation by rational 
functions and by spline functions, trigonometric approximation, approximation 
by eigenfunction expansions in general, moment problems and the other topics 
treated in the previous sections of this chapter. (See, e. g., the works of P. L. Butzer 
and his coauthors mentioned below.) 

Approximation by spline functions and by rational functions are closely 
related. See Peetre-Sparr [1] and Peetre [23]. Approximation by spline functions is 
considered also by Bergh-Peetre [1] in connection with spaces ~ (0 < p ~ (0) of 
functions of bounded variation on the real line. (See also Brudnyi [2].) More 
precisely, given a fixed integer k~ 1 with k- 1 ~p~ 00, Vp is the linear spaces 
of all measurable, locally bounded functions on JR, such that, for every family 
f= {I} of disjoint intervals I = (a, b), 

(LIe,! (inf"e9'suPxeIlf(x) -n(x)I)p)l/p ~ C, 

where C is independent off and f!JJ = f!JJ k denotes the space of all polynomial 
functions on R of degree at most k -1. The (quasi-) norm on Vp is the supremum 
ofthe right hand side over all families f. The approximation result is the following: 
Let f belong to the closure of ~ (iriflnitely differentiable functions with compact 
support) in supremum norm. Then 

infgeSPl(N)suPxelR If(x)-g(x)1 =O(N-1/P) (N --> + (0) 
iff 

where Spl(N) consists of functions with compact support such that 
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and the superscript ° signifies "the closure of~" in the respective norms. In our 
notation, this result could be rewritten as: 

I?rovided that 1/p=(1-8)k. The relation between the spaces Vp and the spaces 
B~q is the subject of Exercises 14-16. The proof of the approximation result is 
based on two inequalities of Jackson and Bernstein type. Once these inequalities 
are established, it only remains to characterize the space (V?/k,CO)O.oo;K' This is 
done via a formula for the K-functional. (Cf. the proof of Theorem 7.2.4.) 

Consider now the couple (CO, C 1), where CO is the space of bounded real-valued 
uniformly continuous functions on the real line JR, and C' is the subspace con
taining those which have their first derivative in Co. The (semi-) norms are 

Ilf II eO =sUPIR If(x)l, 

IIf11e' =sUPIR ID f(x)1 

respectively. Peetre [14] has shown that 

where w is the modulus of continuity of f: 

w(t,f) =SUpxEIR SUPlhl <, If(x + h) -f (x) I , 

and w* is the least concave majorant of w. From this formula it follows that 

sup, K(t, f)/cp(t) = sup, w(t, f)/2cp(t/2) , 

where cp is positive and concave. We may interprete the last formula as saying 
that any Lip(cp(·)) space is a K-interpolation space with respect to the couple 
(CO, C1) if cp is concave. Conversely, Bergh [1] has shown that if Lip(cp(')) is an in
terpolation space with respect to the couple (CO,C 1) then cp is essentially concave 
(see Bergh [1] for precise statements). The formula for K(t,f; Co, C1) may also 
be seen from the point of view of approximation theory. Consider now the torus 
'H' instead of the real line IR. The same formula for K(t,f) holds in this case. 
Kornejcuk [1] has shown that (cp concave) 

E(n -1,f; Co, T) ~ 1cp(n/n) 
iff 

f E Lip(cp(')), 

where T is the space of trigonometric polynomials and II fliT is the degree of ]: 
The connection between E and K is provided by the inequality 

E(n-1,f; Co, T) ~ K(n/2n,f; Co, C1). 

(See Peetre [14] for details.) 
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A formula for the functional K(t, a; Co, C2 ) has recently been found by 
J. Friberg, who also has established related approximation results. 

7.6.1.-2. The exposition of these sections follows closely that of Peetre-Sparr [1]. 
As we stated in Chapter 1, the classical results by Jackson [1] and Bernstein [1] 

from 1912, corresponding to (1) and (2) of Section 2, were given for the torus 'If 
and supremum norms. Cf., e. g., Lorentz [3]. 

Theorem 7.2.4, a consequence of (1) and (2), stated for IRn also holds, mutatis 
mutandis, for the torus lfn. This is proved in quite a similar way (see Exercise 6,7). 
Partially corresponding results hold when 0<p<1 (cf. Peetre [23]). Note that 
Theorem 7.2.4 gives yet another possible way of defining the spaces B~q, at 
least for 8>0 and 1 :::;p:::; co. 

Many applications of interpolation theory to approximation theory can 
be found in the book of Butzer-Behrens [1], which also contains a large list of 
references. (See also Butzer-Nessel [1].) There are several conference proceedings 
with applications to approximation theory and harmonic analysis (and with 
valuable lists of references), for instance Butzer-Nagy [1] (see notably the articles 
by Bennett [3], Gilbert [2] and Sagher [4]), Butzer-Nagy [2], Butzer-Kahane
Nagy [1]. See also Alexits-Steckin [1] where a survey article by Peetre [25] can be 
found.) Other applications to approximation theory and harmonic analysis are 
given in Peetre [3,4,8,11,22,23], Lofstrom-Peetre [1], Peetre-Vretare [1], 
Lofstrom [1,2,3], Sagher [4], Varopoulos [1], Hedstrom-Varga [1]. (See also the 
exercises.) 

7.6.3. There are several papers concerning the interpolation of ideals of operators. 
Apart from the work of Peetre-Sparr [1] (and references given there) we mention 
here the works of Pietsch [1,2], Pietsch-Triebel [1], Triebel [2], Peetre [24], 
Merucci-Pham the Lai [1], Favini [1], Gilbert [2]. (See also Gohberg-Krein [1] 
and Peetre-Sparr [2].) 

7.6.4. This section is taken over from Lofstrom [2]. Further results are given in 
the exercises. 

An important inspiration for interpolation theory is the theory of partial 
differential equations. Conversely interpolation theory has been applied to 
partial differential equations. We mention here the books of Lions-Magenes [2]. 
(See also Lions [4], Tartar [1], Triebel [1,3].) Applications to numerical integration 
of partial differential equations has been given by several authors. We refer the 
reader to the lecture notes by Brenner-Thomee-Wahlbin [1] and the references 
given there. 

Interpolation theory has been applied to the theory of non-integer powers of 
operators. See Komatsu [1] for a systematic treatment. Other related papers 
(using interpolation theory) are Yoshikawa [2], Yoshinaga [1]. 



References 

Alexits, G., Stechkin, S. B. 
[1) Proc. Intern. Conf. Constructive Function theory, Varna 1970. Sofia: Bulg. Acad. Sci. 1972. 

Andersson, R. 
[1) The type set of a generalized Sobolev operator. Medd. Lunds Univ. Mat. Sem. 19, 1-102. 

Aronszajn, N. 
[1] Associated spaces. interpolation theorems and the regularity of solutions of differential problems. 

Partial differential equations. In: Proc. Syinp. in Pure Math., pp. 23-32. Providence: Amer. Math. 
Soc. 1961. 

Aronszajn, N., Gagliardo, E. 
[1) Interpolation spaces and interpolation methods. Ann. Mat. Pura Appl. 68,51-118 (1965). 

Artola, M. 
[1) Sur un theoreme d'interpolation. J. Math. Anal. Appl. 41, 148-163 (1973). 

Bennett, C. 
[1] Intermediate spaces and the class Llog+ L. Ark. Mat. 11. 215-228 (1973) 
[2] Banach function spaces and interpolation methods I. The abstract theory. J. Functional Anal. 17, 

409-440 (1974). 
[3) Banach function spaces and interpolation methods. Interpolation of weak type operators. In: 

Proc. Conf. Linear Operators and Approx. II, pp. 129-139 . .Basel: Birkhauser 1974. 

Berenstein, c.A., Cotlar, M., Kerzman, N., Kree, P. 
[1] Some remarks on the Marcinkiewicz convexity theorem in the upper triangle. Studia Math. 29, 

79-95 (1967). 

Berenstein, c.A., Kerzman, N. L. 
(1) Sur la reiteration dans les espaces de moyenne. C.R. Acad. Sci. Paris 263, 609-612 (1966). 

Bergh, J. 
[1) On the interpolation of normed linear spaces. Technical report, Lund, 1971. 
[2) A generalization of Steffensen's inequality. J. Math. Anal. Appl. 41, 187-191 (1973). 

Bergh, J., Peetre, J. 
[1) On the spaces Vp (O<p~ en). Boll. Unione Mat. Ital. (4) 10, 632-648 (1974). 

Bernstein, S. N. 
[1) Sur I'ordre de la meilleure approximation des fonctions continues par des polynomes de degre 

donne. Mem. Acad. Belg. 4, 3-103 (1912, 1922) (or Collected Works vol. I, Akad. Nauk SSSR, 
Moscow, 1952 [Russian)). 

(2) Sur la convergence absolue des series trigonometriques. C.R. Acad. Sci. Paris 158, 1661-1664 
(1914): and Coobsc Kharkovo Mat. Obsc. Ser. 2,14,139-144 (1914) [Russian]. 

Besov, O. V. 
[1) "Investigation of a family of functional spaces in connection with embedding and continuation 

theorems." Trudy Mat. Inst. Steklov 60, 42-81 (1961) [Russian). 



References 197 

Boas, R.P. 
[1) Entire functions. New York: Academic Press 1954. 

Borell, C. 
[1) Convex set functions in d-space. Period. Math. Hungar. 6, 111-136 (1975). 

Brenner, P. Thomee, V., Wahlbin, L. 
[1) Besov spaces and applications to difference methods for initial value problems. Lecture Notes in 

Math., Vol. 434. Berlin-Heidelberg-New York: Springer 1975. 

Brezis, D. 
[1) Classes d'interpolation associees it un operateur maximal monotone. Seminaire sur les equations 

aux derivees partielles, Colleges de France, 1973-1974. 

Brudnyi, lA. 
[1) "Spaces defined by means of local approximation." Trudy Mosk. Mat. Obsc. 24, 69-132 (1971) 

[Russian). 
[2) "Spline approximation and functions of bounded variation." Dokl. Akad. Nauk SSSR 215, 

511-513 (1974) [Russian). 

Butzer, P. L., Behrens, H. 
[1) Semi-groups of operators and approximation. Berlin-Heidelberg-New York: Springer 1967. 

Butzer, P. L., Kahane, 1.-P., Szeg6-Nagy, B. 
[1) Linear operators and approximation. Basel: Birkhauser 1972. 

Butzer, P. L., Nessel, R. 1. 
[1) Fourier analysis and approximation. Basel: Birkhauser 1971. 

Butzer, P. L., Szeg6-Nagy, B. 
[1) Abstract spaces and approximation. Basel: Birkhauser 1969. 
[2) Linear operators and approximation II. Basel: Birkhauser 1972. 

Calderon, A. P. 
[1) Intermediate spaces and interpolation, Studia Math. (Special Series) 1, 31-34 (1963). 
[2) Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113-190 (1964). 
[3) Spaces between L' and LOO and the theorem of Marcinkiewicz. Studia Math. 26, 273-299 (1966). 

Calderon, A. P., Zygmund, A. 
[1) On the existence of certain singular integrals. Acta Math. 88, 85-139 (1952). 
[2) A note on the interpolation of sublinear operations. Amer. 1. Math. 78, 282-288(1956). 

Cotlar, M. 
[1) Doctoral dissertation, Chicago 1953. (A general interpolation theorem for linear operations, 

Rev. Mat. Cuyana 1, 57-84 (1955).) 

Cotlar, M., Bruschi, M. 
[1) On the convexity theorems of Riesz-Thorin and Marcinkiewicz. Rev. Univ. La Plata V, 3,162-172 

(1956). 

Cwikel, M. 
[1) On (li'°(Ao), Il"(A'))8." Proc. Amer. Math. Soc. 44 (2),286-292 (1974). 
[2) The dual of weak Il'. To appear in Ann. Inst. Fourier. 
[3) Monotonicity properties of interpolation spaces. To appear in Ark. Mat. 

Deutsch, N. 
[1) Interpolation dans les espaces vectoriels topologiques localement con vexes. Bull. Soc. Math. 

France Suppl. Mem. 13, 187 pp (1968). 

Donoghue, W. 
[1) The interpolation of quadratic norms. Acta Math. 118,251-270 (1967). 

Dunford, N., Schwartz, l T. 
[1] Linear operators, part I. New York: Interscience 1964. 



198 References 

Duren, P.L. 
[1] Theory of HP spaces. London-New York: Academic Press 1970. 

Favini, A. 
[1] Sulla interpolatione di operatori com patti. Rend. Sem. Mat. Univ. Padova 45, 279-304 (1971). 

Fefferman, C., Riviere, N., Sagher, Y. 
[1] Interpolation between HP spaces, the real method. Trans. Amer. Math. Soc. 191, 75-81 (1974). 

Fefferman, e., Stein, E. M. 
[1] HP spaces of several variables. Acta Math. 129, 137-193 (1972). 

Fernandez, D. L. 
[1] Una teo ria de interpolacao para familias de espacos de Banach. To appear in Anais Acad. Brasil. 

Foia~, e., Lions, J. L. 
[1] Sur certains theoremes d'interpolation. Acta Sci. Math. 22, 269-282 (1961). 

Frank, P. H., Pick, G. 
[1] Distanzabschatzungen im Funktionsraum. I. Math. Ann. 76,354-375 (1915). 

Gagliardo, E. 
[1] Interpolation d'espaces de Banach et applications I, II, III. e.R. Acad. Sci. Paris 248, 1912-1914, 

3388-3390,3517-3518 (1959). 
[2] A unified structure in various families of function spaces. Compactness and closure theorems. 

In: Proc. Internat. Sympos. Linear Spaces (Jerusalem 1960). Jerusalem: Jerusalem Academic Press; 
Oxford: Pergamon 1961. 

Gilbert, J. E. 
[1] Interpolation between weighted Il'-spaces. Ark. Mat. 10,235-249 (1972). 
[2] Counter-examples in interpolation space theory from harmonic analysis. In: Proc. Conf. Linear 

Operators and Approx. II, pp. 141-167. Basel: Birkhauser 1974. 

Girardeau, J. P. 
[1] Sur I'interpolation entre un espace localement convexe et son dual. Rev. Fac. Ci. Univ. Lisboa, 

A Mat, 9,165-186 (1964-1965). 

Gohberg, J.e., Krein, M.G. 
[1] "Introduction to the theory of non-selfadjoint operators." Moscow, 1965 [Russian]. 

Goulaouic, e. 
[1] Prolongements de foncteurs d'interpolation et applications. Ann. Inst. Fourier 18, 1-98 (1968). 

Grisvard, P. 
[1] Interpolation non commutative. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. 52,11-15 

(1972). 

Gustavsson, 1. 
[1] Interpolation of semi-norms. Technical report, Lund, 1970. 
[2] Interpolation of metric spaces. Technical report, Lund, 1971. 

Gustavsson, J., Peetre, 1. 
[1] Interpolation of Orlicz spaces. To appear in Studia Math. 

Haaker, A. 
[1] On the conjugate space of Lorentz space. Technical report, Lund, 1970. 

Hausdorff, F. 
[1] Eine Ausdehnung des Parsevalschen Satzes iiber Fourierreihen. Math. Z. 16, 163-169 (1923). 

Hardy, G. H., Littlewood, J. E., P6lya, G. 
[1] Inequalities. Cambridge: Cambridge Univ. Press 1967. 

Hedstrom, G. W., Varga, R. S. 
[1] Application of Besov spaces to spline approximation. J. Approx. Theory 4, 295-327 (1971). 

Holmstedt, T. 
[1] Interpolation of quasi-normed spaces. Math. Scand. 26, 177-199 (1970). 



References 199 

Holmstedt, T., Peetre, J. 
[1) On certain functionals arising in the theory of interpolation spaces. J. Functional Anal. 4, 88-94 

(1969). 

Hormander, L. 
[1] Estimates for translation invariant operators on IJ' spaces. Acta Math. 104,93-140 (1960). 
[2) Linear partial differential operators. Berlin-Heidelberg-New York: Springer 1963. 

Hunt, R.A. 
[1) An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces. Bull. Amer. Math. 

Soc. 70, 803-807 (1964). 

Jackson, D. 
[1) On the approximation by trigonometric sums and polynomials. Trans. Amer. Math. Soc. 13, 

491-515 (1912). 

Jawerth, B. 
[1) The trace of Sob ole v and Besov spaces if O<p<1. Technical report. Lund. 1976. 

Karadzov, G.E. 
[1] "About the interpolation method of means for quasi-normed spaces." Blgar. Akad. Nauk. Izv. 

Math. Inst. 15, 191-207 (1974) [Russian). 

Kerzman, N. 
[1) Sur certains ensembles con vexes lies it des espaces IJ'. C.R. Acad. Sci. Paris 263, 365-367 (1966); 

Interpolation among n quasi-normed spaces. Notes, Buenos Aires, 1966. 

Kolmogorov, A. N. 
[1) "On inequalities between the upper bounds of sequences of the derivatives of a function on an 

infinite interval." Uchenye zapiski MGU 30, Matematika 3-16 (1939) [Russian]. 

Komatsu, H. 
[1) Fractional powers of operators. Pac. J. Math. 19, 285-346 (1966); II, Interpolation spaces, ibid. 21, 

89-111 (1967); III, Negative powers, J. Math. Soc. Japan 21, 205-220 (1969); IV, Potential 
operators, ibid. 21,221-228 (1969); V, Dual operators, J. Fac. Sci. Univ. Tokyo (IA) 17, 373-396 
(1970); VI, Interpolation of non-negative operators and imbedding theorems, ibid. 19, 1-63 
(1972). 

Kornejcuk, N. P. 
[1) "The best approximation of continuous functions." Izv. Akad. Nauk SSSR 27, 29---44 (1963) 

[Russian]. 

Krasnoselskij, M. A. 
[1) "On a theorem of M. Riesz." Dokl. Akad. Nauk SSSR 131,246-248 (1960) [Russian). 

Kree, P. 
[1) Interpolation d'espaces qui ne sont ni normes, ni complets. Applications. Ann. Inst. Fourier 17, 

137-174 (1967). 

Krein, S.G. 
[1) "On the concept of a normal scale of spaces." Dokl. Akad. Nauk SSSR 132, 510-513 (1960) 

[Russian). 

Krein, S. G., Petunin, Ju.1. 
[1) "Scales of Banach spaces." Uspehi Mat. Nauk 21 (2), 89-168 (1966) [Russian). 

Krein, S. G., Semenov, E. M. 
[1) "Interpolation of operators of weakened type." Funk. An. 7 (2), 89-90 (1973) [Russian). 

Larsen, R. 
[1) An introduction to the theory of multipliers. Berlin: Springer 1971. 

Lions, J. L. 
[1) Theorems de traces et d'interpolation I-V. Ann. Scuola Norm. Sup. Pisa 13, 389---403 (1959); 

ibid. 14,317-331 (1960); J. Math. Pures Appl. 42,195-203 (1963); Math. Ann. 151,42-56 (1963); 
An. Acad. Brasil. Ci. 35,1-10 (1963). 



200 References 

[2] Une construction d'espaces d'interpolation. C.R. Acad. Sci. Paris 251, 1853-1855 (1960). 
[3] Sur les espaces d'interpolation, dualite. Math. Scand. 9, 147-177 (1961). 
[4] Interpolation lineaire et non lineaire et regularite. Inst. Nazionale de Alta Mat. Symp. Mat. 7, 

443--458 (1971). 

Lions, J. L., Magenes, E. 
[1] Problemi ai limiti non omegeni III. Ann. Scuola Norm. Sup. Pisa 15,41-103 (1961); IV, ibid. 15, 

311-326 (1961); V, ibid. 16,1--44 (1962). 
[2] Problemes aux limites non homogenes et applications, Vol. 1-3. Paris: Dunod 1968-1970. 

Lions, J. L., Peetre, J. 
[1] Sur une classe d'espaces d'interpolation. Inst. Hautes Etudes Sci. Pub I. Math. 19, 5-68 (1964). 

Lizorkin, P. I. 
[1] "Interpolation of weighted U spaces." Dokl. Akad. Nauk SSSR 222 (1), 32-35 (1975) [Russian]. 

Lofstrom, E.J. 
[1] On the moments of functions satisfying a Lipschitz condition. Math. Scand. 23, 177-187 (1968). 
[2] Besov spaces in the theory of approximation. Ann. Mat. Pura Appl. 85, 93-184 (1970). 
[3] Local convergence of convolution integrals. To appear in Studia Math. 
[4] Remarks on the interpolation of Banach algebras. Technical report,Ooteborg, 1974. 

Lofstrom, E.1., Peetre, J. 
[1] Approximation theorems connected with generalized translations. Math. Ann. 181, 255-268 

(1969). 

LOfstrom, E.J., Thomee, V. 
[1] Convergence analysis of finite difference schemes for semilinear initial-value problems. To appear 

in R.A.I.R.O (Rouge) Analyse Numerique 10 (8),1976. 

Lorentz, 0.0. 
[1] Some new functional spaces. Ann. Math. 51, 37-55 (1950). 
[2] Bernstein polynomials. Toronto: University of Toronto Press 1953. 
[3] Approximation of functions. New York: Holt, Rinehart and Winston 1966. 

Lorentz 0.0., Shimogaki,T. 
[1] Interpolation theorems for operators in function spaces. 1. Functional Anal. 2, 31-51 (1968). 

Luxemburg, W.A.J. 
[1] Banach function spaces. Dissertation, Technical Highschool, Delft, 1955. 

Luxemburg, W. A. J., Zaanen, A. C. 
[1] Riesz spaces I. Amsterdam: North-Holland 1971. 

Mac Lane, S. 
[1] Categories for the working mathematician. Berlin-Heidelberg-NewYork: Springer 1971. 

Magenes, E. 
[1] Spazi di interpolazione ed equazioni a derivate parziali. In: Atti del VII Congresso dell'V. M. I., 

Oenova, 1963, Ed. Cremonese, pp. 134--197. Roma 1965. 

Marcinkiewicz, 1. 
[1] Sur ('interpolation d'operateurs. c.R. Acad. Sci. Paris 208,1272-1273 (1939). 
[2] Sur les multiplicateurs des series de Fourier. Studia Math. 8,78-91 (1939). 

Merucci, C., Pham the.Lai 
[1] Caracterisation par interpolation des ideaux de R. Schatten. C.R. Acad. Sci. Paris 274,1912-1914 

(1972) 

Mihlin, S.O. 
[1] "On multipliers of Fourier integrals." Dokl. Akad. Nauk SSSR 109, 701-703 (1956) [Russian]. 

Miranda, C. 
[1] Sui teorema di Riesz-Thorin. Ann. Mat. Pura Appl. 84, 61-71 (1970). 



References 201 

Mitjagin, B. S. 
[1] "An interpolation theorem for modular spaces." Mat. Sbornik 66,472-482 (1965) [Russian]. 

Morrey, C. B. 
[1] Functions of several variables and absolute continuity. Duke Math. 1. 6, 187-215 (1940). 

Nikolski, S. M. 
[1] "On embedding, continuation and approximation theorems for differentiable functions of several 

variables." Uspehi Mat. Nauk 16 (5), 63-114 (1961) [Russian]. 

Nikolski, S. M., Lions, 1. L., Lizorkin, L. I. 
[1] Integral representation and isomorphism properties of some classes of functions. Ann. Scuola 

Norm. Sup. Pisa 19, 127-178 (1965). 

Oklander, E. T. 
[1] Lpq interpolators and the theorem of Marcinkiewicz. Bull. Amer. Math. Soc. 72, 49-53 (1966). 

O'Neil,R. 
[1] Convolution operators and L(p,q) spaces. Duke Math. 1. 30,129-142 (1963). 

O'Neil, R., Weiss, G. 
[1] The Hilbert transform and rearrangement of functions. Studia Math. 23, 189-198 (1963). 

Paley, R. E.A. C. 
[1] Some theorems on orthogonal functions. Studia Math. 3, 226-238 (1931). 

Peetre,l. 
[1] Espaces d'interpolation, generalisations, applications. Rend. Sem. Mat. Fis. Milano 34, 83-92 

(1964). 
[2] Espaces d'interpolation et theoreme de Soboleff. Ann. Inst. Fourier 16, 279-317 (1966). 
[3] On convolution operators leaving U·A spaces invariant. Ann. Mat. Pura Appl. (4) 72, 295-304 

(1966). 
[4] Application de la theorie des espaces d'interpolation dans J'analyse harmonique. Ric. Mat. 15, 

3-36 (1966). 
[5] "Thoughts on Besov spaces." Lecture notes, Lund, 1966 [Swedish]. 
[6] On interpolation of Lp spaces with weight function. Acta Sci. Math. 28, 61---69 (1967). 
[7] Applications de la theorie d'interpolation aux developpements orthogonaux. Rend. Sem. Mat. 

Univ. Padova 37,133-145 (1967). 
[8] Absolute convergence of eigenfunction expansions. Math. Ann. 169,307-314 (1967). 
[9] Sur les espaces de Becov. C.R. Acad. Sci. Paris 264, 281-283 (1967). 

[10] A theory of interpolation of normed spaces. Lecture notes, Brasilia, 1963 [Notas de matematica 
39,1-86 (1968)]. 

[11] e-entropie, e-capacite et d'espaces d'interpolation. Ric. Mat. 17,216-220 (1968). 
[12] On the theory of Lp.;. spaces. 1. Functional Anal. 4, 71-87 (1969). 
[13] On an interpolation theorem of Foia~ and Lions. Acta Sci. Math. 25, 255-261 (1964); On inter

polation functions. Acta Sci. Math. 27, 167-171 (1966); II, ibid. 29, 91-92 (1968); III, ibid. 30, 
235-239 (1969). 

[14] Exact interpolation theorems for Lipschitz continuous functions. Ric. Mat. 18,239-259 (1969). 
[15] Non-commutative interpolation. Le Matematiche 25 (2),1-15 (1970). 
[16] Concave majorants of positive functions. Acta Math. Acad. Sci. Hungar. 21, 327-333 (1970). 
[17] Interpolation of Lipschitz operators and metric spaces. Mathematica (Cluj) 12, 325-334 (1970). 
[18] A new approach in interpolation spaces. Studia Math. 34, 23-42 (1970). 
[19] Zur Interpolation von Operatorenriiumen. Arch. Math. (Basel) 21, 601-608 (1970). 
[20] Banach couples I. Elementary theory. Technical report, Lund, 1971, and Interpolation functors 

and Banach couples. Actes Congres intern. Math. 1970,2,373-378 (1971). 
[21] Sur I'utilisation des suites inconditionellement sommable dans la theorie des espaces 

d'interpolation. Rend. Sem. Mat. Univ. Padova 46, 173-190 (1971). 
[22] The Weyl transform and Laguerre polynomials. Le matematiche 28,303-323 (1972). 
[23] Analysis in quasi-Banach space and approximation theory. Lecture notes, Lund, 1972. 



202 References 

[24] Approximation of linear operators. In: Proc. Intern. Conf. Constructive Function theory, Varna 
1970, pp. 245-263. Sofia: Bulg. Acad. Sci. 1972. 

[25] On the connection between the theory of interpolation spaces and approximation theory. In: 
Proc. Intern. Conf. Constructive Function theory, Varna 1970, pp. 351-363. Sofia: Bulg. Acad. 
Sci. 1972. 

[26] Remark on the dual of an interpolation space. Math. Scand. 34, 124--128 (1974). 
[27] Uber den Durchschnitt von Interpolationsraumen. Arch. Math. (Basel) 25,511-513 (1974). 
[28] Hp-spaces. Lecture notes, Lund, 1974; 2.ed. 1975. 
[29] On the trace of potentials. Ann. Scuola Norm. Sup. Pisa 2, 33--43 (1975). 
[30] On spaces of Triebel-Lizorkin type. Ark. Mat. 13, 123-130 (1975). 
[31] Bounded operators in Lp (0 <p < 1). Technical report, Lund, 1975. 
[32] Remarques sur les espaces de Besov. Le cas O<p < 1. C.R. Acad. Sci. Paris 277, 947-949 (1973); 

New thoughts on Besov spaces. To appear at Duke Univ. Press. 

Peetre, J., Sparr, G. 
[1] Interpolation of normed Abelian groups. Ann. Mat. Pura App\. 92, 217-262 (1972). 
[2] Interpolation and non-commutative integration. Ann. Mat. Pura App\. 104,187-207 (1975). 

Peetre, J., Vretare, L. 
[1] Multiplier theorems connected with generalized translations. Technical report, Lund, 1971. 

Pietsch, A. 
[1] Gegenbeispiele zur Interpolationstheorie der nuklearen und absolutsummierenden Operatoren. 

Arch. Math. (Basel) 20, 65-71 (1969). 
[2] Interpolationsfunktoren, F olgenideale und Operatorenideale. Czechoslovak. Math. J. 21, 644--652 

(1971 ) 

Pietsch, A., Triebel, H. 
[1] Interpolationstheorie fUr Banachideale von beschrankten linearen Operatoren. Studia Math. 31, 

95-109 (1968). 

Persson, A. 
[1] Compact linear mappings between interpolation spaces. Ark. Mat. 5, 215-219 (1964). 

Postylnik, E. I. 
[1] "Interpolation theorems for spaces Lp withp<1." Sibirsk. Mat. Z. 4, 318-324 (1963) [Russian]. 

Riesz, F. 
[1] Uber eine Verallgemeinerung der Parsevalschen Forme\. Math. Z. 18, 117-124 (1923). 

Riesz, M. 
[1] Sur les maxima des formes bilinearies et sur les fonctionelles lineaires. Acta Math. 49, 465--497 

(1926). 
[2] Sur les fonctions conjuguees. Math. Z. 27, 218-244 (1927). 

Riesz, E, Szego-Nagy, B. 
[1] Lecons d'analyse fonctionelle. Budapest 1955. 

Riviere, N. M. 
[1] Interpolation theory in s-Banach spaces. Dissertation, Univ. of Chicago, 1966. 

Sagher, Y. 
[1] Interpolation of r-Banach spaces. Studia Math. 41, 45-70 (1972). 
[2] An application of interpolation to Fourier series. Studia Math. 41, 169-181 (1972). 
[3] Some remarks on interpolation of operators and Fourier coefficients. Studia Math. 44, 239-252 

(1972). 
[4] Norm inequalities on Fourier coefficients and interpolation theory. In: Proc. Conf. Linear 

Operators and Approx. II, pp. 169-180. Basel: Birkhauser 1974. 

Salem, R., Zygmund, A. 
[1] A convexity theorem. Proc. Nat. Acad. Sci. U.S.A. 34, 443--447 (1948). 



References 203 

Sargent, W. L. C. 
[1] Some analogues and extensions of Marcinkiewicz interpolation theorem. Proc. London Math. Soc. 

11 (2), 457--468 (1961). 

Schechter, M. 
[1] Complex interpolation. Compositio Math. 18, 117-147 (1967). 

Schur, I. 
[1] Bemerkungen zur Theorie der beschrankten Bilinearformen mit unendlich vielen Veranderlichen. 

J. Reine Angew. Math. 140, 1-28 (1911). 

Sch wartz, L. 
[1] TMorie des distributions I-II. Paris: Hermann 1957, 1959. 

Sedaev. A.A. 
[11 "Description of interpolation spaces for the couple (L~o' L~J and some related problems." Dokl. 

Akad. Nauk SSSR 209,798-800 (1973) [Russian]. 

Sedaev, A.A., Semenov, E. M. 
[1] "On the possibility of describing interpolation spaces in terms of Peetre's K -method." Optimizaciya 

4 (21), 98-114 (1971) [Russian]. 

Sestakov, V. A. 
[1] "On complex interpolation of Banach spaces of measurable functions." Vestnik Leningrad 19 (4), 

64-68 (1974) [Russian]. 

Shapiro, H. S. 
[1] A Tauberian theorem related to approximation theory. Acta Math. 120,279-292 (1968). 
[2] Smoothing and approximation of functions. New York: Van Nostrand 1969. 

Sharpley, R. 
[1] Spaces A,(X) and interpolation. J. Functional. Anal. 11,479-513 (1972). 

Sobolev, S. L. 
[1] "On a theorem in functional analysis." Mat. Sbornik 4, 471--497 (1938) [Russian]. 

Spanne, S. 
[1] Sur l'interpolation entre les espaces Lf'''. Ann. Scuola Norm. Sup. Pisa 20, 625-648 (1966). 

Sparr, G. 
[1] Interpolation of several Banach spaces. Ann. Mat. Pura Appl. 99, 247-316 (1974). 
[2] Interpolation des espaces L~. C. R. Acad. Sci. Paris 278, 491--492 (1974); Interpolation of weighted 

Lv spaces. To appear in Studia Math. 

Stafney, J. 
[1] Analytic interpolation of certain multiplier spaces. Pac. J. Math. 32, 241-248 (1970). 

Steigerwalt, M. S., White, A. J. 
[1] Some function spaces related to Lp spaces. Proc. London Math. Soc. 22 (1), 137-163 (1971). 

Stein, E.M. 
[1] Interpolation of linear operators. Trans. Amer. Math. Soc. 83, 482--492 (1956). 
[2] Singular integrals and differentiability properties of functions. Princeton, N. J.: Princeton Univ. 

Press 1970. 

Stein, E. M., Weiss, G. 
[1] Interpolation of operators with change of measures. Trans. Amer. Math. Soc. 87,159-172 (1958). 

Taibleson, M. H. 
[1] On the theory of Lipschitz spaces of distributions in Euclidean n-space. I. Principal properties. 

J. Math. Mech. 13,407--479 (1964); II. Translation invariant operators, duality, and interpolation. 
ibid. 14, 821-839 (1965). 

Tartar, L. 
[1] Interpolation non linearie et regularite. J. Functional Anal. 9,469-489 (1972). 



204 References 

Thorin, G. O. 
[1] An extension of a convexity theorem due to M. Riesz. Kungl. Fysiogr. Siillsk. i Lund Forh. 8, 

166-170 (1938). 
[2] Convexity theorems. Medd. Lunds Univ. Mat. Sem. 9, 1-57 (1948). 

Tomaselli, G. 
[1] A class of inequalities. Boll. Un. Mat. Ital. IV 2, 622-631 (1969). 

Triebel, H. 
[1] Singuliire elliptische Differentialgleichungen und Interpolationssiitze flir Sobolev-Slobodeckij

Riiume mit Gewichtsfunktionen. Arch. Rational Mech. Anal. 32, 113-134 (1969). 
[2] Interpolationseigenschaften von Entropie- und Durchmesseridealen kompakter Operatoren. 

Studia Math. 34, 89-107 (1970). 
[3] Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation. Ark. Mat. 11, 

13-64 (1973). 
[4] Eine Bemerkung zur nicht-kommutativen Interpolation. Math. Nachr. 69, 57-60 (1975). 

Varopoulos, N.T. 
[1] Sur un probleme d'interpolation. C.R. Acad. Sci. Paris 274, 1539-1542 (1972). 

Weil, A. 
[1] L'integration dans les groupes topologiques et ses applications. Paris: Hermann 1965. 

Yoshikawa, A. 
[1] Sur la theorie d'espaces d'interpolation-les espaces de moyenne de plusieurs espaces de Banach. 

1. Fac. Sci. Univ. Tokyo 16,407-468 (1970). 
[2] Fractional powers of operators, interpolation theory and imbedding theorems. 1. Fac. Sci. Univ. 

Tokyo (IA) 18, 335-362 (1971). 

Y oshinaga, K. 
[1] On a generalization of the interpolation method. Bull. Kyushu Inst. Tech. Math. Natur. Sci. 17, 

1-23 (1970). 

Young, W.H. 
[1] On the multiplication of successions of Fourier constants. Proc. Royal Soc. Ser. A, 87, 331-339 

(1912). 

Zafran, M. 
[1] Multiplier transformations of weak type. Ann. Math. 101 (1), 34-44 (1975). 

Zygmund,A. 
[1] Trigonometric series. Cambridge Univ. Press, 1968. 
[2] On a theorem of Marcinkiewicz concerning interpolation of operations. J. Math. Pures Appl. 35, 

223-248 (1956). 



List of Symbols 

General notation 

fJI 24 
'fl 22 
'fl1 25 
% 23 
Ao+Al 24 
A 25 
,1(A), I(A) 26 
II TII..t,B 23,25 

The complex interpolation method 

CB> C,(A), A[01 88 
C', C'(A), AID] 89 
§i(A), §i 87 
~(A) 91 
~(A),~ 88 

The real interpolation method 

4)". 39 _ 
E(t, a), E(t, a; A) 174 
E .. (A),IH.,.;E 177 
J(t,a; A), J(t, a) (31),42 

A',.;J' J ".(A), II'II".;J 42 
K(t,a;A), K(t,a) (31),38 
K.(t), K.(t,a) 75, 115 

A',.;K' K".(A), II'II".;K 40 
A"., 11,11". 46 
'flK(B; A), 'flAB; A), 'fl(B; A) 48 

S(pO'~O,AO;Pl'~HA1) 85 
~(Po'~O,AO;Pl'~l,Al) 86 
S(A,ii,B), ~(A,ii,B) 70 
Tj(A,ii,ii) 79 
T8'(Po,tXo, AO;Pl,tX1,A 1) 86 
T m(A,ii, 8) 72 
ym(A,ii,ii) 74 
Vm(Po,tXO,AO;Pl,tXl,Al) 86 
vm(A,ii,B) 72 

Operators and functionals 

§if.! 5 
.1;' 144 
m(u,f) 6 
w~(t;f) 143 
f* 7 
JS, IS 139 
D· 131 

Spaces of distributions 

J!;,q,l!~, Iq~., II, ~~ 141 
w"., H~, II'II~., II'II~ 147 
Hp 18,168 
Mp 132 
Mp(Ho,H 1) 134 
g, g' 131, 132 
g(H), g'(H) 134 W: 153 
8. 180 
II, il~. 146 
II, il~ 147 
IH~., IH~ 140 

Lebesgue-spaces 

I. 13" 
,:, 1:(A), I:, l:(A) 121 
A,". 41 
L;(A) 70 
L.(A), L.(U,dJl; A) 107 
L.(w) 11 
Lo 62 
LV' L.(U), L.(dJl), Lp(U,dJl) 
L.. 8 
L~(A) 107 
~,c'o(A), CO, CO(A) 121 



Subject Index 

Approximation space 177 
Aronszajn-Gagliardo theorem 29 

Bernstein's inequality (12), 180 
Besov space 141, 146 
Bessel potential 139 
Bounded interpolation functor 28 

Calderon's interpolation theorem 114 
c-norm 59 
Compatible spaces, couples 24, 63 
c-triangle inequality 59 

Decreasing rearrangement 7 
Difference schemes 183 
Duality theorem for the complex method 98 
- - for the real method 54 

Embedding theorem 153 
Entire function 180 
Equivalence theorem for the complex method 

93 
- - for the real method 44, 65 
Espaces de moyennes 70 
- de traces 72 
Exact interpolation functor 28 
- - space 27 

Function norm 78 
Fundamental lemma of interpolation theory 45 
Fourier multiplier 132 
- transform 5,131 

Gagliardo completition 37 
- diagram 39 
- set 175 

Hardy class, space 18, 170 
Hardy's inequality 16 
Hausdorff-Young's inequality 6 

Hilbert transform 15 
Holmstedt's formula (theorem 3.6.1) 52 
Homogeneous Besov space 146 

Inequality of Bernstein (12), 180 
- of Hardy 16 
- of Hausdorff-Young 6 
- of Jackson (12), 180 
- of Young 6 
Infinitesimal generator 157 
Intermediate space 26 
- - ofclass~(6;A) 48 
Interpolation function 116 
- functor (method) 28 
- space 27 
- of compact operators 56, 85 
- of locally convex spaces 83 
- of multilinear mappings (9), 76, 96 
- of non-linear mappings 36, 78 
- of semi-normed spaces 83 
Interpolation theorem of Calderon 114 
- - of Marcinkiewicz 9, 113 
- - ofRiesz-Thorin 2,107 
- - of Stein-Weiss 115 

Jackson's inequality (12),180 

K-monotonic spaces 84 

Lebesgue space 1 
Lorentz space 8 

Orlicz spaces 128 

p-nuclear operators 182 
Potentials 139 
Power theorem 68 

Quasi-concave functions 84, 117 
- linearizable couples 77 



Subject Index 

- norm (7), 59 
- normed Abelian groups 59 
- - Abelian semi-groups 80 
- - vector space 7 

Real interpolation method 46 
Reiteration theorem for the complex method 

101 
- - for the real method 50, 67 
Retract (81),150 
Riesz potential 139 
- Thorin's interpolation theorem 2, 107 

Scales of Banach spaces 82 
Semi-groups of operators 157 

Sobolev space 141,153 
Spline functions 193 
Stability theorem, see equivalence theorem 
Stein-Weiss interpolation theorem 115 

Three line theorem 4 
Trace theorem 155 

Uniform interpolation functor 28 
- - space 27 

Weak reiteration theorem 35 

Young's inequality 6 

207 



Die Grundlehren der mathematischen Wissenschaften 
in Einzeldarstellungen 
mit besonderer Beriicksichtigung der Anwendungsgebiete 

Eine Auswahl 

23. Pasch: Vorlesungen iiber neuere Geometrie 
41. Steinitz: Vorlesungen iiber die Theorie der Polyeder 
45. Alexandroff/Hopf: Topologie. Band 1 
46. Nevanlinna: Eindeutige analytische Funktionen 
63. Eichler: Quadratische Formen und orthogonale Gruppen 

102. NevanlinnajNevanlinna: Absolute Analysis 
114. Mac Lane: Homology 
123. Y osida: Functional Analysis 
127. Hermes: Enumerability, Decidability, Computability 
131. Hirzebruch: Topological Methods in Algebraic Geometry 
135. Handbook for Automatic Computation. Vol. 1jPart a: Rutishauser: Description of ALGOL 60 
136. Greub: Multilinear Algebra 
137. Handbook for Automatic Computation. Vol. 1/Part b: Grau/Hill/Langmaack: 

Translation of ALGOL 60 
138. Hahn: Stability of Motion 
139. Mathematische Hilfsmittel des Ingenieurs. 1. Teil 
140. Mathematische Hilfsmittel des Ingenieurs. 2. Teil 
141. Mathematische Hilfsmittel des Ingenieurs. 3. Teil 
142. Mathematische Hilfsmittel des Ingenieurs. 4. Teil 
143. Schur/Grunsky: Vorlesungen iiber Invariantentheorie 
144. Weil: Basic Number Theory 
145. ButzerjBerens: Semi-Groups of Operators and Approximation 
146. Treves: Locally Convex Spaces and Linear Partial Differential Equations 
147. Lamotke: Semisimpliziale algebraische Topologie 
148. Chandrasekharan: Introduction to Analytic Number Theory 
149. Sario/Oikawa: Capacity Functions 
150. losifescu/Theodorescu: Random Processes and Learning 
151. Mandl: Analytical Treatment of One -dimensional Markov Processes 
152. HewittjRoss: Abstract Harmonic Analysis. Vol. 2: Structure and Analysis for 

Compact Groups. Analysis on Locally Compact Abelian Groups 
153. Federer: Geometric Measure Theory 
154. Singer: Bases in Banach Spaces I 
155. Miiller: Foundations of the Mathematical Theory of Electromagnetic Waves 
156. van der Waerden: Mathematical Statistics 
157. ProhorovjRozanov: Probability Theory. Basic Concepts. Limit Theorems. Random Processes 
158. Constantinescu/Cornea: Potential Theory on Harmonic Spaces 
159. Kothe: Topological Vector Spaces I 
160. AgrestjMaksimov: Theory ofIncomplete Cylindrical Functions and their Applications 
161. Bhatia/Szego: Stability Theory of Dynamical Systems 
162. Nevanlinna: Analytic Functions 
163. StoerjWitzgall: Convexity and Optimization in Finite Dimensions I 
164. SariojNakai: Classification Theory of Riemann Surfaces 
165. MitrinovicjVasic: Analytic Inequalities 
166. Grothendieck/Dieudonne: Elements de Geometrie Algebrique I 
167. Chandrasekharan: Arithmetical Functions 
168. Palamodov: Linear Differential Operators with Constant Coefficients 
169. Rademacher: Topics in Analytic Number Theory 
170. Lions: Optimal Control of Systems Governed by Partial Differential Equations 
171. Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces 



172. Btihlmann: Mathematical Methods in Risk Theory 
173. Maeda/Maeda: Theory of Symmetric Lattices 
174. Stiefel/Scheifele: Linear and Regular Celestia1 Mechanics. Perturbed Two-body 

Motion-Numerical Methods-Canonical Theory 
175. Larsen: An Introduction to the Theory of Multipliers 
176. Grauert/Remmert: Analytische Stellenalgebren 
177. Fltigge: Practical Quantum Mechanics I 
178. Fltigge: Practical Quantum Mechanics II 
179. Giraud: Cohomologie non abelienne 
180. Landkof: Foundations of Modern Potential Theory 
181. Lions/Magenes: Non-Homogeneous Boundary Value Problems and Applications I 
182. Lions/Magenes: Non-Homogeneous Boundary Value Problems and Applications II 
183. Lions/Magenes: Non-Homogeneous Boundary Value Problems and Applications III 
184. Rosenblatt: Markov Processes. Structure and Asymptotic Behavior 
185. Rubinowicz: Sommerfeldsche Polynommethode 
186. Handbook for Automatic Computation. Vol. 2. Wilkinson/Reinsch: Linear Algebra 
187. Siegel/Moser: Lectures on Celestial Mechanics 
188. Warner: Harmonic Analysis on Semi-Simple Lie Groups I 
189. Warner: Harmonic Analysis on Semi-Simple Lie Groups II 
190. Faith: Algebra: Rings, Modules, and Categories I 
192. Mal'cev: Algebraic Systems 
193. P6Iya/Szego: Problems and Theorems in Analysis I 
194. Igusa: Theta Functions 
195. Berberian: Baer*-Rings 
196. Athreya/Ney: Branching Processes 
197. Benz: Vorlesungen tiber Geometrie der Algebren 
198. Gaal: Linear Analysis and Representation Theory 
199. Nitsche: Vorlesungen tiber Minimal/1achen 
200. Dold: Lectures on Algebraic Topology 
201. Beck: Continuous Flows in the Plane 
202. Schmetterer: Introduction to Mathematical Statistics 
203. Schoeneberg: Elliptic Modular Functions 
204. Popov: Hyperstability of Control Systems 
205. Nikol'skii: Approximation of Functions of Severa1 Variables and Imbedding Theorems 
206. Andre: Homoiogie des Algebres Commutatives 
207. Donoghue: Monotone Matrix Functions and Analytic Continuation 
208. Lacey: The Isometric Theory of Classical Banach Spaces 
209. Ringel: Map Color Theorem 
210. Gihman/Skorohod: The Theory of Stochastic Processes I 
211. Comfort/Negrepontis: The Theory of Ultrafilters 
212. Switzer: Algebraic Topology-Homotopy and Homology 
213. Shafarevich: Basic Algebraic Geometry 
214. van der Waerden: Group Theory and Quatum Mechanics 
215. Schaefer: Banach Lattices and Positive Operators 
216. P6Iya/Szego: Problems and Theorems in Analysis II 
217. Stenstrom: Rings of Quotients 
218. Gihman/Skorohod: The Theory of Stochastic Processes II 
219. Duvaut/Lions: Inequalities in Mechanics and Physics 
220. Kirillov: Elements of the Theory of Representations 
221. Mumford: Algebraic Geometry I: Complex Projective Varieties 
222. Lang: Introduction to Modular Forms 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions false
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>


    /HRV <>
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




