ALMOST EQUAL SUMMANDS IN WARING'S PROBLEM WITH SHIFTS

KIRSTI D. BIGGS

ABSTRACT. A result of Wright from 1937 shows that there are arbitrarily large natural numbers which cannot be represented as sums of s kth powers of natural numbers which are constrained to lie within a narrow region. We show that the analogue of this result holds in the shifted version of Waring's problem.

Waring's problem with shifts asks whether, given $k, s \in \mathbb{N}$ and $\eta \in (0, 1]$, along with shifts $\theta_1, \ldots, \theta_s \in (0, 1)$ with $\theta_1 \notin \mathbb{Q}$, we can find solutions in natural numbers x_i to the following inequality, for all sufficiently large $\tau \in \mathbb{R}$:

$$\left| (x_1 - \theta_1)^k + \ldots + (x_s - \theta_s)^k - \tau \right| < \eta. \tag{1}$$

This problem was originally studied by Chow in [3]. In [1], the author showed that an asymptotic formula for the number of solutions to (1) can be obtained whenever $k \ge 4$ and $s \ge k^2 + (3k-1)/4$. The corresponding result for k=3 and $s \ge 11$ is due to Chow in [2].

An interesting variant is to consider solutions of (1) subject to the additional condition

$$|x_i - (\tau/s)^{1/k}| < y(\tau), \quad (1 \le i \le s),$$

for some function $y(\tau)$. In other words, we are confining our variables to be within a small distance of the "average" value.

In 1937, Wright studied this question in the setting of the classical version of Waring's problem, and proved in [6] that there exist arbitrarily large natural numbers n which cannot be represented as sums of s kth powers of natural numbers x_i satisfying the condition $|x_i^k - n/s| < n^{1-1/2k}\phi(n)$ for $1 \le i \le s$, no matter how large s is taken. Here, $\phi(n)$ is a function satisfying $\phi(n) \to 0$ as $n \to \infty$.

In [4] and [5], Daemen showed that if we widen the permitted region slightly, we can once again guarantee solutions in the classical case. Specifically, he obtains a lower bound on the number of solutions under the condition

$$|x_i - (n/s)^{1/k}| < cn^{1/2k}, \quad (1 \le i \le s),$$

for a suitably large constant c, and an asymptotic formula under the condition

$$|x_i - (n/s)^{1/k}| < n^{1/2k + \epsilon}, \quad (1 \le i \le s).$$

²⁰¹⁰ Mathematics Subject Classification. 11D75, 11P05.

Key words and phrases. Waring's problem, Diophantine inequalities.

The author is supported by EPSRC Doctoral Training Partnership EP/M507994/1.

In this note, we show that (a slight strengthening of) Wright's result remains true in the shifted case. Specifically, we prove the following.

Theorem 1. Let $s, k \geq 2$ be natural numbers. Fix $\boldsymbol{\theta} = (\theta_1, \dots, \theta_s) \in (0, 1)^s$, and let c, c' > 0 be suitably small constants which may depend on s, k and $\boldsymbol{\theta}$. There exist arbitrarily large values of $\tau \in \mathbb{R}$ which cannot be approximated in the form (1), with $0 < \eta < c\tau^{1-2/k}$, subject to the additional condition that $|x_i - (\tau/s)^{1/k}| < c'\tau^{1/2k}$ for $1 \leq i \leq s$.

Proof. This follows the structure of Wright's proof in [6], with minor adjustments to take into account the shifts present in our problem. As such, for $m \in \mathbb{N}$, we let $\tau_m = sm^k + km^{k-1}(s - \sum_{i=1}^s \theta_i)$, and we note that $\tau_m \to \infty$ as $m \to \infty$. Throughout the proof, we allow c_1, c_2, \ldots to denote positive constants which do not depend on m, although they may depend on the fixed values of s, k, θ, c and c'. We also note that $\eta < c\tau^{1-2/k}$ implies that $\eta \ll m^{k-2}$.

values of s, k, θ, c and c'. We also note that $\eta < c\tau^{1-2/k}$ implies that $\eta \ll m^{k-2}$. Suppose τ_m satisfies (1) with $0 < \eta < c\tau_m^{1-2/k}$ and $\left|x_i - (\tau_m/s)^{1/k}\right| < c'\tau_m^{1/2k}$ for $1 \le i \le s$. We write $x_i = m + a_i$, and observe that

$$m^{k-1} |a_i| = m^{k-1} |x_i - m|$$

$$\leq m^{k-1} \left(|x_i - (\tau_m/s)^{1/k}| + |(\tau_m/s)^{1/k} - m| \right)$$

$$\leq c' m^{k-1} \tau_m^{1/2k} + |\tau_m/s - m^k|.$$

Using the definition of τ_m , we obtain

$$m^{k-1} |a_i| \le c_1 m^{k-1} m^{1/2} + k m^{k-1} (1 - s^{-1} \sum_{i=1}^s \theta_i),$$

and therefore $|a_i| \leq c_2 m^{1/2}$ for $1 \leq i \leq s$. Expanding (1), we see that

$$\eta > \left| \sum_{i=1}^{s} (x_i - \theta_i)^k - \tau_m \right| \\
= \left| \sum_{i=1}^{s} (m + a_i - \theta_i)^k - \left(sm^k + km^{k-1} (s - \sum_{i=1}^{s} \theta_i) \right) \right| \\
\ge km^{k-1} \left| s - \sum_{i=1}^{s} a_i \right| - \left| \sum_{j=2}^{k} {k \choose j} m^{k-j} \sum_{i=1}^{s} (a_i - \theta_i)^j \right|.$$
(2)

Rearranging, this gives

$$\left| s - \sum_{i=1}^{s} a_i \right| < \eta k^{-1} m^{1-k} + \left| \sum_{j=2}^{k} {k \choose j} k^{-1} m^{1-j} \sum_{i=1}^{s} (a_i - \theta_i)^j \right|$$

$$\leq \eta k^{-1} m^{1-k} + \sum_{j=2}^{k} {k \choose j} k^{-1} m^{1-j} s (c_3 m^{1/2})^j$$

$$\leq c_4.$$

By choosing our original c, c' to be sufficiently small, we may conclude that $c_4 \leq 1$, which implies that $\sum_{i=1}^{s} a_i = s$. Substituting this back into (2), when k = 2 we obtain

$$\eta > {k \choose 2} m^{k-2} \sum_{i=1}^{s} (a_i - \theta_i)^2,$$

and consequently

$$\sum_{i=1}^{s} (a_i - \theta_i)^2 < c_5,$$

which is a contradiction if we choose c, c' sufficiently small, since we have $\sum_{i=1}^{s} (a_i - \theta_i)^2 \gg 1$.

When k > 3, we obtain

$$\eta > \left| \sum_{j=2}^{k} {k \choose j} m^{k-j} \sum_{i=1}^{s} (a_i - \theta_i)^j \right| \\
\geq {k \choose 2} m^{k-2} \sum_{i=1}^{s} (a_i - \theta_i)^2 - \left| \sum_{j=3}^{k} {k \choose j} m^{k-j} \sum_{i=1}^{s} (a_i - \theta_i)^j \right|.$$

Consequently,

$${k \choose 2} m^{k-2} \sum_{i=1}^{s} (a_i - \theta_i)^2 < \eta + \sum_{j=3}^{k} {k \choose j} m^{k-j} \sum_{i=1}^{s} |a_i - \theta_i|^j$$

$$\leq \eta + \sum_{j=3}^{k} {k \choose j} m^{k-j} (c_3 m^{1/2})^{j-2} \sum_{i=1}^{s} (a_i - \theta_i)^2$$

$$\leq \eta + c_6 m^{k-5/2} \sum_{i=1}^{s} (a_i - \theta_i)^2,$$

and so

$$\sum_{i=1}^{s} (a_i - \theta_i)^2 < c_7 + c_8 m^{-1/2} \sum_{i=1}^{s} (a_i - \theta_i)^2,$$

which is again a contradiction when m is large.

We conclude that for all sufficiently large m, it is impossible to approximate τ_m in the manner claimed. This completes the proof.

Corollary 2. For $s, k \geq 2$ natural numbers, $\boldsymbol{\theta} = (\theta_1, \dots, \theta_s) \in (0, 1)^s$, and suitably small constants C, C' > 0, there exist arbitrarily wide gaps between real numbers τ for which the system

$$\left| (x_1 - \theta_1)^k + \ldots + (x_s - \theta_s)^k - \tau \right| < C\tau^{1 - 2/k}$$

$$\left| x_i - (\tau/s)^{1/k} \right| < C'\tau^{1/2k}, \quad (1 \le i \le s)$$
(3)

has a solution in natural numbers x_1, \ldots, x_s .

Proof. By Theorem 1, we fix $\tau_0 \in \mathbb{R}$ such that there is no solution in natural numbers x_1, \ldots, x_s to $\left| (x_1 - \theta_1)^k + \ldots + (x_s - \theta_s)^k - \tau_0 \right| < c\tau_0^{1-2/k}$ with $\left| x_i - (\tau_0/s)^{1/k} \right| < c'\tau_0^{1/2k}$ for $1 \le i \le s$.

Let $0 < \delta \le C_0 \tau_0^{1-2/k}$ for some $C_0 > 0$, and let $\tau \in [\tau_0 - \delta, \tau_0 + \delta]$. Let C, C' > 0 be suitably small constants depending on c, c' and C_0 to be chosen later, and suppose that $x_1, \ldots, x_s \in \mathbb{N}$ are such that (3) is satisfied.

We have

$$\left| (\tau/s)^{1/k} - (\tau_0/s)^{1/k} \right| \le s^{-1/k} \left| (\tau_0 - \delta)^{1/k} - \tau_0^{1/k} \right|$$

$$\le C_1 \delta \tau_0^{1/k - 1},$$

and consequently

$$|x_{i} - (\tau_{0}/s)^{1/k}| \leq |x_{i} - (\tau/s)^{1/k}| + |(\tau/s)^{1/k} - (\tau_{0}/s)^{1/k}|$$

$$< C'\tau^{1/2k} + C_{1}\delta\tau_{0}^{1/k-1}$$

$$\leq C'(\tau_{0} + \delta)^{1/2k} + C_{1}C_{0}\tau_{0}^{-1/k}$$

$$\leq C_{2}\tau_{0}^{1/2k}.$$

We also see that

$$\left| \sum_{i=1}^{s} (x_i - \theta_i)^k - \tau_0 \right| \le \left| \sum_{i=1}^{s} (x_i - \theta_i)^k - \tau \right| + |\tau - \tau_0|$$

$$< C\tau^{1-2/k} + \delta$$

$$\le C(\tau_0 + \delta)^{1-2/k} + C_0\tau_0^{1-2/k}$$

$$\le C_3\tau_0^{1-2/k}.$$

Choosing C_0, C, C' small enough to ensure that $C_2 \leq c'$ and $C_3 \leq c$ gives a contradiction to our original choice of τ_0 . Consequently, there is no solution to (3) in an interval of radius $\approx \tau_0^{1-2/k}$ around τ_0 .

The author would like to thank Trevor Wooley for his supervision, and the anonymous referee for useful comments.

References

- [1] K. D. Biggs. On the asymptotic formula in Waring's problem with shifts. *J. Number Theory* (2018).
- [2] S. Chow. Sums of cubes with shifts. J. Lond. Math. Soc. (2) 91 (2015), no. 2, 343–366.
- [3] S. Chow. Waring's problem with shifts. Mathematika 62 (2016), no. 1, 13–46.
- [4] D. Daemen. The asymptotic formula for localized solutions in Waring's problem and approximations to Weyl sums. *Bull. Lond. Math. Soc.* **42** (2010), no. 1, 75–82.
- [5] D. Daemen. Localized solutions in Waring's problem: the lower bound. *Acta Arith.* **142** (2010), no. 2, 129–143.
- [6] E. M. Wright. The representation of a number as a sum of four 'almost equal' squares. The Quarterly Journal of Mathematics 8 (1937), 278–279.

School of Mathematics, University of Bristol, University Walk, Clifton, Bristol, BS8 1TW, United Kingdom

 $E\text{-}mail\ address: \verb"kirsti.biggs@bristol.ac.uk"$