
“ Complex geometry owes a lot to convex geometry, but it never pays anything back.” ( B. K.)

NOTES ON COMPLEX AND CONVEX GEOMETRY.

BO BERNDTSSON

1. Plan of the course, ambitious version

1. Convexity in Rn. The Brunn-Minkowski theorem and Prekopa’s theorem. The Le-
gendre transform. The space of convex functions with the Mabuchi-Semmes metric. The
Prekopa-Leindler theorem. Convex-concave functions and the von-Neumann min-max the-
orem.

2. Holomorphic vector bundles and their curvature. Positivity. Sheaves and direct im-
ages.

3. Positivity of direct images I (the case of trivial fibrations). Comparison with Brunn-
Minkowski. The Legendre transform of a metric on a line bundle. The Bergman kernel
and the inverse Legendre transform.

4. Some applications to complex analysis. Moser-Trudinger inequalities, the Suita con-
jecture, Kiselman’s minimum principle, interpolation and the Santalo inequality.

5. The space of Kähler metrics. Applications of the positivity theorem to Kähler geome-
try: Geodesics and some uniqueness theorems.

6. Positivity of direct images II (non trivial fibrations). The Kodaira-Spencer class and
the Gauss-Manin connection. Weil-Petersson metrics and the period map.

7. More applications (?)

2. CONVEXITY IN Rn.

Let A0 and A1 be two convex bodies in Rn, i e compact convex sets with non empty interior.
Their Minkowski sum is then defined as

(2.1) A0 + A1 = {a0 + a1; aj ∈ Aj, j = 0, 1}.
For any measurable set in Rn we let |A| denote its Lebesgue measure. The main theorem in
convex geometry is

Theorem 2.1. (The Brunn-Minkowski Theorem.)

|A0 + A1|1/n ≥ |A0|1/n + |A1|1/n.

The B-M theorem was first proved by Brunn in 1887 for n = 2 and later generalized to
arbitrary dimensions by Minkowski in 1896. It was further generalized by Lyusternik in 1935.
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Theorem 2.2. (Lyusternik) The same inequality holds for arbitrary nonempty compact sets.

Remark: Notice that the assumption thatA andB be nonempty is important: SinceA+∅ = ∅
the B-M inequality can not hold if B is empty. It was pointed out to me by Christer Borell that
this seemingly silly remark is actually quite important, see the proof of Theorem 2.8. �

We begin by giving a classical illustration of these results. Take A0 = A a compact set with
say smooth boundary and take A1 = sB, where B is the unit ball and s is a small number. Let
f(s) := |A+ sB|. Then

f(s) := |A+ sB| = |A|+ s|∂A|+ o(s)

(here |∂A| is the n − 1-dimensional volume of the boundary of A). The B-M-theorem implies
that

(d/ds)|s=0f
1/n ≥ |B|1/n,

so
|∂A|

|A|1−1/n
≥ n|B|1/n.

If A = B we have equality here, since B + sB = (1 + s)B when B is convex. Thus

n|B|1/n =
|∂B|

|B|1−1/n

and we get
|∂A|

|A|1−1/n
≥ |∂B|
|B|1−1/n

.

This is the isoperimetric inequality, saying that of all sets with a given volume, the surface area
is the smallest for a ball. Note that this follows from a very special case of the B-M theorem. We
could define f(s) in the same way, with B′ a different convex body instead of B, and then define
the ’surface area’ of A as f ′(0). All such generalized surface area also satisfy an isoperimetric
inequality, where the (arbitrary) convex body B′ is the minimizer. This follows from exactly the
same argument since we only used that B was convex.

We will now give an alternative formulation of the B-M theorem, and start with the following
obvious consequence. Put At = tA1 + (1− t)A0 for t between 0 and 1. Then

t→ |At|1/n

is concave. It follows from this that

(2.2) |At| ≥ min(|A0|, |A1|).
Exercise Prove that (2.2) implies the B-M theorem. �

Theorem 2.3. The function t→ |At| is a polynomial (of degree n) for t between 0 and 1.

This is a nontrivial fact that will be proved later. It is the starting point for the Alexandrov-
Fenchel theorem, a far reaching generalisation of B-M. Let now A be a convex body in Rn+1.
For t in R we let At = {x ∈ Rn; (t, x) ∈ A} be the corresponding slice of A, of course we will
only care about t:s such that At is a convex body.

Theorem 2.4. The function t→ |At|1/n is concave on the interval where it is non zero.
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This theorem is equivalent to B-M: First, given A0 and A1 we may construct a convex body A
in Rn+1 such that At = At = tA1 + (1 − t)A0 for t between 0 and 1. Therefore Theorem 1.4
implies B-M. On the other hand, given A and two slices, say A0 and A1 we have that tA1 +(1−
t)A0 ⊂ At if A is convex. Hence B-M implies that

|At|1/n ≥ t|A1|1/n + (1− t)|A0|1/n,
so Theorem 1.4 follows from B-M. The next obvious corollary is again equivalent to B-M, since
it implies (1.2).

Corollary 2.5. t→ log |At| is concave.

Remark: Even though Theorem 2.4 and its corollary are ’equivalent’ to Theorem 2.1 in the
sense that each of the statements is an easy consequence of the other, they are philosophically
quite different. If we aim to generalize them, Theorem 2.1 suggests looking at situations where
we have a notion of ’addition’, like lattices or more general groups. On the other hand, Theorem
2.4 has a meaning as soon as we have a notion of ’convexity’. like e g holomorphic convexity or
pseudoconvexity. In these notes we shall follow this latter route. �

The following function version of the corollary is fundamental for everything that follows.

Theorem 2.6. (Prekopa’s Theorem) Let φ(t, x) be a convex function in Rn+1. Let

(2.3) φ̃(t) = − log

∫
Rn

e−φ(t,x)dx,

or equivalently

(2.4) e−φ̃(t) =

∫
Rn

e−φ(t,x)dx.

Then φ̃ is convex or identically equal to −∞.

Prekopa’s theorem is a generalization of the B-M theorem. To see this, it is convenient to
allow convex functions to attain the value +∞. Then convexity does no longer imply continuity
(as it does for finite valued functions o open sets), and to fix ideas we will instead require our
convex functions to be lower semicontinuous. As an example, if A is a convex body, we define
its indicator function 1A to be 0 onA and∞ outsideA. If we apply Prekopa’s theorem to φ = 1A
it is easily seen that we get Corolloray 1.5. In the proof of Prekopa’s theorem that we give next,
largely following Brascamp and Lieb, we will however first assume that φ is finite valued and
even smooth. (The general case follows, since we can write a general convex φ as an increasing
limit of nice φ:s.) The proof goes at follows:

Note first that we may assume that n = 1. This is most easily seen from the definition in
formula (2.4). If we first carry out the integration with respect to xn, and if we know the theorem
for n = 1, this gives us a convex function φ̂ on depending on (t, x1, ...xn) defined by

e−φ̂(t,x1,...xn−1) =

∫
R
e−φ(t,x)dxn.

Then we just iterate, integrating with respect to xn−1 and so on. We will compute the second
derivative of φ̃ and want to prove that it is nonnegative. For simplicity we choose t = 0 and we
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may assume (adding a constant to φ that φ̃(0) = 0, and (adding a linear function of t to φ) that
φ̃′(0) = 0. This means that ∫

Rn

e−φ(0,x)dx = 1

and ∫
Rn

φ̇(0, x)e−φ(0,x)dx = 0.

We use dots to indicate derivatives with respect to time and doubledots for second order time
derivatives. A direct computation gives

(2.5) φ̃′′(0) =

∫
Rn

(
φ̈(0, x)− φ̇2(0, x)

)
e−φ(0,x)dx.

The main ingredient in the proof is the following lemma. It is known as the Brascamp-Lieb
Theorem and it can be viewed as a real-variable analog of Hörmander’s L2-estimates for ∂̄.

Lemma 2.7. Let ψ be a smooth strictly convex function on the real line with e−ψ integrable on
R, and let u be a function such that ∫

R
u2e−ψdx <∞,

and

(2.6)
∫

R
ue−ψdx = 0.

Then

(2.7)
∫

R
u2e−ψdx ≤

∫
R

(u′)2

ψ′′
e−ψdx.

Proof. We first prove a dual estimate. Let

dψv = eψ(d/dx)(ve−ψ);

it is the negative of the formal adjoint of d/dx for the weighted L2 scalar product defined by e−ψ.
This means that ∫

(du/dx)ve−ψdx = −
∫
udψve−ψdx,

if v has compact support, which follows from integration by parts.
Let v be smooth of compact support. Then we claim that∫

ψ′′v2e−ψdx+

∫
(dv/dx)2e−ψdx =

∫
(dψv)2e−ψdx.

In particular

(2.8)
∫
ψ′′v2e−ψdx ≤

∫
(dψv)2e−ψdx.

To prove this we will use the fundamental commutator formula

(d/dx)dψv + ψ′′v = dψ(d/dx)v
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which will reappear in many quises later. Its proof follows from noting that

dψv = v′ − ψ′v.

Then∫
(dψv)2e−ψdx = −

∫
((d/dx)dψv)ve−ψdx = −

∫
(dψ(d/dx)v)ve−ψdx+

∫
ψ′′v2e−ψdx

=

∫
ψ′′v2e−ψdx+

∫
(dv/dx)2e−ψdx.

To prove (2.7) we next solve
dψv = u,

by

v(x)e−ψ =

∫ x

−∞
ue−ψ.

We may assume that u has compact support (check !) and it then follows from (2.6) that v also
has compact support. Then∫

u2e−ψdx =

∫
(dψv)ue−ψdx = −

∫
vu′e−ψdx.

By Cauchy’s inequality∫
u2e−ψdx ≤

(∫
ψ′′v2e−ψdx

∫
(u′)2/ψ′′e−ψdx

)1/2

.

By (2.8) this is dominated by(∫
(dψv)2e−ψdx

∫
(u′)2/ψ′′e−ψdx

)1/2

=

(∫
u2e−ψdx

∫
(u′)2/ψ′′e−ψdx

)1/2

so (2.7) follows. �

From here we get Prekopa’s theorem. By (2.5) and the Brascamp-Lieb estimates we get

φ̃′′(0) ≥
∫

Rn

(
φ̈(0, x)− (φ′′t,x(0, x))

2/φ′′x,x

)
e−φ(0,x)dx =∫

Rn

(
φ′′x,xφ̈(0, x)− (φ′′t,x)

2(0, x)
)
/φ′′x,xe

−φ(0,x)dx.

We then note that the numerator
φ′′x,xφ̈− (φ′′t,x)

2

is just the determinant of the Hessian of φ (with respect to x and t). Since φ is convex this is
nonnegative, and we are done. �

Remark With a little bit more work one can carry out the same proof for general n without
using induction. One then essentially has to replace dψ by (the negative of) the formal adjoint of
d, the exterior derivative of a function on Rn. (The main complication that arises is to solve the
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equation dψv = u with v of compact support, if u satisfies (2.6).) One then gets the following
bound for the second derivative of φ̃

φ̃′′ ≥
∫

Rn

MAt,x(φ)

MAx(φ)
e−φdx.

Here MA(ψ) stands for the Monge-Ampere operator applied to ψ, i e the determinant of the
Hessian of ψ, and the indices mean that we take the Monge-Ampere with respect to x or both x
and t, respectively. The quotient

MAt,x(φ)

MAx(φ)
will play an important role in the next section.

Remark: The above proof is by no means the simplest approach to Prekopa or B-M. Never-
theless it is an interesting proof since it connects in many other directions. Below we give a very
simple proof of Prekopa’s thm in one variable that I learnt from Bo’az Klartag.

Theorem 2.8. Let f, g and h be nonnegative functions on the real line satisfying

h((x+ y)/2) ≥ min(f(x), g(y))

for all x and y in R. Assume moreover that max(f) = max(g) = M . Then∫
hdx ≥ (

∫
fdx+

∫
gdx)/2 ≥

√∫
fdx

∫
gdx.

Proof. First note that for any t ≥ 0

(1/2){f > t}+ (1/2){g > t} ⊂ {h > t},
since if f(x) > t and g(y) > t then our assumption implies h((x + y)/2) > t. If t < M both
sets in the left hand side are nonempty, so by one dimensional Brunn-Minkowski (see below)

(2.9) 2|{h > t}| ≥ |{f > t}|+ |{g > t}|.
Now use the classical fact that for any nonnegative function k∫ ∞

0

|{k > t}|dt =

∫ ∫
k(x)>t

dxdt =

∫
k(x)dx.

Applying this to f, g and h in the previous inequality we get

2

∫
hdx ≥ 2

∫ M

0

|{h > t}|dt ≥
∫ ∞

0

|{f > t}|dt+

∫ ∞

0

|{g > t}|dt =

∫
fdx+

∫
gdx.

�

In this proof we have used the Brunn-Minkowski theorem in one variable. Let us now apply
Theorem 2.8 to f = e−φ0 , g = e−φ1 , where we moreover assume that min(φ0) = min(φ1). If
we assume φ0 and φ1 to be convex, their sublevel sets, i e the superlevel sets of f and g are
intervals. In this case, the Brunn-Minkowski theorem is trivial. Thus we get a proof of Prekopa’s
theorem by letting h = e−φ1/2 , if φt(x) is convex with respect to t and x jointly. (Our extra
assumption that the minima of φj are equal can be dispensed with by adding a linear function of
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t.) In fact, Theorem 2.8 is much stronger; it also implies the Prekopa-Leindler Theorem, that we
will encounter in the next section.

We conclude this section with a cute inequality that follows from Prekopa’s (add ref!).

Theorem 2.9. Let φ be convex on Rn and assume∫
e−φdx = 1.

Let

φ̂ =

∫
φe−φdx.

Then ∫
(φ− φ̂)2e−φdx ≤ n.

Proof. Let Φ(t, x) := tφ(x/t) for t > 0. This is a convex function of (t, x) for any convex φ.
Indeed, this is clearly so if φ is affine, and therefore holds in general since any convex function
is the supremum of a family of affine functions. By Prekopa

f(t) := log

∫
e−Φ(t,x)dx

is concave. But, changing varaibles x = ty in the integral,

f(t) = log tn +

∫
e−tφ(y)dy.

The theorem follows from f ′′(1) ≤ 0. �

Notice that if φ is homogenous of order 1, Φ(t, x) = φ(x) so f is constant then. Hence equality
holds for any function that is homogenous of order 1.

3. AFFINE STRUCURES ON THE SPACE OF CONVEX BODIES AND CONVEX FUNCTIONS.

We start by looking more closely at the notion of Minkowski sum. This operation introduces
a kind of affine structure on the space of convex bodies. We have already seen that there is a
natural imbedding of the space of convex bodies into CV X , the space of convex functions on
Rn, namely

A→ 1A.

We have a natural affine structure on CV X simply by adding two convex function. This however
does not correspond to Minkowski addition since

1A0 + 1A1 = 1A0∩A1 6= 1A0+A1 .

This can be remedied by appealing to the most important concept in convex geometry.

Definition 3.1. Let φ be a function on Rn. Then its Legendre transform is the function

(3.1) φ∗(p) := sup
x∈Rn

p · x− φ(x).
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Notice that, as the supremum of a family of convex (in fact, affine) functions, the Legendre
transform is always convex (and lower semicontinuous). It is also defined for functions defined
only on a subset of Rn, since we can extend such functions to global functions by ∞ on the
complement of the set where it is defined. Equivalently, we take sup only over the domain of
definition of φ. It turns out that on convex functions, the Legendre transform is involutive:

Theorem 3.2. φ∗∗ = φ◦, the supremum of all finite valued convex functions ψ ≤ φ.

Proof. By the Hahn-Banach Theorem φ◦ is also the supremum of all affine functions smaller that
φ,

φ◦(x) = sup
{(p,a);p·y+a≤φ(y),y∈Rn}

p · x+ a.

When is p · y + a ≤ φ(y) for all y? This is the case exactly when

−a ≥ φ∗(p).

Hence
sup
ψ≤φ

ψ(x) = sup
a≤−φ∗(p)

p · x+ a = sup
p
p · x− φ∗(p) = φ∗∗(x).

�

As an example of this we take φ = 1A for a convex body A. Then

1∗A(p) = sup
x∈A

p · x =: HA(p).

The function HA is the support function of A and it follows from the theorem that its Legendre
transform is 1A. Now note that

HA0+A1(p) = sup
x0∈A0,x1∈A1

p · (x0 + x1) = HA0(p) +HA1(p),

so Minkowski addition is reflected as the addition of support functions. Thus we get a new affine
structure on CV X as

φ0 ⊕ φ1 := (φ∗0 + φ∗1)
∗,

and this affine structure extends Minkowski addition under the embedding A→ 1A.
This leads up to the problem of describing φ0 ⊕ φ1 directly.

Proposition 3.3.
φ0 ⊕ φ1(x) = inf

x0+x1=x
φ0(x0) + φ1(x1) := φ0 ? φ1,

which is called the infimal convolution of φ0 and φ1.

Proof. Call the right hand side in the proposition ψ. Then

ψ∗(p) = sup
x

sup
x0+x1=x

p · (x0 + x1)− φ0(x0)− φ1(x1) = φ∗0(p) + φ∗1(p).

Accepting for a moment that ψ is convex, the proposition follows by taking Legendre transforms
again. �

The missing piece in the proof follows from the following fact, the minimum principle for
convex functions.
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Proposition 3.4. Let Φ(x, y) be convex on Rn × Rm. Then

inf
y

Φ(x, y)

is convex. In particular, the infimal convolution of two convex functions

φ0 ? φ1(x) = inf
y
φ0(x− y) + φ1(y)

is convex.

Proof. A function F (z) is convex if and only if its epigraph {(z, t); t > F (z)} is convex. The
epigraph of infy Φ(x, y) is the image of the epigraph of Φ under the linear map (x, y) → x, thus
convex. �

Remark: It is worth noticing that the minimum principle also follows from Prekopa’s theo-
rem. Indeed, Prekopa’s theorem implies that

x→ − log

∫
e−pΦ(x,y)−|y|2dy

is convex for all p > 0. We get the minimum principle if we divide by p and then let p tend to
∞. This proof is certainly more complicated than the one based on epigraphs, but we will see
later that it generalizes nicely to the complex setting. �

Remark: The formula for the infimal convolution as

φ0 ? φ1(x) = inf
y
φ0(x− y) + φ1(y),

suggests an analogy with the ordinary convolution. This can be substantially extended to include
an interesting analogy between the Legendre transform and the Fourier-Laplace transform. Let
f0,1 = e−φ0,1 . Then of course addition of convex functions corresponds to multiplication of f0

and f1. We can think of esup−φ as an approximation of
∫
fdx. Then, formally, the Fourier-

Laplace transform ∫
ep·x−φ(x)dx

is approximated by the (exponential of the ) Legendre transform eφ
∗ . Similarily, the convolution∫

f0(x− y)f1(y)dy

corresponds to the infimal convolution of φ0 and φ1. Proposition 3.2 reflects the classical fact that
the Fourier-Laplace-tranform of a product is the convolution of the Fourier-Laplace transforms.

�
Somewhat more generally we can look at the linear segment

ψt = (1− t)φ∗1 + tφ∗0

betwen the Legendre transforms of two functions. One can then verify in a similar way that

(3.2) ψ∗t (x) = inf
(1−t)x0+tx1=x

(1− t)φ0(x0) + tφ1(x1) := It(φ0, φ1).
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Hence It defines an interpolating family between two convex functions, which corresponds to
the naive interpolation (convex combination) under the Legendre transform.

Exercise: Prove (3.1) and check that if φj = 1Aj
for j = 1, 2, then It(φ0, φ1) = 1At . �

We shall now go one step further and show that these two interpolating families, the ’naive’
and the ’sophisticated’ ones, can be seen as geodesics for two different metrics on the space of
convex functions. For this we need to restrict our attention to the space CV X2, by which we
mean the twice continuously differentiable strictly convex functions. This is an open subset of a
Banach space (C2), so it is a Banach manifold. The tangent space of C2 is of course C2 itself (at
any point), but in order to get a nice tangent space for CV X2 we define it to be C2

c , functions in
C2 of compact support. We the define a Hilbert norm on the tangent space to be just the L2-norm

‖χ‖2 :=

∫
Rn

χ2dx.

Since this norm is independent of the point in CV X2 it is at least intuitively reasonable that
geodesics for this metric are just linear segments (1− t)φ0 + tφ1. To see what the ’sophisticated’
paths correspond to we need to take a closer look at the Legendre transform.

Recall that
φ∗(p) = sup

x
p · x− φ(x).

If φ is in CV X2 and the sup is attained, it must be attained at a unique point x satisfying p =
∂φ(x) := p(x).

Proposition 3.5. The image of Rn under x→ ∂φ(x) is an open set. It is precisely the set where
the supremum in (3.1) is attained and it is the interior of the set where φ∗ is finite.

Proof. The first statement is clear since the derivative of the map x → ∂φ(x) is invertible. We
have just seen that if the supremum, for a given p is attained, then p lies in the image R(∂φ) of
this map. Conversely, if p0 = ∂φ(x0), concavity of x→ p0 ·x−φ(x) implies that the supremum
is attained at x0. Then cl;early φ∗(p0) is finite. Since the image is open, p0 must in fact lie in the
interior of the set where φ∗ is finite. Conversely, assume p0 lies in the interior of the set where
φ∗ is finite. We may assume that p0 = 0. Then

sup
x
p · x− φ(x) <∞

for |p| smaller than some positive ε. Since this is a convex function of p, hence continuous, we
get a uniform bound

sup
x
p · x− φ(x) ≤ C

for |p| ≤ ε/2. Taking sup over such p we find

φ(x) ≥ −C + ε|x|/2.

Hence φ tends to infinity at infinity so it must have a minimum where the derivative vanishes. �
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Since φ is strictly convex, the hessian is invertible, so this map is locally inverible. Call the
inverse x = x(p). Then locally

φ∗(p) = p · x(p)− φ(x(p))

so φ∗ is at least of class C1. We have

(3.3) φ∗(p) + φ(x) = p · x

when p = ∂φ(x), and only then. If we repeat the same argument for φ∗ we see that (3.3) holds
when x = ∂φ∗(p). Therefore x = ∂φ∗(p) implies that p = ∂φ(x) so ∂φ ◦ ∂φ∗(p) = p. Hence ∂φ
and ∂φ∗ are inverse transformations, so φ∗ is also of class C2 and strictly convex, at least in the
image of Rn under x → ∂φ(x), i e in the interior of the set where it is finite. Next we record a
strking consequence of this.

Corollary 3.6. The image R(∂φ) is a convex set and if φj ∈ CV X2 for j = 1, 2, then

R(∂φ0) +R(∂φ1) = R(∂(φ0 + φ1))

.

Proof. The first statement follows since the set where the convex function φ∗ is finite is convex.
The second statement follows since the Legendre transform of φ0+φ1 equals infx0+x1=x φ

∗
0(x0)+

φ∗1(x1). Therefore the set where (φ0 + φ1)
∗ is finite is the Minkowski sum of the corresponding

sets for φ0 and φ1. �

Before continuing we give a few more interesting consequences of Propositions 3.4 and 3.5.

3.1. Interlude: Minkowski’s second inequality and the Alexandrov-Fenchel’s theorem. Let
us start with the following observation:

Proposition 3.7. Let A be a convex body and φ be a strictly convex function of class C2 with
R(∂φ) = A◦. Then

|A| =
∫

Rn

MA(φ)(x)dx.

Proof. This follows from changing variables

|A| =
∫
A◦
dp = [p = ∂φ(x)] =

∫
Rn

MA(φ)dx.

�

Corollary 3.8. Let A1, ... An be convex bodies. Then

p(t) := |t1A1 + ...tnAn|

is a homogenous polynomial of degree n in t if tj ≥ 0.

Proof. We may assume that Aj are smoothly bounded. Then we can find smooth convex func-
tions φj , with R(∂φj) = A◦

j . For this it suffices to take smooth strictly convex functions in Aj
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that tend to infinity at the boundary, extend them by ∞ outside of Aj , and take their Legendre
transforms. Then by Proposition 3.6 and Corollary 3.5

(3.4) |t1A1 + ...tnAn| =
∫

Rn

MA(t1φ1 + ...tnφn)dx.

This is a homogenous polynomial of degree n in t. �

Definition 3.9. The mixed volume V (A1, ...An) of A1, ...An is the coefficent of t1...tn in the
polynomial p(t). It is denoted V (A1, ...An).

To get a feeling for what the mixed volumes are and how they behave we write (3.4) as

(3.5) |t1A1 + ...tnAn| =
∫

Rn

det(t1H(φ1) + ...tnH(φn))dx,

where H(φj) is the Hessian of φj .

Definition 3.10. Let for j = 1, ...n Hj be n×nmatrices. Then the mixed discrimantD(H1, ...Hn)
of this n-tuple of matrices is the coefficient of t1...tn in the polynomial

q(t) = det(t1H1 + ...tnHn).

Thus the mixed volume is an integral of the mixed discriminant of the Hessians of the convex
functions φj . For calculations with mixed discriminants it is convenient to use a little bit of
exterior algebra.

Lemma 3.11. Let e1, ...en be a basis for Rn and let e∗1, ...e
∗
n be the dual basis. Associate to any

linear map H from Rn to itself, the form

Ĥ :=
∑

Hj,kej ∧ e∗k,

where (Hj,k) is the matrix representing H in the basis ej . Then

Ĥn = n! det(H)dV,

where dV = e1 ∧ e∗1...en ∧ e∗n.

(It can easily be checked that Ĥ does not depend on the choice of basis and neither does dV
(consequently).) This can be seen by diagonalising the matrix H . (Don’t worry that this is not
always possible. We will use only symmetric matrices, like hessians, and besides, the set of
matrices that can be diagonalised is dense in the set of all matrices.) From the lemma we see

Proposition 3.12. We have
1.D(H1, ...Hn)dV = Ĥ1 ∧ ...Ĥn,
2. The mixed discriminant is symmetric in the arguments Hj and linear with respect to each

of them.
3. D(H, , , ,H) = n! det(H).

Formula (3.5) now shows that the mixed volume have similar properties.
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Proposition 3.13. The mixed volume satisfies
1. V (A1, ...An) is symmetric in the arguments Aj and linear (under Minkowski summation) in

each of them.
2. V (A) := V (A, ...A) = n!|A|.

We now use formula (3.5) to compute the volume of A+ tB. The result is known as Steiner’s
formula.

Proposition 3.14.

V (A+ tB) =
n∑
0

tk
(
n

k

)
Vk(B,A),

where
Vk(B,A) = V (B, ..B,A, ...A),

and we take B k times and A n− k times.

Remark: When B is the unit ball, A + tB equals At, the set of points with distance at
most t to A. Thus we get, for convex bodies, a power series expansion of the volume of At.
Remarkably, this expansion has only finitely many terms, so the volume function is in particular
real analytic, regardless of how smooth the boundary of A is. It is worthwhile looking at the
example of a convex polytope to understand this, e g a triangle in R2. The coefficents, Vk(B,A),
are called queermasses. In the polytope case they are related to volumes of faces of the polytope
of dimension k. �

Now note that it follows from the B-M theorem that if

r(t) = V (A+ tB) = V ((1− t)A+ t(A+B))

r1/n is concave. This implies that its second derivative at 0 is nonpositive, or in other words that

r(0)r′′(0) ≤ (1− (1/n))r′(0)2.

Using Steiner’s formula we get

Theorem 3.15. (Minkowski’s second inequality):

V1(B,A)2 ≥ V (A)V2(B,A).

This has a nice interpretation: The quadratic form

Q(x, y) := V (xA+ yB, xA+ yB,A, ...A)

is indefinite. This follows if we note that the previous theorem says that Q:s determinant is
nonpositive. The final theorem of this section is a far reaching generalization of these facts.

Theorem 3.16. (The Alexandrov-Fenchel theorem.) Let A , B and A3, ...An be convex bodies.
Then

V (B,A,A3...An)
2 ≥ V (A,A,A3....An)V (B,B,A3...An).

Equivalently, the quadratic form

Q(x, y) := V (xA+ yB, xA+ yB,A3, ...An)

is indefinite.
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We will not give the proof of this theorem. The original proof was based on approximation
by polyhedrons and combinatorics. A later proof by Alexandrov, based on ideas by Hilbert to
prove Minkowski’s second inequality, uses the convex functions φj to construct certain elliptic
operators and estimate their eigenvalues. It is also worth mentioning that related arguments have
been used by Khovanski and Teissier to prove a generalization of Hodge’s index theorem. Maybe
we will come back to that later.

3.2. Back to business: The space of convex functions as a Riemannian manifold. Recall that
CV X2 is the space of C2-smooth strictly convex functions. It is an open subset of the space of
all C2-functions, so it is a Frechet manifold. We define formally its tangent space at any point
as C2

c , the space of compactly supported C2-functions. Then, for any φ in the space, and any
tangent vector χ, φ + sχ stays in the space if s is small. Let us now for simplicity consider the
subspace Ω of functions φ such that R(∂) is all of Rn. (Need to elaborate on this). Then as we
have seen the Legendre transform of φ lies in the same space, so the Legendre transform is a map
from Ω to itself, which we call L, so that φ∗ = L(φ). We shall now compute its differential.

Proposition 3.17.
dLφ.χ = η

where η(p) = −χ(x) for p = ∂φ. In other words

η(p) = −χ(∂φ∗(p)), η(∂φ(x)) = −χ(x).

Proof. First, the formula makes sense. χ is by definition a compactly supported function, so
η(p) = χ ◦ ∂φ∗(p) is also compactly supported since the gradient map is a diffeomorphism from
Rn to itself. (Hmm, C1 or C2? Maybe C∞ is better?) By definition

dLφ.χ = (d/ds)|s=0L(φ+ sχ).

Now recall that by (3.3)
L(φ)(∂φ(x)) + φ(x) = x · ∂φ(x)

for all x. Similarily

L(φ+ sχ)(∂φ(x) + s∂χ(x)) + φ(x) = x · ∂φ(x) + sx · ∂χ(x).

Identifying terms of order 1 in s we get

dLφ.χ(∂φ(x)) + ∂L(φ)(∂φ(x)) · ∂χ(x) + χ(x) = x · ∂χ(x).

But L(φ) = φ∗ and ∂φ∗ ◦ ∂φ(x) = x. Hence

dLφ.χ(∂φ(x)) + χ(x) = 0

so we are done. �

Now consider the Riemannian metric on Ω introduced earlier

(3.6) ‖χ‖2 =

∫
Rn

χ2dx.
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Changing variables in the integral by x = ∂φ∗(p), and noting that dx transforms to MA(φ∗)dp,
we find that

‖χ‖2 =

∫
Rn

(−χ(∂φ∗(p))2MA(φ∗)dp =

∫
Rn

(dLφ.χ)2MA(φ∗)dp.

By Proposition 3.13 this means that the Legendre transform is an isometry between our ’trivial’
Riemannian metric and a new metric

‖η‖2
M−S =

∫
Rn

(η)2MA(φ∗)dp.

This is the Mabuchi-Semmes metric. It was discovered independently by T Mabuchi (in a similar
complex setting that we will get to later) and S Semmes. Since curves t → tφ1 + (1 − t)φ0 are
geodesics for the trivial metric, the curves

ψ∗t (x) = inf
(1−t)x0+tx1=x

(1− t)φ0(x0) + tφ1(x1) := It(φ0, φ1).

from formula (3.2) are geodesics for the Mabuchi-Semmes metric. Amazingly, one can show
that the geodesic equation for the Mabuchi-Semmes metric is

MAt,x(φ(t, x)) = 0.

Notice that this is precisely what came up in connection with our dicussion of Prekopa’s the-
orem; the lower bound for the second derivative of φ̃ was expressed as an integral involving
MAt,x(φ(t, x)).

By construction the Mabuchi-Semmes metric for convex functions is just the trivial metric
after Legendre transformation, so it is in particular flat. Later on we will define an analogous
metric on spaces of plurisubharmonic functions, or positively curved metrics on line bundles
(this is in fact what Mabuchi did). In that case there is no obvious counterpart of the Legendre
transform to linearize the metric, and in fact the Mabuchi-Semmes metric has strictly negative
curvature in the complex setting. This is one very major difference between the real and complex
cases that will be of central importance in the sequel.

4. BEGINNING OF DISCUSSION OF THE COMPLEX CASE. BASIC NOTIONS AND FAILURE OF
TRIVIAL ANALOGIES OF PREKOPA’S THEOREM.

Going back to the remark after Corollary 2.5 we will now first investigate one conceivable
generalization of Prekopa’s theorem. Recall that a complex counterpart of a convex function
of one real variable is a subharmonic function of a complex variable. By definition, a smooth
function u of one complex varaible is subharmonic if ∆u ≥ 0. More generally, a not necessarily
smooth u is subharmonic if it is upper semicontinuous, locally in L1 and satisfies ∆u ≥ 0 in the
sense of distributions.

A function u of several complex variables is plurisubharmonic if it is upper semcontinuous,
locally in L1, and is subharmonic along any complex line. For smooth functions, this means that
the matrix

(
∂2u

∂zj∂z̄k
)
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is positively semidefinite. (This follows from the chain rule.) Similarily, a general function is
plurisubharmonic (psh) if ∑ ∂2u

∂zj∂z̄k
aj āk ≥ 0

for any constant vector a in Cn. In analogy with Prekopa’s theorem one might now conjecture
that the following statement would hold:

Let φ(t, z) be a plurisubharmonic function in Ct × Cn
z . Define

φ̃(t) = − log

∫
Cn

e−φ(t,z)dλ(z)

(where dλ is Lebsgue measure). Then φ̃ is subharmonic.
This is however not true.

Example 1. (Kiselman Let φ(t, z) = |t − z̄|2 − |t|2, with t and z in C. Then φ̃(t) = −|t|2 + c,
so in particular it is not subharmonic. �

Proof. Since
φ(t, z) = |z|2 − 2Re tz

φ is psh. ∫
C
e−φ(t,z)dλ(z) = Ce|t|

2

.

�

It turns out that in order to get a good analogy to Prekopa’s theorem one needs to consider not
only integrals of e−φ , but rather the L2-norms induced by φ on spaces of holomorphic functions

‖h‖2
t :=

∫
Cn

|h|2e−φ(t,·)dλ(z).

At first this may look like a very bad idea since not even the function h = 1 gives good ’convex-
ity’ properties. The explanation of this is that we should instead consider these norms as metrics
on a vector bundle, and it turns out that this metric has positive curvature. This does not mean
that the norms of individual functions behaves particualarily nicely, but together they do.

To explain this more carefully we shall first introduce basic notions of complex vector bundles.

4.1. Holomorphic vector bundles and their curvature. The local model for a (holomorphic)
vector bundle is just a product

E = Ω×W

where Ω is an open set in Cn andW is a complex vector space. We then have a natural projection
π from E to the ’base’ Ω and the inverse image of any point in Ω is the complex vector space
W . More generally, a complex vector bundle over a complex manifold Y is a smooth manifold
E, together with a projection map π : E → Y such that the fiber over any point y ∈ Y ,
Ey := π−1(y) is complex vector space. Importantly, one also demands that this picture is locally
trivial. This means that Y has a covering of open sets Ui, such that π−1(Ui) is isomorphic to the
local model above, Ui ×W , where W is one fixed vector space. More precisely, there are maps

fi : π−1(Ui) → Ui ×W
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that are fiber preserving and respect the vector space structure of each fiber. Then

Gij := fj ◦ f−1
i

maps Ui ∩ Uj ×W to itself, is fiber preserving and linear on each {y} ×W . This means that

Gij(z, ξ) = (z, gij(z)ξ),

where gij(z) is a linear isomorphism of W for each z. It is easily checked that these transition
functions satisfy the cocycle conditions, g−1

ij = gji and gijgjkgki = I , the identity map. Con-
versely, given such a collection of gij:s satisfying the cocycle condition, one can show that they
define a vector bundle by making the natural identifications in the disjoint union of Ui ×W . We
say that E is a holomorphic bundle if E is a complex manifold and π and fi are holomorphic.
Equivalently gij(z) are holomorphic functions of z.

Definition 4.1. A section of E over an open set in Y , U , is a holomorphic map from U to E such
that π ◦ s = idU . A frame over U is a collection of sections e1, ...er that form a basis for π−1(z)
at each point z. The dimension r is called the rank of E.

One usually requires that the model vector space is of finite dimension, indeed a frame as
we have defined it only exists then. Later on however we shall consider also vector bundles of
infinite rank. If we have a local frame it gives a natural identification of π−1(U) := EU with
U × Cr. We shall mostly discuss local properties of E. Then we can think of E as our local
model, but it is important to have all concepts defined so they are independent of the choice of
frame.

Given a frame, any section can be written s(z) =
∑
sj(z)ej(z). The space of all smooth

sections over U is denoted Γ(U,E) and the space of holomorphic sections is denoted H0(U,E).
We can also consider the space of smooth forms of degree p, Γp(U,E). Locally they are obtained
as before η =

∑
ηjej , but the coefficients ηj are now p-forms instead of functions. The next

important concept is a connection. This is intutively a way to define differentiation of a section
along a vector field. Naively, one writes, if V is a vector field and s a section,

V (s) =
∑

V (sj)ej + sjV (ej).

The problem is to give a meaning to V (ej). Since it should again be a section we must have

V (ej) =
∑

θkj(V )ek.

To choose a connection means to choose θ = (θjk) in a coherent way,

Definition 4.2. A connection on E is a map

(V, s) → DV s

where V is a vector field and s a section which satisfies the product rule

DV (fs) = V (f)s+ fDV s

for any smooth function f . Moreover we require that DfV1+gV2 = fDV1 + gDV2 if f and g are
smooth functions and Vj are two vector fields.
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Given a connection, we can argue as before (this time a little bit less naively) and write (given
a local frame)

DV s =
∑

V (sj)ej +
∑

sjθkj(V )ek,

where
∑

k θkj(V )ek = DV ej . By the linearity condition in the definition of a connection, θ(V )
is linear in V , so θ can be thought of as a matrix of 1-forms. This way we can define

s→ Ds

as a map from sections to E-valued 1-forms, i e as a variant of the exterior derivative d. Given a
frame we get

Ds = ds+ θs

or D = d+ θ.
It now becomes natural to let D act on the space Γp of E-valued p-forms. Then, given frame,

we get Dη = dη + θ ∧ η. Having done this, it makes sense to consider the operator D2.

Proposition 4.3. The operator D2 maps Γp to Γp+2 for any p and satisfies D2fη = fD2η if f is
smooth. In terms of a frame

D2η = (dθ + θ ∧ θ) ∧ η.

Proof.

D2η = (d+ θ)(dη + θ ∧ η) = dθ ∧ η − θ ∧ dη + θ ∧ dη + θ ∧ θ ∧ η = (dθ + θ ∧ θ) ∧ η.
�

Definition 4.4. D2 := ΘD is the curvature of the connection D. Given a frame it is a matrix of
2-forms, invariantly it is a 2-form with values in the endomorphisms of E.

So far everything we have done makes sense on a general complex vector bundle, but now it
is time to bring the complex structure into play.

Definition 4.5. Let E be a holomorphic vector bundle over a complex manifold Y , with a con-
nection D. Then D is holomorphic if Ds is of bidegree (1, 0) for any holomorphic section s.

Let us elaborate on this a little bit. A connection D on a holomorphic vector bundle can be
decomposed according to bidegree as

D = D1,0 +D0,1 := D′ +D′′,

meaning that D′s is the (1, 0) part of Ds for any smooth section s. In terms of a holomorphic
frame we then have D′ = ∂ + θ1,0 and D′′ = ∂̄ + θ0,1, if we decompose the connection matrix θ
according to bidegree. If s is holomorphic D′′s = θ0,1s. Hence D is a holomorphic connection
if and only if θ0,1 = 0, for any (or equivalently some) holomorphic frame. Notice that then the
curvature becomes

(4.1) Θ = (∂θ + θ ∧ θ) + ∂̄θ.

We shall now see that if we introduce one more condition on the connection, then the first paren-
thesis vanishes, so Θ = ∂̄θ.
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Definition 4.6. A (hermitian) metric on E is a scalarproduct on each fiber Ez such that

〈s(z), s(z)〉z
is smooth for each smooth section s.

In terms of a holomorphic frame ej , the metric gets represented by a hermitian matrix h =
(hj,k), so that

〈s(z), t(z)〉z =
∑

hj,ksk t̄j = t∗hs,

where the last equation means that we think of s and t as column vectors.

Definition 4.7. The connection is compatible with the metric 〈·, ·〉 if

d〈s, t〉 = 〈Ds, t〉+ 〈s,Dt〉.

(Explain how the bracket is extended to forms.)

Proposition 4.8. Given a hermitian metric on a holomorphic vector bundle there is exactly one
connection D that is both holomorphic and compatible with the metric. Given a frame and a
hermitian matrix that represents the metric in this frame

θ = h−1∂h.

Proof. We have
d〈s, t〉 = (dt)∗hs+ t∗hds+ t∗dhs,

and
〈Ds, t〉+ 〈s,Dt〉 = t∗h(ds+ θs) + (dt+ θt)∗hs.

These two expressions are equal if and only if

θ∗h+ hθ = dh.

Decomposing after bidegree this means that hθ = ∂h and θ∗h = ∂̄h if D is holomorphic. Here
the second equation is just the hermitian transpose of the first, so θ defines a connection that is
metric compatible and holomorphic if and only if θ = h−1∂h. �

Proposition 4.9. If D is metric compatible, then the curvature Θ is antihermitian in the sense
that

〈Θs, t〉+ 〈s,Θt〉 = 0.

Proof. We have

0 = d2〈s, t〉 = 〈Θs, t〉+ 〈s,Θt〉+ 〈Ds,Dt〉 − 〈Ds,Dt〉.
�

Proposition 4.10. If D is both metric compatible and holomorphic, then

Θ = ∂̄θ = ∂̄(h−1∂h).

Proof. By (4.1) Θ has no component of bidegree (0, 2) if D is holomorphic. If D is also metric
compatible, the previous proposition shows that it has no (2, 0) component either. Hence (4.1)
implies that Θ = ∂̄θ. �
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The uniquely determined connection of Proposition 4.8 is called the Chern connection of our
bundle, and from now on we shall only dicuss this connection.

Definition 4.11. Let E be a holomorphic vector bundle with a hermitian metric (a hermitian
holomorphic vector bundle). We say that E has positive curvature (in the sense of Griffiths) if
the (1, 1)-form

〈iΘs, s〉 ≥ 0

for any local section s. Similarily, E has negative curvature if

〈iΘs, s〉 ≤ 0.

As an example, let us look at the case when the rank r is equal to one, so thatE is a line bundle.
Then h is just a positive function, and we write (locally) h = e−φ. Then Θ = −∂̄∂φ = ∂∂̄φ and
we see that E is positively curved precisely when φ is plurisubharmonic. Hence we can think of
positive curvature as a vector bundle analog of plurisubharmonicity.

Now let E∗ be the dual bundle of E, i e the vector bundle whose fiber over each point is the
dual of the fiber ofE. The local model forE∗ is then U×W ∗, and the transitions functions forE∗

(see section 4.1), g∗i,j = g−1
i,j are the inverses of the transition functions of E. We have a natural

pairing (s, ξ) between sections of E and sections of E∗, and if both s and ξ are holomorphic
sections, then (s, ξ) is a holomorphic function.

Theorem 4.12. If s and ξ are sections of E and E∗ resepctively, then

(ΘEs, ξ) = −(s,ΘE∗ξ),

so that ΘE∗ = −(ΘE)t. It follows that E has positive curvature if and only if E∗ has negative
curvature.

4.2. Subbundles and Griffiths’ curvature formula. Let E be a holomorphic hermitian vector
bundle and let F be a subbundle of E. The F inherits the metric of E and therefore also has a
Chern connection. We shall first investigate how the Chern connections of E and F are related
to each other. First note that from the hermitian metric on E we get for each point z in the base
a projection map

pFz : Ez → Fz,

the orthogonal projection. It is not holomorphic as z varies, but together these maps make up
a smooth bundle map from E to F . Similarily we let p⊥z be the orthogonal projection on the
orthogonal complement of Fz in Ez, and the two bundle maps then sum to the identity.

Proposition 4.13. Let DE and DF be the Chern connections of E and F respectively. Then
1. DF = pF ◦DE .
2. s → β(s) := p⊥ ◦ DE(s) satisfies β(fs) = fβ(s) if s is a smooth section of F . Hence

β(s) = 0 at z if s = 0 at z, so β defines a linear map from F to its orthogonal complement in E.

Proof. 1. Since DEfs = dfs + fDEs, it follows that pF ◦ D satisfies the same thing if s is a
section of F . Hence pF ◦D is a connection. Moreover, if s is holomorphic, the fact that DEs is
of bidegree (1, 0) implies that DF is also of bidegree (1, 0), so our connection is holomorphic.
Finally, if s and t are sections of F , then

d〈s, t〉 = 〈DEs, t〉+ 〈s,DEt〉 = 〈pF ◦DEs, t〉+ 〈s, pF ◦DEt〉.
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Hence pF ◦ DE is a holomorphic connection that is compatible with the metric and therefore
must equal DF .

2. β(fs) = p⊥(dfs+ fDEs) = fβ(s) if s is a section of F . �

Next we give Griffiths formula for ∂∂̄ of the norm of a section.

Theorem 4.14. Let s be a holomorphic section of E. Then

(4.2) i∂∂̄‖s‖2 = −〈iΘs, s〉+ 〈Ds,Ds〉.
It follows that if E has negative curvature and s is holomorphic, then ‖s‖2 and log ‖s‖2 are
plurisubharmonic.

Proof. We have
∂〈s, s〉 = 〈D′s, s〉,

since D′′s = 0. Hence

∂̄∂〈s, s〉 = 〈D′′D′s, s〉 − 〈D′s,D′s〉 = 〈Θs, s〉 − 〈Ds,Ds〉.
Since ∂̄∂ = ∂∂̄, this gives formula (4.2). Clearly this implies that ‖s‖2 is plurisubharmonic
if s is holomorphic and the curvature is negative. For the last claim one can either estimate
i∂∂̄ log ‖s‖2 using (4.2), or note that the the first claim applied to s′ = ehs where h is holo-
morphic implies that e2Reh‖s‖2 is plurisubharmonic for each holomorphic h. This implies that
log ‖s‖2 is plurisubharmonic. �

Using this we can now compute the curvature of a holomorphic subbundle.

Theorem 4.15. If F is a holomorphic subbundle of a hermitian holomorphic bundle E, then

ΘF = pF ◦ΘE − β∗β.

Proof. Using the previous theorem for E and F we see that

〈ΘF s, s〉 − 〈ΘEs, s〉 = ‖DF s‖2 − ‖DEs‖2

if s is a holomorphic section of F . By Proposition 4.12 and Pythagoras theorem we get

‖DF s‖2 − ‖DEs‖2 = ‖pF ◦DEs‖2 − ‖pF ◦DEs‖2 − ‖p⊥ ◦DEs‖2 = −‖βs‖2.

�

The quadratic form −‖βs‖2 is called the second fundamental form of F in E. In the complex
case this is always negative semidefinite. In case E has curvature zero, we see that the curvature
of the subbundle F only comes from the second fundamental form. As an example of this,
consider a holomorphic submanifold Y of an open set in Cn. Then takeE to be the (holomorphic)
tangent space of Cn, restricted to Y , with the Euclidean metric. This bundle is certainly flat. The
curvature of the (holomorphic) tangent bundle of Y , F , is therefore always seminegative and
equal to zero only if β = 0. Thus submanifolds of Cn are always negatively curved. This is
no longer true for submanifolds of Pn since there is a certain amount of positivity in the tangent
bundle of Pn, so the submanifold can be negatively curved only if β is large. This corresponds
to the submanifold being of sufficiently high degree.

We finally give a converse to the last part of Theorem 4.13.
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Theorem 4.16. If ‖s‖2 is plurisubharmonic for any local holomorphic section of E, then E has
negative curvature.

Proof. We first claim that for any z fixed in the base Y and ξ in Ez, we can find a local holo-
morphic section of E, s, such that s(z) = ξ and Ds = 0 at z. Indeed, near z, E can be
thought of as U × W , where U is a neighbourhood of z and W is our model vector space.
Then ξ is a vector in W and the local holomorphic section we are looking for must have the
form s(ζ) = ξ +

∑
Vk(ζk − zk) if we think of z and ζ also as local coordinates. Then at z,

Ds = θξ+
∑
Vkdζk and we just need to choose Vk so that this is zero. Explicitly, if θ =

∑
θkdζk,

we take
Vk = −θkξ.

For such an s we now get at z that

i∂∂̄‖s‖2 = −i〈Θξ, ξ〉.
If ‖s‖2 is plurisubharmonic then the left hans side is positive, so the curvature must be negative.

�

Altogether, E has negative curvature if and only if ‖s‖2 is a plurisubharmonic function for any
holomorphic section s. By Theorem 4.14 this is also equivalent to log ‖s‖2 being plurisubhar-
monic for all holomorphic sections.

5. FIRST VERSION OF COMPLEX PREKOPA.

Let D be a domain in C and Ω a domain in Cn. Let φ(t, z) be a plurisubharmonic function in
D × Ω. For each t in D we put

A2
t = {h ∈ H(Ω);

∫
Ω

|h|2e−φ(t,·)dλ <∞}.

This is for any t a Hilbert space of holomorphic functions. Let us now make the additional
assumption (not very natural!) that Ω is bounded and that φ is smooth up to the boundary on
D× Ω̄. Then all A2

t = A2 are identical as vector spaces and we can form a globally trivial vector
bundle over D as F := D × A2. The L2-norms however vary with t and we get a trivial bundle
with non trivial hermitean metric.

Theorem 5.1. (First complex Prekopa teorem) The curvature of F is positive.

In this section we will sketch a proof of this, assuming first that φ is smooth and strictly
plurisubharmonic in z for each t fixed. First we will embed F in a larger vector bundle E, which
is also trivial. The fibers of E are

L2
t = {f ∈ L2

loc;

∫
Ω

|f |2e−φ(t,·)dλ <∞}.

Given our hypothesis on φ these spaces are also all identical as vector spaces, but their (implied)
Hilbert norms vary with t. Notice that E is actually a holomorphic vector bundle, even though
it’s modeled on a vector space of very ’non holomorphic’ objects. In fact, that the bundle is holo-
morphic means just that the transition functions are holomorphic, and here we have no transition
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functions! A smooth section of E is a map t→ ft which is smooth as a map from D to L2, and
the section is holomorphic if its dependence on t is holomorphic.

Proposition 5.2. The Chern connection of E is the (bounded) operator defined by

Df = dtf − (∂tφ)f,

where dt and ∂t are exterior derivatives with respect to t for z fixed.

Proof. It is clear that Df defines a connection. It is moreover holomorphic, since if f is holo-
morphic in t, then Df is of bidegree (1, 0). Finally, differentiating under the integral sign, we
see that D is compatible with the metric. �

We see from this formula, that the role of the connection form θ is played by the operator
multiplication by −∂tφ. Therefore the curvature is ΘE = −∂̄t∂tφ = ∂∂̄tφ, more precisely the
operator defined as multiplication by this form. Therefore the curvature of E is positive as soon
as φ is subharmonic with respect to t.

To compute the curvature of F we use Theorem 4.14, and the first step is to compute β. By
definition, if h is a smooth section of E, i e a holomorphic function in A2 depending smoothly
on t,

β(h) = p⊥(dth− (∂tφ)h) = −p⊥(∂tφh) =: ut.

For each t fixed, ut solves the ∂̄-equation

∂̄zut = ∂̄z(∂tφh) = h∂̄z∂tφt := f.

To estimate the curvature of F we must now estimate ‖β(h)‖2
t . For this we use that by definition

ut = β(h) is orthogonal to the space of holomorphic functions. This means that it is the minimal
solution to the ∂̄-equation ∂̄u = f (see Corollary 4.5 below), and we can apply Hörmander’s L2-
estimate for the ∂̄-equation. This step of the proof is analogous to the use of the Brascamp-Lieb
inequality in the proof of Prekopa’s theorem.

5.1. Hörmander’s L2-estimate for ∂̄. In this subsection we state Hörmander’s famous L2-
estimate for the ∂̄-equation for a domain Ω in Cn. This theorem concerns the existence of
solutions to the equation

∂̄u = f =
∑

fkdz̄k.

As is often the case with differential equations, the solvability of the equation is closely related
to estimates for solutions and it is this aspect of the theorem that will be most important for us.

Theorem 5.3. Let Ω be a pseudoconvex domain in Cn and let ψ be a smooth strictly plurisub-
harmonic function in Ω, so that (ψj,k̄) > 0, or equivalently

i∂∂̄ψ = i
∑

ψj,k̄dzj ∧ dz̄k > 0.

Let f be a differential form of bidegree (0, 1) satisfying ∂̄f = 0. Then the equation ∂̄u = f has
a solution that satisfies the estimate∫

Ω

|u|2e−ψdλ ≤
∫

Ω

‖f‖2
i∂∂̄ψe

−ψdλ.



24

In this theorem we have used the plurisubharmonic function ψ to define a Kähler metric with
Kähler form ωψ = i∂∂̄ψ to define a norm on the space of (0, 1)-forms. Explicitly, this norm is

‖f‖2
i∂∂̄ψ =

∑
ψj,k̄fj f̄k,

where (ψj,k̄) is the transpose of the inverse of the complex hessian (ψj,k̄). This is the dual of the
natural norm

‖v‖2 :=
∑

ψj,k̄vj v̄k

on vectors v, under the pairing (v, f) =
∑
vjfj . The aspect of Hörmander’s theorem that we

will use is the following corollary.

Corollary 5.4. Let u be a function in Ω satisfying∫
uh̄e−ψdλ = 0

for all holomorphic functions h (in the naturally associated L2-space. Then∫
Ω

|u|2e−ψdλ ≤
∫

Ω

‖∂̄u‖2
i∂∂̄ψe

−ψdλ,

provided the left hand side is finite.

Proof. Let f := ∂̄u. Then by definition u solves ∂̄u = f . Any other solution with finite L2-
norm can be written u′ = u + h where h is holomorphic. Since u is orthogonal to the space of
holomorphic functions, Pythagoras theorem implies that the L2-norm of u is the smallest among
all solutions to this ∂̄-equation. Therefore the corollary follows from the previous theorem. �

The corollary is an instance of a so called Poincaré inequality, i e an estimate of a function u
in terms of P (u), where P is a differential operator, assuming the function is orthogonal to the
null space of P . Notice the strong similarity with the Brascamp-Lieb inequality, Lemma 2.4.

5.2. Conclusion of the proof of Theorem 5.1. By Theorem 4.15 we have if t→ ht is a smooth
section of F ,

(5.1) 〈ΘFht, ht〉t = 〈ΘEht, ht〉t − ‖β(ht)‖2
t =

∫
φ̈t,t̄|h|2e−φtdλ−

∫
Ω

|β(ht)|2dλ.

But
∂̄zβ(ht) = ∂̄z(ḣt − htφ̇t) = −ht∂̄zφ̇t

and β(ht) is by definition ortogonal to all holomorphic functions (in L2). We can therefore apply
Hörmander’s theorem, or rather its Corollary 5.4, and get∫

Ω

|β(ht)|2e−φtdλ ≤
∫

Ω

|h|2‖∂̄φ̇t‖2
i∂∂̄φt

e−φt .

Combining with (5.1) we find

(5.2) 〈ΘFht, ht〉t ≥
∫ (

φ̈t,t̄ − ‖∂̄φ̇t‖2
i∂∂̄φt

)
|h|2e−φtdλ.

The proof of Theorem 5.1 now follows from
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Lemma 5.5. Let φ(t, z) be plurisubharmonic with respect to (t, z) and stritly plurisubharmonic
in z. Let

c(φ) := φ̈t,t̄ − ‖∂̄φ̇t‖2
i∂∂̄φt

.

Then
c(φ) = MAt,z(φ)/MAz(φ).

In particular, c(φ) ≥ 0, with equality only if MAt,z(φ) = 0.

Notice that from (5.2) we even get an explicit estimate for the curvature. The curvature is by
definition an operator on the vector space that is the fiber of the bundle. In our case the fiber is
A2 and we estimate the curvature operator by the Topelitz operator defined by the symbol c(φ).

Definition 5.6. Let Ω be a domain in Cn and let ψ be a weight function in Ω. Let A2
ψ be the

space of all holomorphic functions in Ω such that

‖h‖2 :=

∫
Ω

|h|2e−ψdλ <∞.

If χ is a bounded function in Ω, the Toeplitz operator with symbol χ, Tχ is the operator on A2
ψ

defined by

〈Tχh, h′〉 =

∫
Ω

χhh̄′e−ψdλ.

At the price of introducing a somewhat abstract notion, we can even get an exact formula for
the curvature.

Definition 5.7. Let f be a ∂̄-closed (0, 1)-form in a pseudoconvex domain Ω, and let ψ be a
smooth strictly plurisubharmonic function in Ω. Let u be the solution to ∂̄v = f of minimal
norm in L2(Ω, e−ψ). Then

eψ(f) :=

∫
Ω

‖f‖2
i∂∂̄ψe

−ψdλ−
∫

Ω

|u|2e−ψdλ.

Moreover, if h lies in A2
ψ and χ is a smooth real valued function , we put

Eψ(h, χ) := e(h∂̄χ).

Notice that by Hörmander’s theorem, e(f) and E(h, χ) are always nonnegative. With these
definitions we get

Theorem 5.8. With the same notations and assumptions as in Theorem 5.1 we have

〈ΘFh, h〉 = 〈Tc(φ)h, h〉+ E(h, φ̇t).

Notice that E(h, χ) is a quadratic form in both h and χ, so it is something like a tensor with
four indices. It can be seen as a sort of curvature tensor, defined on a vector bundle with fiber
A2
ψ over the space of all plurisubharmonic weights ψ. This space resembles the space of convex

functions from section 3, and we can think of χ as lying in its tangent space. In this way we have
decomposed the curvature of F as a sum of two terms. The second term comes from the bundle
over the space of all plurisubharmonic weights, and the first term depends on the curve t→ φt in
this space that we are looking at. This picture will be elaborated later when we consider similar
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formulas with Ω replaced by a compact manifold. At this point we just indicate an intriguing
problem that arises in this connection, which will be (partially) clarified later when we deal with
compact manifolds instead of Cn.

We said that Eψ(h, χ) behaves like a curvature tensor on a vector bundle with fiber A2
ψ over

the space, say Ψ, of all plurisubharmonic weights ψ. Remember that with our assumptions
all A2

ψ = A2 are identical as vector spaces, but their norms depend on ψ. The bundle is just
E := Ψ× A2, and the metric is the ’tautological’ metric

‖h‖2
ψ =

∫
Ω

|h|2e−ψdλ,

if h belongs to the fiber Eψ. However, a metric does not in itself determine a connection or cur-
vature. For that we needed also to assume that the connection was compatible with the complex
structure, and Ψ has no natural complex structure. So, where does the curvature come from? The
answer to this is, roughly, that there is a complex manifoldMwith a projection map p : M→ Ψ.
We then pull back our bundle to the bundle M× A2, which is now a holomorphic bundle, and
Eψ is now the curvature of the Chern connection on that bundle.

5.3. Interpretations of the complex Prekopa theorem. Recall that the conclusion of (the real)
Prekopa’s theorem was that certain functions

− log

∫
e−φ(t,·)

are convex. This leads to many interesting geometric inequalities. With the complex version the
situation is different; that a vector bundle has positive curvature does not imply that the norms of
its holomorphic sections have any properties of convexity or plurisubharmonicity. Let us look at
this a bit more closely, and start with the case of line bundles.

A holomorphic section s of a line bundle is locally, given a frame e, just a local scalar valued
holomorphic function h, s = he. Its norm is

‖s‖2 = |h|2e−φ,

where e−φ = ‖e‖2. Thus
i∂∂̄(− log ‖s‖2) = i∂∂̄φ,

where h 6= 0. If the curvature is positive, i∂∂̄φ ≥ 0, so − log ‖s‖2 is plurisubharmonic, at least
where h 6= 0. Thus, if our vector bundle E were of rank 1, it would follow that

− log

∫
Ω

|h|2eφ(t,·)

were plurisubharmonic and we would have statements parallell to the real case, but this is of
course not the case. To see what happens for bundles of higher rank, let us look at direct sums of
line bundles. By this we mean that we have a local frame of ortogonal holomorphic sections, ej .
A local section can now be written s =

∑
hjej and its norm is

‖s‖2 =
∑

|hj|2e−φj ,
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where e−φj = ‖ej‖2. Now there is no simple formula for i∂∂̄(− log ‖s‖2), and it is certainly not
the case that it is always positive - not even if all φj = 0.

There are two different ways of getting explicit convexity statements from Theorem 5.1. First,
we can try to cook up other bundles of rank 1 from our bundle E. Second, we can look instead
at the dual bundle E∗. By Theorem 4.12, E∗ has negative curvature, and by Theorem 4.14, this
means that log ‖t‖2 (without the minus sign!) is plurisubharmonic for any holomorphic section t
of the dual bundle. Both these routes give interesting statements, but the second one is probably
the most powerful. Since E∗ is negative if and only if E is positive, the positivity of E is actually
equivalent to saying that log ‖t‖2 is plurisubharmonic for any holomorphic section t of the dual
bundle, so we have not lost anything.

We first look at a special class of domains.

Definition 5.9. A domain Ω in Cn is balanced if z ∈ Ω implies λz ∈ Ω for any λ in C of norm
at most 1. Ω is S1-invariant if the same thing holds for any λ of norm equal to 1. A function ψ is
S1-invariant if ψ(λz) = ψ(z) for any λ = eiα in C of norm equal to 1.

Theorem 5.10. Let Ω be a balanced domain in Cn and let φ(t, z) be plurisubharmonic in D×Ω
and S1-invariant in z for any t in D. Then

− log

∫
Ω

e−φ(t,·)dλ

is subharmonic in t (or identically equal to −∞).

Proof. We may assume that Ω is bounded since any balanced Ω can be exhausted by an increasing
sequence of bounded balanced domains, and decreasing limits of plurisubharmonic functions are
plurisubharmonic. By a similar token, we may assume that φ is smooth, so we can apply Theorem
5.1. The fibers of our vector bundle E consist of holomorphic functions on Ω. Let for any natural
number k, Ek be the subbundle of E of homogenuos polynomials of degree k. Since, if h ∈ Ek
and g ∈ Em,∫

Ω

h(z)ḡ(z)e−φt(z)dλ =

∫
Ω

h(eiαz)ḡ(eiαz)e−φt(z)dλ = e(k−m)iα

∫
Ω

h(z)ḡ(z)e−φt(z)dλ,

for any α we see that Ek ⊥ Em if k 6= m. This means that E is the orthogonal sum of the
holomorphic subbundles Ek and it follows that all of them have positive curvature. In particular
E0 has positive curvature. This is a line bundle and the constant function 1 is a local frame.
Consequently − log ‖1‖2 is a plurisubharmonic, which is the statement of the theorem. �

This may appear to be a weaker statement than Prekopa’s theorem, since we require extra hy-
potheses on S1-invariance etc. This is however not the case, since the class of plurisubharmonic
functions is much wider than the space of convex functions. We shall see later that Prekopa’s
theorem follows from a variant of the previous theorem where φ is not only S1-invariant, but
even invariant under the full torus action z → (eiα1z, ...eiαnzn).
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