Analytic Number Theory

Julia Brandes
Problem Sheet 1
Due date: Tuesday, 09.02.2016

Problem 1. (The asymptotic formula in the prime number theorem)
(a) Let $\psi(x)=\sum_{n \leq x} \Lambda(n)$ and $\operatorname{li}(x)=\int_{2}^{x} \frac{\mathrm{~d} t}{\log t}$. Show that for any increasing function $A(x)$ satisfying $A(x) \gg x^{1 / 2}$ the statements

$$
\pi(x)=\operatorname{li}(x)+O(A(x))
$$

and

$$
\psi(x)=x+O(A(x) \log x)
$$

are equivalent.

OBS. It seems that the problem should have read

$$
\pi(x)=\operatorname{li}(x)+O(A(x)) \Longrightarrow \psi(x)=x+O(A(x) \log x),
$$

but

$$
\psi(x)=x+O(A(x) \log x) \Longrightarrow \pi(x)=\operatorname{li}(x)+O(A(x) \log \log x) .
$$

I'm sorry for any confusion.
(b) Show that for any $k \in \mathbb{N}$ one has

$$
\operatorname{li}(x)=\frac{x}{\log x}+\frac{x}{(\log x)^{2}}+2 \frac{x}{(\log x)^{3}}+\ldots+(k-1)!\frac{x}{(\log x)^{k}}+O\left(\frac{x}{(\log x)^{k+1}}\right) .
$$

Solution. (a) Let $\theta(x)=\sum_{p \leq x} \log p$. Observe first that

$$
\psi(x)-\theta(x)=\sum_{\substack{p^{k} \leq x \\ k \geq 1}} \log p \ll \sum_{p^{2} \ll x} \log x \ll \sqrt{x} \log x,
$$

so it suffices to show the statement for θ in place of ψ. By partial summation we have

$$
\begin{aligned}
\theta(x) & =\sum_{p \leq x} \log p=\pi(x) \log x-\int_{2}^{x} \pi(t) / t \mathrm{~d} t \\
& =\log x\left(\operatorname{li}(x)+O(A(x))-\int_{2}^{x} \frac{\operatorname{li}(t)}{t} \mathrm{~d} t+O\left(\int_{2}^{x} \frac{A(t)}{t} \mathrm{~d} t\right)\right. \\
& =\log x \operatorname{li}(x)-\int_{2}^{x} \frac{\operatorname{li}(t)}{t} \mathrm{~d} t+O(A(x) \log x),
\end{aligned}
$$

and partial integration shows that

$$
\int_{2}^{x} \frac{\operatorname{li}(t)}{t} \mathrm{~d} t=\operatorname{li}(x) \log x-x+C
$$

Conversely,

$$
\begin{aligned}
\pi(x) & =\sum_{p \leq x} \frac{\log p}{\log p}=\frac{\theta(x)}{\log x}-\int_{2}^{x}\left(-\frac{1}{t(\log t)^{2}}\right) \theta(t) \mathrm{d} t \\
& =\frac{x}{\log x}+O(A(x))+\int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{2}}+O\left(A(x) \int_{2}^{x} \frac{t}{(\log t)} \mathrm{d} t\right),
\end{aligned}
$$

and the paenultimate term is

$$
\int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{2}}=\int_{2}^{x} x \cdot \frac{1}{x(\log t)^{2}} \mathrm{~d} t=-\frac{x}{\log x}+\operatorname{li}(x)+C .
$$

Altogether we obtain

$$
\pi(x)=\operatorname{li}(x)+O(A(x))+O(A(x) \log \log x) .
$$

(b) For the second statement we show that for all $k \in \mathbb{N}$ we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{(\log x)^{k}}=\frac{-k}{x(\log x)^{k+1}}
$$

and hence

$$
\int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{k}}=\frac{x}{(\log x)^{k}}+k \int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{k+1}} .
$$

Since also

$$
\int_{2}^{x} \frac{\mathrm{~d} t}{(\log t)^{k+1}}=\int_{2}^{x} \frac{1}{t} \frac{t}{(\log t)^{k+1}} \mathrm{~d} t \ll \frac{x}{(\log x)^{k+1}} \int_{2}^{x} \frac{1}{t} \mathrm{~d} t \ll \frac{x}{(\log x)^{k}}
$$

the statement follows by induction.

Problem 2. (Multiplicative functions and Dirichlet series)

(a) Let $\omega(n)$ the number of distinct prime divisors of n, and let $\Omega(n)$ be the total number of prime divisors with multiplicity. We define further

$$
\nu(n):=2^{\omega(n)}, \quad \lambda(n):=(-1)^{\Omega(n)}, \quad q(n):= \begin{cases}1 & n \text { is a square } \\ 0 & \text { else. }\end{cases}
$$

Show that these functions are multiplicative.
(b) Show $\nu=\mathbb{1} * \mu^{2}, q=\mathbb{1} * \lambda$ and $\mu^{2} * \lambda=\varepsilon$, and use these identities to determine $q * \nu$.
(c) Write the Dirichlet series $L(q, s), L\left(\mu^{2}, s\right), L(\nu, s)$ and $L(\lambda, s)$ in terms of $\zeta(s)$.

Hint: Start with $L(q, s)$, then use (b).
Solution. (a) Let $m=p_{1}^{e_{1}} \cdots p_{i}^{e_{i}}$ and $n=q_{1}^{f_{1}} \cdots q_{j}^{f_{j}}$. Since (m, n) $=1$ we have $\left\{p_{1}, \ldots, p_{i}\right\} \cap$ $\left\{q_{1}, \ldots, q_{j}\right\}=\emptyset$. Obviously, $m n$ is a square if and only if both m and n are squares. Furthermore, we have

$$
\begin{aligned}
& \nu(m n)=2^{i+j}=2^{i} 2^{j}=\nu(m) \nu(n) \\
& \lambda(m n)=(-1)^{e_{1}+\cdots+e_{i}+f_{1}+\cdots+f_{j}}=(-1)^{e_{1}+\cdots+e_{i}}(-1)^{f_{1}+\cdots+f_{j}}=\lambda(m) \lambda(n) .
\end{aligned}
$$

(b) It suffices to check prime powers. For the first identity we have

$$
\mathbb{1} * \mu^{2}\left(p^{k}\right)=\sum_{i=0}^{k} \mu^{2}\left(p^{i}\right) \mathbb{1}\left(p^{k-i}\right)=1 \cdot 1+1 \cdot 1=2=\nu\left(p^{k}\right)
$$

whenever $k \geq 1$, and $\nu(1)=1$. In the second case we find $\lambda\left(p^{k}\right)=(-1)^{k}$ and thus

$$
\mathbb{1} * \lambda\left(p^{k}\right)=\sum_{i=0}^{k} \lambda\left(p^{i}\right) \mathbb{1}\left(p^{k-i}\right)=\sum_{i=0}^{k}(-1)^{k}= \begin{cases}1 & k \text { even } \\ 0 & k \text { odd }\end{cases}
$$

This is just $q\left(p^{k}\right)$. The third identity follows from

$$
\mu^{2} * \lambda=\sum_{i=0}^{k} \mu\left(p^{i}\right) \lambda\left(p^{k-i}\right)=1 \cdot 1+1 \cdot(-1)=0
$$

for $k \geq 1$, and $\mu^{2} * \lambda(1)=1=\varepsilon(1)$.
Finally, we have $q * \nu=\mathbb{1} * \lambda * \mathbb{1} * \mu^{2}=\mathbb{1} * \mathbb{1}=d$, where in the third step we used $\mu^{2} * \lambda=\epsilon$.
(c) We have

$$
L(q, s)=\sum_{n=m^{2}} \frac{1}{n^{2}}=\zeta(2 s) .
$$

Furthermore, from $\mu^{2}=\lambda^{-1}$ we have $q * \mu^{2}=\mathbb{1}$, and hence $L\left(\mu^{2}, s\right)=\zeta(s) / L(q, s)=\zeta(s) / \zeta(2 s)$. The last two are $L(\nu, s)=\zeta(s) L\left(\mu^{2}, s\right)=\zeta(s)^{2} / \zeta(2 s)$ and $L(\lambda, s)=L\left(\mu^{2}, s\right)^{-1}=\zeta(2 s) / \zeta(s)$.

