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Problem 1. (The asymptotic formula in the prime number theorem)

(a) Let ψ(x) =
∑

n≤x Λ(n) and li(x) =
∫ x

2
dt

log t . Show that for any increasing function A(x) satisfy-

ing A(x)� x1/2 the statements

π(x) = li(x) +O(A(x))

and

ψ(x) = x+O(A(x) log x)

are equivalent.

OBS. It seems that the problem should have read

π(x) = li(x) +O(A(x)) =⇒ ψ(x) = x+O(A(x) log x),

but

ψ(x) = x+O(A(x) log x) =⇒ π(x) = li(x) +O(A(x) log log x).

I’m sorry for any confusion.

(b) Show that for any k ∈ N one has

li(x) =
x

log x
+

x

(log x)2
+ 2

x

(log x)3
+ . . .+ (k − 1)!

x

(log x)k
+O

(
x

(log x)k+1

)
.

Solution. (a) Let θ(x) =
∑

p≤x log p. Observe first that

ψ(x)− θ(x) =
∑
pk≤x
k≥1

log p�
∑
p2�x

log x�
√
x log x,

so it suffices to show the statement for θ in place of ψ. By partial summation we have

θ(x) =
∑
p≤x

log p = π(x) log x−
∫ x

2
π(t)/tdt

= log x (li(x) +O(A(x))−
∫ x

2

li(t)

t
dt+O

(∫ x

2

A(t)

t
dt

)
= log x li(x)−

∫ x

2

li(t)

t
dt+O(A(x) log x),

and partial integration shows that∫ x

2

li(t)

t
dt = li(x) log x− x+ C.
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Conversely,

π(x) =
∑
p≤x

log p

log p
=
θ(x)

log x
−
∫ x

2

(
− 1

t(log t)2

)
θ(t) dt

=
x

log x
+O(A(x)) +

∫ x

2

dt

(log t)2
+O

(
A(x)

∫ x

2

t

(log t)
dt

)
,

and the paenultimate term is∫ x

2

dt

(log t)2
=

∫ x

2
x · 1

x(log t)2
dt = − x

log x
+ li(x) + C.

Altogether we obtain

π(x) = li(x) +O(A(x)) +O(A(x) log log x).

(b) For the second statement we show that for all k ∈ N we have

d

dx

1

(log x)k
=

−k
x(log x)k+1

and hence ∫ x

2

dt

(log t)k
=

x

(log x)k
+ k

∫ x

2

dt

(log t)k+1
.

Since also ∫ x

2

dt

(log t)k+1
=

∫ x

2

1

t

t

(log t)k+1
dt� x

(log x)k+1

∫ x

2

1

t
dt� x

(log x)k
,

the statement follows by induction.

Problem 2. (Multiplicative functions and Dirichlet series)

(a) Let ω(n) the number of distinct prime divisors of n, and let Ω(n) be the total number of prime
divisors with multiplicity. We define further

ν(n) := 2ω(n), λ(n) := (−1)Ω(n), q(n) :=

{
1 n is a square

0 else.

Show that these functions are multiplicative.
(b) Show ν = 1 ∗ µ2, q = 1 ∗ λ and µ2 ∗ λ = ε, and use these identities to determine q ∗ ν.
(c) Write the Dirichlet series L(q, s), L(µ2, s), L(ν, s) and L(λ, s) in terms of ζ(s).

Hint: Start with L(q, s), then use (b).

Solution. (a) Let m = pe11 · · · p
ei
i and n = qf11 · · · q

fj
j . Since (m,n) = 1 we have {p1, . . . , pi} ∩

{q1, . . . , qj} = ∅. Obviously, mn is a square if and only if both m and n are squares. Furthermore,
we have

ν(mn) = 2i+j = 2i2j = ν(m)ν(n)

λ(mn) = (−1)e1+···+ei+f1+···+fj = (−1)e1+···+ei(−1)f1+···+fj = λ(m)λ(n).

(b) It suffices to check prime powers. For the first identity we have

1 ∗ µ2(pk) =

k∑
i=0

µ2(pi)1(pk−i) = 1 · 1 + 1 · 1 = 2 = ν(pk)
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whenever k ≥ 1, and ν(1) = 1. In the second case we find λ(pk) = (−1)k and thus

1 ∗ λ(pk) =
k∑

i=0

λ(pi)1(pk−i) =
k∑

i=0

(−1)k =

{
1 k even

0 k odd.

This is just q(pk). The third identity follows from

µ2 ∗ λ =

k∑
i=0

µ(pi)λ(pk−i) = 1 · 1 + 1 · (−1) = 0

for k ≥ 1, and µ2 ∗ λ(1) = 1 = ε(1).
Finally, we have q ∗ ν = 1 ∗ λ ∗ 1 ∗µ2 = 1 ∗ 1 = d, where in the third step we used µ2 ∗ λ = ε.

(c) We have

L(q, s) =
∑
n=m2

1

n2
= ζ(2s).

Furthermore, from µ2 = λ−1 we have q∗µ2 = 1, and hence L(µ2, s) = ζ(s)/L(q, s) = ζ(s)/ζ(2s).
The last two are L(ν, s) = ζ(s)L(µ2, s) = ζ(s)2/ζ(2s) and L(λ, s) = L(µ2, s)−1 = ζ(2s)/ζ(s).
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