# Analytic Number Theory 

Julia Brandes

Problem Sheet 1
Due date: Tuesday, 09.02.2016

Problem 1. (The asymptotic formula in the prime number theorem)
(a) Let $\psi(x)=\sum_{n \leq x} \Lambda(n)$ and $\operatorname{li}(x)=\int_{2}^{x} \frac{\mathrm{~d} t}{\log t}$. Show that for any increasing function $A(x)$ satisfy$\operatorname{ing} A(x) \gg x^{1 / 2}$ the statements

$$
\pi(x)=\operatorname{li}(x)+O(A(x))
$$

and

$$
\psi(x)=x+O(A(x) \log x)
$$

are equivalent.
(b) Show that for any $k \in \mathbb{N}$ one has

$$
\operatorname{li}(x)=\frac{x}{\log x}+\frac{x}{(\log x)^{2}}+2 \frac{x}{(\log x)^{3}}+\ldots+(k-1)!\frac{x}{(\log x)^{k}}+O\left(\frac{x}{(\log x)^{k+1}}\right) .
$$

## Problem 2. (Multiplicative functions and Dirichlet series)

(a) Let $\omega(n)$ the number of distinct prime divisors of $n$, and let $\Omega(n)$ be the total number of prime divisors with multiplicity. We define further

$$
\nu(n):=2^{\omega(n)}, \quad \lambda(n):=(-1)^{\Omega(n)}, \quad q(n):= \begin{cases}1 & n \text { is a square } \\ 0 & \text { else }\end{cases}
$$

Show that these functions are multiplicative.
(b) Show $\nu=\mathbb{1} * \mu^{2}, q=\mathbb{1} * \lambda$ and $\mu^{2} * \lambda=\varepsilon$, and use these identities to determine $q * \nu$.
(c) Write the Dirichlet series $L(q, s), L\left(\mu^{2}, s\right), L(\nu, s)$ and $L(\lambda, s)$ in terms of $\zeta(s)$.

Hint: Start with $L(q, s)$, then use (b).

