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Problem 1. (The asymptotic formula in the prime number theorem)
We define Mertens’ function as

M) = 3 uln).
n<x
Modify the proof of the prime number theorem to show that
M (z) < z exp(—c(logz)/1?)
for some constant ¢ > 0.
Solution. Observe that L(u,s) = 1/((s).
By Perron’s formula (Theorem 1.1.4) we have
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Unlike ¢, 1/¢ does not have a pole at 1. It follows that we can find T and ¢’ such that 1/¢ has no
poles in the rectangle ¢ + T, ¢ + 4T, so by the residue theorem we find
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By Lemma 1.4.2 we know that ((s) > (log|t|)~" in the region [t| > 8 and 1 — §(log |t|)™® < o0 < 2,
so we set 7 = $(log[t])™ and ¢ = 1+, ¢ = 1 — . Since |s| > [t| we have
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and the same bound holds for the third integral.
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For the second integral we have |s| > 3(1 + [t|), and thus
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For |t| > 8 we can apply Lemma 1.4.2 again, and for |¢| < 8 we use the bound 1/{(s) < 1 —0 =17
from Lemma 1.4.2. Thus we have 1/¢(s) < (logT)" for all [t| < T, and thus
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Thus altogether we find
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We compare the third and the fourth term. Neglecting logarithms for the moment, these two terms
8(1ogT)™" o1 in other words log T = (6log )/, As in the lectures,

M(x) <

are roughly equal if T = 2?7 = x
inserting this bound yields the result.



