Analytic Number Theory

Julia Brandes
Problem Sheet 2
Due date: Tuesday, 01.03.2016

Problem 1. (The asymptotic formula in the prime number theorem)
We define Mertens' function as

$$
M(x)=\sum_{n \leq x} \mu(n)
$$

Modify the proof of the prime number theorem to show that

$$
M(x) \ll x \exp \left(-c(\log x)^{1 / 10}\right)
$$

for some constant $c>0$.
Solution. Observe that $L(\mu, s)=1 / \zeta(s)$.
By Perron's formula (Theorem I.1.4) we have

$$
M(x)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{x^{s}}{\zeta(s)} \frac{\mathrm{d} s}{s}+O\left(\frac{x^{c}}{T \zeta(c)}+1+\frac{x \log x}{T}\right)
$$

Unlike $\zeta, 1 / \zeta$ does not have a pole at 1 . It follows that we can find T and c^{\prime} such that $1 / \zeta$ has no poles in the rectangle $c \pm i T, c^{\prime} \pm i T$, so by the residue theorem we find

$$
M(x) \ll \int_{c+i T}^{c^{\prime}+i T} \frac{x^{s}}{\zeta(s)} \frac{\mathrm{d} s}{s}+\int_{c^{\prime}+i T}^{c^{\prime}-i T} \frac{x^{s}}{\zeta(s)} \frac{\mathrm{d} s}{s}+\int_{c^{\prime}-i T}^{c-i T} \frac{x^{s}}{\zeta(s)} \frac{\mathrm{d} s}{s}+\frac{x^{c}}{T \zeta(c)}+1+\frac{x \log x}{T} .
$$

By Lemma I.4.2 we know that $\zeta(s) \gg(\log |t|)^{-7}$ in the region $|t| \geq 8$ and $1-\delta(\log |t|)^{-9}<\sigma<2$, so we set $\eta=\frac{\delta}{2}(\log |t|)^{-9}$ and $c=1+\eta, c^{\prime}=1-\eta$. Since $|s| \geq|t|$ we have

$$
\left|\int_{1+\eta+i T}^{1-\eta+i T} \frac{x^{s}}{\zeta(s)} \frac{\mathrm{d} s}{s}\right| \leq \int_{-\eta}^{\eta} x^{1+\sigma}(\log T)^{7} \frac{\mathrm{~d} \sigma}{T} \ll \eta \frac{x^{1+\eta}(\log T)^{7}}{T} \ll \frac{x^{1+\eta}}{T(\log T)^{2}}
$$

and the same bound holds for the third integral.
For the second integral we have $|s|>\frac{1}{2}(1+|t|)$, and thus

$$
\left|\int_{1-\eta+i T}^{1-\eta-i T} \frac{x^{s}}{\zeta(s)} \frac{\mathrm{d} s}{s}\right| \leq \int_{-T}^{T} \frac{x^{1-\eta}}{\zeta(1-\eta+i t)} \frac{\mathrm{d} t}{1+|t|}
$$

For $|t|>8$ we can apply Lemma I.4.2 again, and for $|t| \leq 8$ we use the bound $1 / \zeta(s) \ll 1-\sigma=\eta$ from Lemma I.4.2. Thus we have $1 / \zeta(s) \ll(\log T)^{7}$ for all $|t| \leq T$, and thus

$$
\int_{-T}^{T} \frac{x^{1-\eta}}{|\zeta(1-\eta+i t)|} \frac{\mathrm{d} t}{1+|t|} \ll x^{1-\eta}(\log T)^{7} \int_{-T}^{T} \frac{\mathrm{~d} t}{1+|t|} \ll x^{1-\eta}(\log T)^{8} .
$$

Thus altogether we find

$$
M(x) \ll \frac{x^{1+\eta}}{T(\log T)^{2}}+x^{1-\eta}(\log T)^{8}+\frac{x^{1+\eta}(\log T)^{7}}{T}+1+\frac{x \log x}{T} .
$$

We compare the third and the fourth term. Neglecting logarithms for the moment, these two terms are roughly equal if $T=x^{2 \eta}=x^{\delta(\log T)^{-9}}$, or in other words $\log T=(\delta \log x)^{1 / 10}$. As in the lectures, inserting this bound yields the result.

