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Part 0. Preliminaries and recapitulation

0.1. Arithmetic functions and Dirichlet series

Let A = {f : N→ C} denote the set of arithmetic functions. Examples are

1(n) = 1 for all n ∈ N the indicator function on N
d(n) = #{m ∈ N : m|n} the number of divisors of n,
ϕ(n) = #{m ∈ [1, n] : (m,n) = 1} the Euler totient function,
log n

Λ(n) =

{
log p if n = pk, p prime, k ∈ N
0, otherwise.

the von Mangoldt function.

For f, g ∈ A we define the (multiplicative) convolution

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

This convolution characterises the multiplicative structure of N. Examples:

d = 1 ∗ 1, log = 1 ∗ Λ.

One can also show

Lemma 0.1.1. Together with the convolution and pointwise addition, A forms a
commutative ring. The neutral element with respect to addition is the null function,
and the neutral element with respect to multiplication is

ε(n) =

{
1 n = 1

0 else.

Proof. Check. �

We now introduce an important class of arithmetic functions.

Definition 0.1.2. We say that an arithmetic function f 6= 0 is multiplicative if one
has f(mn) = f(m)f(n) for all coprime natural numbers m and n. We say that f is
strictly multiplicative if the relation f(mn) = f(m)f(n) holds for all pairs m,n ∈ N.
We denote the set of multiplicative functions byM.

Obviously, multiplicative functions are completely determined by their values on
prime powers. 1, ε, d, ϕ are multiplicative, whereas log and Λ are not.

Lemma 0.1.3. (i) For every multiplicative function f we have f(1) = 1.
1



2 JULIA BRANDES

(ii) The convolution of two multiplicative functions is multiplicative.
(iii) For every f ∈M there exists g ∈M with f ∗ g = ε.
It follows that the multiplicative functions (M, ∗, 1) form an abelian group.

Proof. (i) For every n we have (n, 1) = 1 and therefore f(n · 1) = f(n)f(1).
(ii) Let f, g ∈M and set h = f ∗ g. Let (m,n) = 1, then we have

h(mn) =
∑
d|mn

f(d)g(mn/d).

Since (m,n) = 1, for every d|mn there exist unique a, b ∈ N such that ab = d
and a|m, b|n and (a, b) = 1. It follows that∑
d|mn

f(d)g
(mn
d

)
=
∑
a|m

∑
b|n

f(ab)g
(mn
ab

)
=
∑
a|m

f(a)g(m/a)
∑
b|n

f(b)g(n/b).

(iii) Set g(1) = 1 and then inductively

g(pk) = −
k−1∑
i=0

g(pi)f(pk−i).

By construction, this shows f ∗ g = ε on prime powers. By extending g multi-
plicatively to the whole of N we obtain the desired statement.

�

Definition 0.1.4. The inverse of 1 is given by the Möbius function µ. We have

µ(pk) =

{
−1, if k = 1

0, if k ≥ 2.

Corollary 0.1.5. We have the Möbius inversion formula: Let f ∈ M and write
F (n) =

∑
d|n f(n), then

f(n) =
∑
d|n

µ(d)F (n/d).

Proof. f = ε ∗ f = (µ ∗ 1) ∗ f = µ ∗ (1 ∗ f) = µ ∗ F . �

0.2. Dirichlet series: general properties

We now introduce a class of generating series for arithmetic functions.

Definition 0.2.1. Let f ∈ A and s ∈ C, then the formal Dirichlet series L(f, s) is
given by

L(f, s) =
∞∑
n=1

f(n)

ns
.

We write L(1, s) = ζ(s), the Riemann zeta function.

This choice of generating function respects the convolution.

Lemma 0.2.2. Let f, g ∈M, then we have L(f ∗ g, s) = L(f, s)L(g, s).
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Proof. We have

L(f, s)L(g, s) =
∞∑
m=1

f(m)

ms

∞∑
n=1

f(n)

ns
=

∞∑
m=1

∞∑
n=1

f(m)f(n)

(mn)s
=
∞∑
r=1

∑
mn=r

f(m)f(n)

rs

=
∞∑
r=1

(f ∗ g)(r)

rs
= L(f ∗ g, s).

�

Lemma 0.2.3. If f ∈ M and suppose that the series L(f, s) converges absolutely
for some s ∈ C. Then we have

L(f, s) =
∏
p

∞∑
k=0

f(pk)

pks
.

If f is even completely multiplicative, we have

L(f, s) =
∏
p

1

1− f(p)p−s
.

Proof. By the fundamental theorem of arithmetic we have∏
p≤P

∞∑
k=0

f(pk)

pks
=

∑
n:p|n =⇒ p≤P

f(n)

ns
.

For a given ε > 0 let now N be sufficiently large that∑
n≥N

∣∣∣∣f(n)

ns

∣∣∣∣ < ε,

then ∣∣∣∣∣L(f, s)−
∏
p≤N

∞∑
k=0

f(pk)

pks

∣∣∣∣∣ ≤∑
n≥N

∣∣∣∣f(n)

ns

∣∣∣∣ < ε.

The second statement follows by the geometric series. �

0.3. Analytic properties of Dirichlet series

Unlike power series, which have a radius of convergence, Dirichlet series have an
abscissa of convergence. Before embarking on our proof of this fact, we record here
a useful analogue of integration by parts.

Lemma 0.3.1 (Partial Summation). Let M ∈ N and N ∈ R with N > M . Let
further g : [M,N ] 7→ C be a continously differentiable function. For a complex-
valued sequence (an) set

A(t) =
∑

M≤n≤t

an.

Then we have ∑
M≤n≤N

ang(n) = A(N)g(N)−
∫ N

M

A(t)g′(t)dt.
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Proof. Observe that

A(N)g(N)−
∑

M≤n≤N

ang(n) =
∑

M≤n≤N

an(g(N)− g(n))

=
∑

M≤n≤N

an

∫ N

n

g′(t)dt

=

∫ N

M

g′(t)
∑

M≤n≤t

andt.

This implies the statement. �

Remark 0.3.2. In the formulation of the Riemann–Stieltjes integral, partial summa-
tion can be viewed as integration by parts in the special case where one function
is a step function. For two sequences an and bn and integers M and N the formula
reads

N∑
n=M

anbn = A(N)bN −
N∑

n=M+1

A(n− 1)(bn − bn−1),

and the proof is the same.

Here and for the rest of the lecture we adopt the convention s = σ + it ∈ C.

Lemma 0.3.3. Let L(f, s) be a Dirichlet series. If L(f, s) converges for some s ∈ C,
then it also converges for all s′ ∈ C with σ′ > σ. If L(f, s) converges absolutely for
some s ∈ C, then it also converges uniformly for all s′ ∈ C with σ′ > σ.

Proof. For absolute convergence the statement follows at once from |ns| = nσ. We
thus focus on the statement for conditional convergence. By summation by parts we
have ∑

M≤n≤N

f(n)

ns
=

∑
M≤n≤N

f(n)

ns0
ns0−s

= N s0−s
∑

M≤n≤N

f(n)

ns0
−
∫ N

M

( ∑
M≤n≤ξ

f(n)

ns0

)
(s− s0)ξs0−s−1dξ

For ε > 0 we choose M large enough such that by the Cauchy criterion∣∣∣∣∣ ∑
M≤n≤ξ

f(n)

ns0

∣∣∣∣∣ < ε

for all ξ > M . Thus we have∑
M≤n≤N

f(n)

ns
≤ ε

(
N s0−s + |s− s0|

∫ N

M

ξs0−s−1dξ

)
≤ ε

(
N s0−s +

|s− s0|
|σ − σ0|

(Mσ0−σ +Mσ0−σ)

)
≤ ε

(
1 + 2

|s− s0|
|σ − σ0|

)
.
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For any fixed s ∈ C with σ > σ0 we therefore obtain the desired result. Furthermore,
in the sector

GH = {s ∈ C : σ > σ0, |t− t0| ≤ H|σ − σ0|}

we even have uniform convergence, since

|s− s0| ≤ |σ − σ0|+ |t− t0| ≤ (H + 1)|σ − σ0|.

�

Corollary 0.3.4. Suppose L(f, σ) = L(g, σ) for all sufficiently large σ. Then the
arithmetic functions f and g agree.

Proof. Since the Dirichlet series converge uniformly, we can swap the limit and the
sum and obtain

f(1) =
∞∑
n=1

f(n) lim
σ→∞

n−σ = lim
σ→∞

L(f, σ) = lim
σ→∞

L(g, σ) =
∞∑
n=1

g(n) lim
σ→∞

n−σ = g(1).

Suppose we have already shown that f(i) = g(i) for 1 ≤ i ≤ k − 1. Then

f(k) =
∞∑
n=k

f(n) lim
σ→∞

(k/n)σ =
∞∑
n=k

g(n) lim
σ→∞

(k/n)σ = g(k).

This shows the statement. �

We write

σ0(f) = inf{σ : L(f, s) converges}

for the abscissa of convergence, and

σa(f) = inf{σ : L(f, s) converges absolutely}

for the abscissa of absolute convergence. We will often suppress the dependence on
f .

Lemma 0.3.5. Let f ∈ A, then we have σ0(f) ≤ σa(f) ≤ σ0(f) + 1.

Proof. The first inequality is trivial. For the second one, observe that the convergence
of L(f, σ0 + ε) implies that |f(n)| ≤ nσ0+ε for all large n, and hence∣∣∣∣∣∑

n≥n0

f(n)

nσ0+1+2ε

∣∣∣∣∣ ≤ ∑
n≥n0

|f(n)|
nσ0+1+2ε

≤
∑
n≥n0

n−1−ε <∞.

�

For instance, σ0(1) = σa(1) = 1. If a(n) = (−1)n, then σ0(a) = 0 and σa(a) = 1.

Part I. The prime number theorem

I.1. Perron’s formula

Let f be an arithmetic function, and Sf (x) =
∑

n≤x f(n) its summatory function.
Then Sf (x) can be connected with the Dirichlet series L(f, s) via a Fourier-type
identity.
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Theorem I.1.1. We have
L(f, s)

s
=

∫ ∞
1

Sf (x)

xs
dx

x

for all s ∈ C having σ > max{σ0(f), 0}.

Proof. Summation by parts: For large N we have
N∑
n=1

f(n)

ns
=
Sf (N)

N s
+ s

∫ N

1

Sf (x)

xs
dx

x
. (I.1.1)

The result follows now on taking N →∞. If σ0(f) < 0, it follows from the definition
of the abscissa of convergence that

lim
x→∞

Sf (x) = L(f, 0) <∞,

so the first term vanishes in the limit. If σ0 ≥ 0, then by an argument as in the proof
of Lemma 0.3.3 we see

Sf (x) =
∑
n≤x

f(n)

nσ
nσ = xσ

∑
n≤x

f(n)

nσ
+ σ

∫ x

1

(∑
n≤t

f(n)

nσ

)
tσ−1dt� xσ

for any σ > σ0, so it follows that

σ0(f) ≥ lim sup
logSf (x)

log x
, (I.1.2)

and by consequence the first term in (I.1.1) vanishes in this case as well. �

As a by-product of this argument we get an easy formula for the abscissa of
convergence.

Corollary I.1.2. When σ0 > 0 the inequality in (I.1.2) is even an equality.

Proof. Write for simplicity τ for the expression on the right hand side. We have
already shown σ0(f) ≤ τ . The opposite inequality follows easily from the observation
that for any σ satisfying τ < σ < σ0(f) the left hand side of (I.1.1) diverges whereas
the right hand side converges, so the interval must be empty. �

It is the converse statement to Theorem I.1.1 which we are mainly interested in.
The proof rests on Perron’s formula. With future applications in mind, we present
a quantitative version.

Theorem I.1.3 (Perron’s Formula). Let c and y be positive real numbers. We have

1

2πi

∫
c+iR

ys
ds

s
=


0 if y < 1,

1/2 if y = 1,

1 if y > 1.

(I.1.3)

More exactly, if the right hand side of (I.1.3) is denoted by δ(y), we have for every
T > 0 the relation∣∣∣∣ 1

2πi

∫ c+iT

c−iT
ys

ds

s
− δ(y)

∣∣∣∣�
{
cT−1 if y = 1,

min
{
yc, yc

T |log y|

}
otherwise.
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Proof. In the case y = 1 we have

1

2π

∫ T

−T

dt

c+ it
=

1

2π

∫ T

0

1

c+ it
+

1

c− it
dt =

1

π

∫ T

0

c

c2 + t2
dt =

1

2
− 1

π

∫ ∞
T/c

dξ

1 + ξ2
.

This shows the claim in this case.
Consider now the case y > 1, and let r < −1. We consider the integral∫

W

ys
ds

s
,

where W denotes the boundary of the rectangle with corners c ± iT and r ± iT .
The function ys/s is meromorphic and has a simple pole at s = 0 with residue 1.
By Cauchy’s integral theorem we find∫

W

ys
ds

s
= 1

This implies

1

2πi

∫ c+iT

c−iT
ys

ds

s
= 1 +O

(∫ r+iT

c+iT

ys
ds

s
+

∫ r−iT

c−iT
ys

ds

s
+

∫ r+iT

r−iT
ys

ds

s

)
.

For σ < −1 we have |ys/s| ≤ yσ/|σ| ≤ 1/|σ| since y > 1. By taking the limit r →∞,
the last term in the error vanishes. For the other two terms we observe that∣∣∣∣∫ −∞+iT

c+iT

ys
ds

s

∣∣∣∣� ∫ c

−∞

yσ

T
dσ � yc

T log y
.

In order to derive the alternative bound, we consider the circle C centered at the
origin and with radius R =

√
c2 + T 2. Denote by C1 the sector running from c+ iT

clockwise to c− iT , then by Cauchy’s integral theorem again we find

1

2πi

∫ c+iT

c−iT
ys

ds

s
= 1 +O

(∫
C1

ys
ds

s

)
.

Since for s ∈ C1 we have |ys/s| ≤ |yσ|/R ≤ yc/R and the arc length grows propor-
tionally with R, the result follows.

For 0 < y < 1 the result is proved in the same way. Here we take r > 1 in the
rectangle, and use the circle sector C2 = C \ C1. Then there are no poles inside the
path of integration, and the estimates work in the same way.

�

We can now establish the inverse transform to Theorem I.1.1.

Theorem I.1.4. Recall the notation from Theorem I.1.1, and set S ′f (x) = Sf (x)

whenever x 6∈ N, and S ′f (x) = Sf (x − 1) + 1
2
f(x) for integer values x. For every

c > max{0, σa(f)} we have

S ′f (x) =
1

2πi

∫
(c)

L(f, s)xs
ds

s
.

More precisely, we have∣∣∣∣S ′f (x)− 1

2πi

∫ c+iT

c−iT
L(f, s)xs

ds

s

∣∣∣∣� xc

T
L(f, c) +

(
1 +

x log x

T

)
max

x/2<n<2x
n 6=x

|f(n)|.
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Proof. Since the Dirichlet series converges absolutely at s = c+ it for all t, we have
∞∑
n=1

f(n)

∫ c+iT

c−iT

(x
n

)s ds

s
=

∫ c+iT

c−iT
xs

∞∑
n=1

f(n)

ns
ds

s
=

∫ c+iT

c−iT
L(f, s)xs

ds

s
.

On the other hand, Perron’s formula implies that on the left hand side of the above
equation any value f(n) is counted only if n < x, and with half weight when n = x.
More precisely, we obtain

1

2πi

∫ c+iT

c−iT
L(f, s)xs

ds

s
=
∞∑
n=1

f(n)

2πi

∫ c+iT

c−iT

(x
n

)s ds

s

= S ′f (x) +O

(
1

T
+
∞∑
n=1

|f(n)|min

{
(x/n)c,

(x/n)c

T |log x/n|

})
.

Note that in the limit T →∞ the error term tends to zero.

The problematic term in the error is |log x/n|−1. For x/n 6∈ [1/2, 2] this expression
is bounded below by an absolute constant, so we have∑

n<x/2 or n>2x

|f(n)|min

{
(x/n)c,

(x/n)c

T |log x/n|

}
� xc

T

∑
n

|f(n)|
nc

.

In order to bound the remaining range, we observe that n/x = 1 + (n− x)/x and
that log(1 + a) � a for −1/2 ≤ a ≤ 1. Thus |log x/n|−1 � x

|n−x| . It follows that the
contribution from these terms is bounded above by∑

x/2<n<2x
n6=x

|f(n)|min{1, x

T |n− x|
}.

Bounding the entries of the sequence by their maximum, we can argue further. We
have∑
x/2<n<2x

n6=x

min{1, x

T |n− x|
} � 2x/T +

∑
x/2≤n<x(1− 1

T
)

x

T |n− x|
+

∑
x(1+ 1

T
)<n≤2x

x

T |n− x|

� x log x

T
.

Observe also that we can replace S ′f (x) by Sf (x) as the error is O(1) and can be
absorbed in the error term. �

I.2. The Mellin transform in context

The theory of arithmetic functions and Dirichlet series, culminating in statements
like those of Theorems I.1.1 and I.1.4, have a great similarity to the theory of power
series, additive convolution and the Fourier transform and its inversion.

In fact, Dirichlet series and power series can be put into relation as well. For an
arithmetic function we have the power series

Pf (x) =
∞∑
n=1

f(n)xn,
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and it is clear that in the region of convergence we have

Pf (e
y) =

∞∑
n=1

f(n)e−yn =
∞∑
n=1

(f ◦ log)(en)(en)−y.

Heuristically, substituting m = en, this bears some resemblance to the Dirichlet
series related to the function f ◦ log. This affinity is the underlying reason of why
Dirichlet series respect the multiplicative convolution.

Over Z this analogy reaches only so far, since the change of variables is not an
automorphism of N. However, the continuous analogues can be related in this way.
Recall the definitions of the Fourier transform

Ff(t) =

∫ ∞
−∞

f(x)e−2πixtdx F−1F (x) =

∫ ∞
−∞

F (x)e2πixtdt

and the two-sided Laplace transform

Lf(t) =

∫ ∞
0

f(x)e−xtdx L−1F (x) =
1

2πi

∫ c+i∞

c−i∞
F (x)extdt.

The formal relation

Ff(t) = Lf(2πit)

is immediate from the definition. For a function f , the Mellin transform (after Hjal-
mar Mellin, Finland) is defined as

Mf(s) =

∫ ∞
0

f(x)xs
dx

x
,

and its inverse is given by

M−1f(x) =

∫ c+i∞

c−i∞
F (s)x−sds,

where c lies in the region of convergence. An important example is the Gamma
function

Γ(s) =

∫ ∞
0

e−xxs
dx

x
,

which is by definition the Mellin transform of e−x, and one has the converse transform

e−y =

∫ c+i∞

c−i∞
Γ(s)x−sds.

The Mellin transform can be expressed in terms of the Laplace trancform. In the
region of convergence, we have

L(f ◦ exp)(−s) =

∫ ∞
−∞

f(ex)exsdx =

∫ ∞
0

f(y)ys
dy

y
=Mf(s).

In this language, Theorem I.1.1 asserts that L(f, s) is the Mellin transform of
Sf (1/x), and Theorem I.1.4 establishes the inverse statement of this. It follows that
at least for real variables these theorems could also have been proved using just the
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normal Fourier transform. In fact, taking g(x) = Sf (e
2πx)e−2πσs for some suitably

large σ Theorem I.1.1 shows that

G(t) = ĝ(t) =

∫
R
Sf (e

2πx)e−2πσxe−2πixtdx

=

∫
R
Sf (e

2πx)e−2πsxdx =
1

2π

∫ ∞
0

Sf (y)y−sdy =
L(f, σ + it)

2π(σ + it)
.

We can now compute the Fourier inverse transform. Thus

Ĝ(x) =

∫
R

L(f, σ + it

2π(σ + it)
e2πitxdt =

1

2πi

∫
(σ)

L(f, s)

s
e2π(s−σ)xds

= e−2πiσx
1

2πi

∫
(σ)

L(f, s)

s
e2πsxds.

However, by the Fourier inversion theorem we have Ĝ(x) = g(x), so this expression
must be equal to Sf (e2πx)e−2πσs. It follows that

Sf (e
2πx) =

1

2πi

∫
(σ)

L(f, s)

s
e2πsxds,

which after a change of variables recovers the statement of Theorem I.1.4 for non-
integral x, and in the integer case the desired result follows after setting the Fourier
transform equal to the mean of the upper and lower limits as usual.

I.3. Back to primes

We would like to apply the results of the previous section to the indicator function
of the primes. The associated Dirichlet series is given by

L(1primes, s) =
∑
p

1

ps
,

and this can be related to ζ(s).

Lemma I.3.1. For σ > 1 we have

log ζ(s) =
∑
p

1

ps
+O(1).

Proof. By the Euler product formula (Lemma 0.2.3) we have

ζ(s) =
∏
p

1

1− p−s

for σ > 1, and thus

log ζ(s) =
∑
p

log
1

1− p−s
= −

∑
p

log(1− p−s) =
∑
p

∞∑
k=1

p−ks

k
. (I.3.1)

The contribution from k = 1 yields the desired expression, and for larger k we have
∞∑
k=2

−pkσ

k
≤ 1

p2σ
(1 +

1

pσ
+

1

p2σ
+ . . . ) =

1

p2σ
1

1− p−σ
≤ 1

2p2σ
.
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For σ > 1 this is smaller than 1/2p2, so altogether we find

log ζ(s) =
∑
p

(
1

ps
+O

(
1

p2

))
=
∑
p

1

ps
+O(1).

�

Thus, in order to understand the primes, we need to understand the Riemann
zeta function better, in particular its singularity at 1. It turns out that ζ(s) can
be extended to the domain σ > 0. We will use the Gauss bracket [x] to denote the
largest integer not exceeding x and write {x} = x− [x] for the fractional part of x.
The following lemma will be stated in a more general version than what is needed
at this point in order to save work later on.

Lemma I.3.2. Suppose that M is an integer and σ > 1. Then we have
∞∑

n=M

1

ns
=

s

s− 1
+ (1−M)M−s − s

∫ ∞
M

{x}x−s−1dx.

Corollary I.3.3. Suppose that σ > 1. For any integer N > M we have

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}x−s−1dx.

In particular, ζ can be meromorphically continued to the entire right half plane. It
has a simple pole at 1 with residue 1.

Proof. We apply partial summation. We have
N∑

n=M

1

ns
= N−s(N −M + 1) + s

∫ N

M

([t]−M + 1)t−s−1dt

= N−s(N −M + 1) + s

∫ N

M

t−sdt− (M − 1)s

∫ N

M

t−s−1dt− s
∫ N

M

{t}t−s−1dt

= N−s(N −M + 1) +
s

1− s
(N1−s −M1−s) + (M − 1)(N−s −M−s)

− s
∫ N

M

{t}t−s−1dt.

For σ > 1 we can take the limit N →∞ and obtain

ζ(s) =
s

s− 1
M1−s + (1−M)M−s − s

∫ ∞
M

{x}x−s−1dx

as stated.
The corollary follows on setting M = 1 and observing that the last integral

converges for all σ > 0. By the identity theorem of harmonic analysis, it follows that
ζ(s) can be continued to the entire right half plane. �

This result implies that log ζ has a logarithmic singularity at 1, which makes it
somewhat hard to work with. By differencing log ζ with respect to s, these singu-
larities can be converted to ‘normal’ poles. For σ > 1 we obtain

ζ ′

ζ
(s) =

d

ds
log ζ(s) =

d

ds

∑
p

∞∑
k=1

p−ks

k
= −

∑
p

∞∑
k=1

log p

pks
= −

∞∑
n=1

Λ(n)

ns
.
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By Theorem I.1.4 this implies that

ψ(x) =
∑
n≤x

Λ(n) = − 1

2πi

∫
(c)

ζ ′

ζ
(s)xs

ds

s
(I.3.2)

for any c > 1. Thus, in order to prove the prime number theorem it suffices to
understand the integral on the right hand side of (I.3.2).

In order to deduce a quantitative version of the prime number theorem, we need
to employ the quantitative version of Theorem I.1.4. It follows therefore that for
arbitrary c > 1 and T large we have

ψ(x) = − 1

2πi

∫ c+iT

c−iT

ζ ′

ζ
(s)xs

ds

s
+O

xc
T
L(Λ, c) +

(
1 +

x log x

T

)
max

x/2<n<2x
n6=x

|Λ(n)|


= − 1

2πi

∫ c+iT

c−iT

ζ ′

ζ
(s)xs

ds

s
+O

(
xc

T

∣∣∣∣ζ ′ζ (c)

∣∣∣∣+ log x+
x(log x)2

T

)
.

We treat the first integral by the residue theorem. Take 0 < c′ < 1 and T such that
ζ has no zeros inside the rectangle given by c ± iT and c′ ± iT , and consider the
oriented paths

γ1 = [c+ iT, c′ + iT ], γ2 = [c′ + iT, c′ − iT ], γ3 = [c′ − iT, c− iT ].

We have

res
s=1

ζ ′

ζ
(s)

xs

s
= −x,

and thus

− 1

2πi

∫ c+iT

c−iT

ζ ′

ζ
(s)xs

ds

s
= 2πix+O(E1 + E2 + E3),

where

Ei =

∫
γi

ζ ′

ζ
(s)xs

ds

s
.

It follows that

ψ(x) = x+O

(
xc

T

∣∣∣∣ζ ′ζ (c)

∣∣∣∣+ log x+
x(log x)2

T
+ E1 + E2 + E3

)
.

The key to proving the prime number theorem is therefore to obtain good upper
bounds for the integrals E1, E2 and E3. In particular, we need to show in some
domain to the right of 1 that ζ(s) is bounded below – in particular, has no zeros –
and that ζ ′(s) is bounded above.

I.4. A zero-free region of ζ(s)

In order to achieve this, we will proceed as follows. Suppose that we are able to
prove that ζ has no zeros on the line σ = 1. Then, if the derivative is small in
absolute value, ζ cannot decrease too rapidly as σ is moved to the left. We should
thus obtain a small zero-free region to the left of the line σ = 0 that will serve our
purposes.

We start by bounding ζ and ζ ′ above.
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Lemma I.4.1. In the domain |t| ≥ 8 and 1− 1
2 log |t| ≤ σ ≤ 2 we have the estimates

ζ(s)� log |t|, ζ ′(s)� (log |t|)2.

Furthermore, for 1/2 < σ < 2 we have

ζ(σ)� (σ − 1)−1.

Proof. The second estimate follows directly from the identity in Corollary I.3.3.
For all 1 − 1

log |t| ≤ σ ≤ 3 and all n ≤ t we have n−σ ≤ en−1. By Lemma I.3.2
above with N = [t] it follows that

ζ(s)�
∑
n≤t

1

n
+

t1−σ

|s− 1|
� log t+ t−σ � log t.

For the second estimate we use Cauchy’s integral formula with

|ζ ′(s)| = 1

2πi

∫
|s−w|=r

ζ(w)

(w − s)2
ds� log t

∫
|s−w|=r

dr

r2
� log t

r
.

This is certainly legitimate for s as in the statement of the lemma and r sufficiently
small, and one can check that taking r = (2 log t)−1 is an acceptable choice. �

Lemma I.4.2. We have ζ(1 + it) 6= 0 for all t ∈ R.
More precisely, for |t| ≥ 8 and 1− δ(log |t|)−9 < σ < 2 we have

ζ(s)� (log |t|)−7.

Proof. From (I.3.1) we have in σ > 1 the relation

ζ(s) = exp

(∑
p

∞∑
k=1

p−ks

k

)
and thus

|ζ(s)| = exp

(∑
p

∞∑
k=1

p−kσ

k
cos(kt log p)

)
.

Observe that

3 + 4 cosα + cos 2α = 2(1 + cosα)2 ≥ 0

for all α ∈ R. Setting αk,p = kt log p yields therefore

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| = exp

(∑
p

∞∑
k=1

p−kσ

k
(3 + 4 cosαk,p + cos 2αk,p)

)
≥ 1.

In particular, we have

lim
σ↘1

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1. (I.4.1)

Now suppose that ζ(1 + it0) = 0 for some t0 6= 0. Then we have

lim
σ↘1

ζ(σ)3|ζ(σ + it0)|4 = 0,

so (I.4.1) can only be satisfied if ζ(s) has a pole at s = 1 + 2it0. However, this
contradicts the first statement of Lemma I.4.1.
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More precisely, using the bounds of Lemma I.4.1 we see that∣∣∣∣ 1

ζ(σ + it)

∣∣∣∣ ≤ ζ(σ)3/4|ζ(σ + 2it)|1/4 ≤ C1(σ − 1)−3/4(log |t|)1/4

for any 1 < σ < 2 and some suitable constant C1. On the other hand, for t ≥ 8 and
0 < η < 1

2 log t
we have

|ζ(1− η + it)− ζ(1 + η + it)| ≤
∫ 1+η

1−η
|ζ ′(u+ it)|du ≤ C2η(log |t|)2

for some C2. Altogether, we find that

|ζ(1− η + it)| ≥ |ζ(1 + η + it)| − C2η(log |t|)2

≥ C1η
3/4(log |t|)−1/4 − C2η(log |t|)2.

We have η3/4(log |t|)−1/4 � η(log |t|)2 if η � log |t|−9. Thus, if we fix A such that
δ = A3/4C1 − AC2 > 0 and set η = A(log |t|)−9, then the above is bounded below
by δ(log |t|)−7. �

Corollary I.4.3. In t ≥ 8 and 1− δ(log |t|)−9 < σ < 2 we have

ζ ′

ζ
(s)� (log |t|)9.

Proof. This follows upon combining Lemmata I.4.1 and I.4.2. �

I.5. Conclusion of the proof

It remains to employ the bounds of the previous section to estimate the contribu-
tion from the integrals E1, E2 and E3. Recall that

E1 =

∫ c′+iT

c+iT

ζ ′

ζ
(s)

xs

s
ds,

where c > 1 is arbitrary and 0 < c′ < 1 is to be chosen such that the integrand has
no zeros inside the rectangle given by the points c ± iT and c′ ± iT . By Corollary
I.4.3 we may set c = 1 + η and c′ = 1− η, where

η =
δ

2
(log T )−9

for a suitable constant δ. On the path of integration we have |s| ≥ T and |xs| = xσ ≤
x1+η. Furthermore, Corollary I.4.3 shows that (ζ ′/ζ)(s)� 1/η. We thus obtain

E1 �
∫ 1+η

1−η

∣∣∣∣ζ ′ζ (σ + iT )

∣∣∣∣ xσT dσ

� (2η)
1

η

x1+η

T
� x1+η

T
.

Obviously, the same argument shows E3 � T−1x1+η for the integral over the path
[1− η − iT, 1 + η − iT ].

It remains to understand the integral

E2 =

∫ 1−η−iT

1−η+iT

ζ ′

ζ
(s)

xs

s
ds.
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On this path we have |s| ≥ 1
2
(1 + |t|), so we obtain

E2 �
∫ T

−T

∣∣∣∣ζ ′ζ (s)

∣∣∣∣x1−η dt

1 + |t|
.

For |t| ≥ 8 we have
∣∣∣ ζ′ζ (s)

∣∣∣� (log T )9 by Corollary I.4.3. For the smaller t we recall
the bound

ζ(s) =
s

s− 1
+ s

∫ ∞
1

{x}x−s−1dx� 1

|s− 1|
coming from Corollary I.3.3 and remark that differentiating yields

ζ ′(s) =
1

s− 12
+

∫ ∞
1

{x}x−s−1dx+ s

∫ ∞
1

{x}x−s−1 log xdx,

so ζ ′(s)� |s− 1|−2 as s→ 1. It follows that
∣∣∣ ζ′ζ (s)

∣∣∣� 1
|s−1| �

1
(log T )−9 by recalling

the zero-free region of ζ(s) of Lemma I.4.2. We therefore find

E2 � x1−η(log T )9
∫ T

−T

dt

1 + |t|
� x1−η(log T )10.

Our combined error is now

ψ(x)− x� x1+η

T

∣∣∣∣ζ ′ζ (1 + η)

∣∣∣∣+ log x+
x(log x)2

T
+
x1+η

T
+ x1−η(log T )10

� x1+η(log T )9

T
+ log x+

x(log x)2

T
+ x1−η(log T )10.

We optimise by comparing the first error term with the last one. These two terms
are roughly of the same order of magnitude (up to logarithms) if

x1+η

T
= x1−η,

or

T = x2η = exp
(
δ(log T )−9 log x

)
.

Taking logarithms, we see that this is satisfied if

log T = (δ log x)1/10 .

This choice of T implies

η =
δ

2
(δ log x)−9/10 .

Hence the last error term is

x1−η(log T )10 = x exp(−η log x) (δ log x)

� x exp

(
−δ

2
(δ log x)−9/10 log x

)
log x� x exp

(
−c(log x)1/10

)
for some c < (1/2)δ1/10. In the last step we used that the exponential grows faster
than any power of logarithm.

By construction, the first error term is also of this shape, and it is clear that
the other two are smaller. Thus we have proved a quantitative version of the prime
number theorem.
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Theorem I.5.1 (Prime Number Theorem). There exists a positive parameter c such
that

Ψ(x) = x+O
(
xe−c(log x)

1/10
)
,

or, equivalently,

π(x) = li x+O
(
xe−c(log x)

1/10
)
,

where

lix =

∫ x

2

dt

log t
=

x

log x
+

x

(log x)2
+ · · ·+ (k − 1)!

x

(log x)k
+O

(
x

(log x)k+1

)
for any k ∈ N.

The exponent 1/10 stems from the size of the zero-free region σ ≥ 1− δ(log t)1/9.
This zero-free region has been obtained via the cosine identity, so it is a natural
question if a different cosine identity would yield better results. In fact, there is
no reason why the identity should be based on a quadratic polynomial, as higher
degrees are also thinkable. However, there are a few constraints. It is necessary that
the coefficient of the absolute term be larger than that of the linear one, and that all
coefficients be positive, for otherwise there would be no contradiction. In §65 of his
textbook from 1909, Landau1 gives a detailed discussion of this issue. He comes to
the conclusion that without further ideas this method cannot yield error terms better
than O

(
x exp(−c(log x)1/7)

)
, and finds an example with O

(
x exp(−c(log x)1/(2+γ))

)
where

γ = 2 +
16π

9
√

3
≈ 5.2245 . . . .

Already in 1899, a mere three years after his proof of the PNT, de la Vallée-Poussin
applied more advanced methods to establish a zero-free region of the shape σ ≥ 1−
δ(log t)−1, yielding an error of O

(
x exp(−c(log x)1/2)

)
. This is the error recorded in

most textbooks. The best zero-free region to date is 1−σ ≤ δ(log t)−2/3(log log t)1/3,
which yields the error term O

(
x exp(−c(log x)3/5/(log log x)1/5)

)
with an explicitly

computed constant c.

I.6. Sketch of Riemann’s ideas

The version of the prime number theorem we proved is a simplified one, and in
fact Riemann’s original ideas reached significantly further. We will briefly sketch
some of his main ideas here.

Recall the Gamma function

Γ(s) =

∫ ∞
0

e−tts
dt

t
.

This function is a priori defined in σ > 0, but can be continued to the entire complex
plane by the relation Γ(s+ 1) = sΓ(s). We also define the theta series

Θ(x) =
∑
n∈Z

e−πn
2x, ω(x) =

∞∑
n=1

e−πn
2x = (1/2)(Θ(x)− 1),

1Handbuch der Lehre von der Verteilung der Primzahlen. Erster Band, Second Edition. Chelsea
Publishing Company, New York, 1953
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and state its functional equation

Θ(1/x) =
√
xΘ(x) ω(1/x) = −1/2 + (1/2)

√
x+
√
xω(x).

Thus with the substitution t = πn2y we have

Γ(s/2) =

∫ ∞
0

e−πn
2y(πn2y)s/2−1πn2dy,

and thus

π−s/2Γ(s/2)ζ(s) = π−s/2
∞∑
n=1

n−s
∫ ∞
0

e−πn
2y(πn2y)s/2−1πn2dy

=

∫ ∞
0

ω(x)xs/2−1dx

=

∫ ∞
1

ω(1/x)x−s/2+1dx

x2
+

∫ ∞
1

ω(x)xs/2−1dx

= −1/s+ 1/(s− 1) +

∫ ∞
1

ω(x)(xs/2−1 + x−s/2−1/2)dx.

This last expression is symmetric with respect to the transformation s ↔ 1 − s. It
follows that the zeta function can be continued to the entire complex plane, and we
have the functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Since Γ has poles at the negative integers, but the product Γ
(
s
2

)
ζ(s) is analytic

and non-zero for σ > 1, it follows that ζ vanishes at all even negative integers. Any
additional zeros must lie inside the critical strip with 0 < σ < 1 and are distributed
symmetrically. We denote the set of zeros in the critical strip by N .

Now that we understand the zeros of ζ better, we can go back to the proof of the
prime number theorem. This time, instead of taking c′ so close to 1 that the only
singularity the domain of integration is the pole, we aim to let c′ tend to −∞. Using
that for ρ ∈ N or ρ = −2n we have

res
s=ρ

ζ ′

ζ
(s)

xs

s
=
xρ

ρ
,

the residue theorem yields

ψ′(x) = x− ζ ′

ζ
(0)−

∑
ρ∈N
|=ρ|<T

xρ

ρ
−

∑
n≤|c′|/2

x−2n

−2n
+R(c′, T, x). (I.6.1)

(Recall the definition of the modified function ψ). One can show that the error
vanishes as c′ → −∞ and T → ∞, and further that the sum over the zeros in the
critical strip is (conditionally) convergent. Thus we obtain the explicit formula

ψ′(x) = x− ζ ′

ζ
(0)−

∑
ρ∈N

xρ

ρ
− 1

2
log

(
1− 1

x2

)
.

As a simple corollary we see that if there is a constant α < 1 such that <ρ ≤ α for
all ρ ∈ N, then we would have ψ(x) = x+O(xα+ε.

Conjecture I.6.1 (Riemann Hypothesis). All ρ ∈ N have <ρ = 1/2.
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Corollary I.6.2. We have

ψ(x) = x+O(x1/2+ε).

This conjecture is wide open. However, the explicit formula (I.6.1) can be used to
show that for some suitable C > 0 one has

<ρ < 1− C min{1, (log |=ρ|)−1}.
Plugged into our analysis of the previous paragraph, this zero-free region delivers
the classical error term O(xe−C

√
log x) for the prime number theorem.

Part II. Primes in arithmetic progressions

II.1. Fundamental properties of Dirichlet characters

A Dirichlet character modulo q is a group homomorphism χ : (Z/qZ)× 7→ S1. We
extend χ to Z by setting χ(n) = 0 when (n, q) > 1 and χ(n + kq) = χ(n) for all
1 ≤ n ≤ q and k ∈ Z.

The group (Z/qZ)× is a product of a finite number of cyclic groups and has ϕ(q)
elements. Since characters are totally multiplicative, they are uniquely determined by
their values on the products of the generators of the cyclic groups. On each generator
the number of possible values corresponds to the order of the corresponding cyclic
group. It follows that the number of characters modulo q is equal to the order of the
group (Z/qZ)× and is given by ϕ(q). Obviously, the values taken are ϕ(q)-th roots
of unity.

The set of characters modulo q forms a group via pointwise multiplication. The
neutral element is given by the principal character χ0 that takes the value χ0(n) = 1
for all n coprime to q. We write χ̄ for the inverse of χ. The following character
relations are often useful.

Lemma II.1.1. Let χ be a character modulo q and a ∈ Z. Then∑
a (mod q)

χ(a) =

{
ϕ(q) if χ = χ0,

0 otherwise,

∑
χ (mod q)

χ(a) =

{
ϕ(q) if a ≡ 1 (mod q),

0 otherwise.

Proof. If χ = χ0 the first statement is trivial. For χ 6= χ0 we can pick b ∈ (Z/qZ)×

such that χ(b) 6= 1. Then∑
a (mod q)

χ(a) =
∑

a (mod q)

χ(ab) = χ(b)
∑

a (mod q)

χ(a),

and since χ(b) 6= 1 this implies the desired conclusion. The second statement is
similar: If a = 1, again this is trivial. In the other case we can fix a character χ′ such
that χ′(a) 6= 1, and then we find∑

χ (mod q)

χ(a) =
∑

χ (mod q)

χ(a)χ′(a) = χ′(a)
∑

χ (mod q)

χ(a).

This shows the statement. �

This lemma is more useful in a slightly reformulated way.
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Corollary II.1.2. Let χ, χ′ be characters modulo q and a, b ∈ Z with (a, q) =
(b, q) = 1. Then

1

ϕ(q)

∑
a (mod q)

χ(a)χ̄′(a) =

{
1 if χ′ = χ,

0 otherwise,

1

ϕ(q)

∑
χ (mod q)

χ(a)χ̄(b) =

{
1 if a ≡ b (mod q),

0 otherwise.

Proof. Lemma II.1.1 with χχ̄′ resp. ab−1. �

II.2. On the prime number theorem for arithmetic progressions

We now discuss to what an extent the proof of the prime number theorem can
be generalised directly to arithmetic progressions. To this end we define the twisted
von Mangoldt function

ψ(x, χ) =
∑
n≤x

χ(n)Λ(n).

Then we have

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n) =
1

ϕ(q)

∑
χ (mod q)

χ̄(a)ψ(x, χ),

where we used Corollary II.1.2. Observe that

|ψ(x, χ0)− ψ(x)| ≤
∑
n≤x

(n,q)>1

Λ(n) ≤ log x
∑
p|q

∑
k∈N
pk≤x

1.

The last term is ∑
p|q

∑
k∈N
pk≤x

1 ≤
∑
p|q

log x

log p
≤ log xω(q),

where we wrote ω(q) for the number of distinct prime divisors of q. Trivially, we
have ω(q) ≤ Ω(q), where Ω(q) denotes the total number of prime factors of q, and

Ω(q) =
∑
pk‖q

k ≤
∑
pk‖q

k log p = log q. (II.2.1)

We therefore have

|ψ(x, χ0)− ψ(x)| ≤ (log x)2 log q.

The main contribution to the sum above stems therefore from the principal charac-
ter. Invoking the prime number theorem, we have thus shown that

ψ(x; q, a) =
x

ϕ(x)
+

1

ϕ(x)

∑
χ (mod q)
χ 6=χ0

χ̄(a)ψ(x, χ) +O

(
x

ϕ(q)
e−c(log x)

1/10

)
. (II.2.2)

The difficulty of the prime number theorem for arithmetic progressions lies therefore
in understanding the contribution from the non-principal characters.

Lemma II.2.1. Let χ 6= χ0 be a Dirichlet character modulo q. Then the Dirichlet
series L(χ, s) converges in σ > 0.
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Proof. This is similar to Lemma I.3.2. Observe that for any non-principal character
χ modulo q the character relations of Lemma II.1.1 show that

∑q
a=1 χ(a) = 0 and

hence by periodicity ∣∣∣∣∣
x∑
a=1

χ(a)

∣∣∣∣∣ ≤ q

regardless of the value x.
We now apply partial summation to the sum∑

M≤n≤N

χ(n)

ns
=
∑
n≤N

χ(n)

ns
−
∑
n<M

χ(n)

ns

and get ∣∣∣∣∣ ∑
M≤n≤N

χ(n)

ns

∣∣∣∣∣ ≤ q(N−σ +M−σ) + |s|q
∫ N

M

t−σ−1dt

≤ q(1 + |s|/σ)(N−σ +M−σ) (II.2.3)

For σ > 0 we can let N tend to infinity. TakingM = 1 then yields the statement. �

It is harder to show that L(χ, 1) does not vanish. We start with a product formula.

Lemma II.2.2. Let σ > 1, then we have∏
χ (mod q)

L(χ, σ) ≥ 1.

Proof. Using the Euler product formula of Lemma 0.2.3, we have

logL(χ, σ) =
∑
p

log
1

1− χ(p)
pσ

=
∑
p

∞∑
k=1

χ(pk)

k
p−kσ,

and thus we see that

1

ϕ(q)

∑
χ (mod q)

χ̄(1) logL(χ, σ) =
1

ϕ(q)

∑
χ (mod q)

χ̄(1)
∑
p

∞∑
k=1

χ(pk)

k
p−kσ

=
∑

χ (mod q)

∑
p,k

pk≡1 (mod q)

p−kσ

k
≥ 0.

Exponentiating yields the result. �

Lemma II.2.3. Let χ 6= χ0 be a Dirichlet character modulo q. Then L(χ, 1) 6= 0.

Proof. We know now that, with the exception of L(χ0, s) which has a simple pole at
s = 1, all other Dirichlet series converge for all σ > 0. This implies that there can at
most be one character χ with L(χ, 1) = 0, for otherwise the product of Lemma II.2.2
would have at least a double zero, which is excluded by the lemma. Since further
L(χ, 1) = 0 implies L(χ̄, 1) = 0, we are free to assume that χ = χ̄, or in other words,
that χ takes only real values.
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Consider the function f = 1 ∗ χ. We have∑
n≤N2

f(n)n−1/2 =
∑
n≤N2

∑
d|n

χ(d)n−1/2

=
∑
d≤N

χ(d)d−1/2
∑

k≤N2/d

k−1/2 +
∑
k≤N

k−1/2
∑

N<d≤N2/k

χ(d)d−1/2.

The inner sum of the last term is Oq(N
−1/2) by (II.2.3). In order to evaluate the

inner sum of the first term we use partial summation and obtain∑
k≤K

k−1/2 = [K]K−1/2 +
1

2

∫ K

1

[t]t−3/2dt = 2K1/2 +O(1).

Together this shows that∑
n≤N2

f(n)

n1/2
=
∑
d≤N

χ(d)

d1/2
(2Nd−1/2 +O(1)) +Oq

(∑
k≤N

k−1/2N−1/2

)

= 2N
∑
d≤N

χ(d)

d
+Oq

(
1 +

∑
d≤N

χ(d)

d1/2

)
.

The sum in the error is the truncation of the convergent Dirichlet series L(χ, 1/2)
and thus bounded in absolute terms. By (II.2.3) the first term is

2N
∑
d≤N

χ(d)

d
= 2NL(χ, 1) +O(q).

It follows that ∑
n≤N2

f(n)

n1/2
= 2NL(χ, 1) +Oq(1).

On the other hand, we can estimate the sum directly. Since f is multiplicative as
convolution of multiplicative functions, we have

f(pk) =
k∑
l=0

χ(pl) =


1 if p|q,
k + 1 if χ(p) = 1,

1 if χ(p) = −1 and k even,
0 if χ(p) = −1 and k odd.

Thus we have f(n) ≥ 0 and f(n2) ≥ 1 for all n ∈ N, and therefore∑
n≤N2

f(n)

n1/2
≥
∑
m≤N

f(m2)

m
≥
∑
m≤N

1

m
≥ logN +O(1).

Combining both estimates we see that

2NL(χ, 1) =
∑
n≤N2

χ(n)

n1/2
+Oq(1) ≥ logN +Oq(1),

which is possible only if L(χ, 1) > 0.
�
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One can now imitate the proof of the prime number theorem and show that L′(χ,s)
L(χ,1)

has no poles on the line σ = 1 and that there is a small zero-free region to the left
of the line. This shows

ψ(x, χ) = Oq

(
xe−c(log x)

1/10
)

for some constant c = c(q), and inserting this into (II.2.2) delivers the bound

ψ(x; q, a) =
x

ϕ(q)
+Oq

(
xe−c(log x)

1/10
)
.

Note that both the implied constant and the constant c depend on q.
The great weakness of this result is the fact that the error term is not uniform

in q. In fact, since for non-principal characters the pole at s = 1 is missing and one
has to work with the much weaker statement that L(χ, 1) > 0, it is very hard to
establish zero-free regions uniformly in q. As we have seen in the proof of Lemma
II.2.3, there can be at most one ‘bad’ character which then has to be real-valued. To
this day, the behaviour of zeros of Dirichlet L-functions is quite poorly understood.
We summarise the most important facts in a theorem.

Theorem II.2.4 (Theorem on Siegel zeros, without proof).
(1) For any real-valued character χ (mod q) and for any ε > 0 there is an

(ineffective) constant C(ε) with the property that L(χ, 1) > C(ε)q−ε.
(2) For any real-valued character χ (mod q) and for any ε > 0 there is an

(ineffective) constant C ′(ε) with the property that if L(χ, ρ) = 0 for some
real ρ, then ρ < 1− C ′(ε)q−ε.

(3) Let c be a sufficiently small constant. If χ1 6= χ0 is a character modulo q and
L(χ1, s) has a zero in the region

σ ≥ 1− c/ log(q(|t|+ 2)),

then χ1 is real-valued, the zero is on the real axis and there exist no further
zeros in this region for any character modulo q.

Using these statements, it is still possible to establish a version of the Prime
Number Theorem for arithmetic progressions that shows some uniformity in q.

Theorem II.2.5 (Siegel–Walfisz, without proof). Let A be arbitrary. There exists
a C = C(A) such that for all q ≤ (log x)A and all (a, q) = 1 one has

ψ(x; q, a) =
x

ϕ(q)
+O

(
xe−C(log x)1/2

)
.

This theorem, while useful, is somewhat unsatisfactory because the constant C is
not effectively computable and because it holds only for a fairly small range of q.

Conjecture II.2.6 (Generalised Riemann hypothesis). Let χ be any Dirichlet char-
acter. Inside the critical strip all zeros of the Dirichlet series L(χ, s) have real part
1/2.

Corollary II.2.7. Let (a, q) = 1. The asymptotic

ψ(x; q, a) =
x

ϕ(q)
+O(x1/2+ε)

holds uniformly in q.
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Remark II.2.8. Observe that the conjectural version of the prime number theorem
for arithmetic progressions has no ϕ(q) in the error term. However, for most values
q the Euler function ϕ(q) is almost of the same magnitude as q. Hence, even if GRH
could be proved, the prime number theorem for arithmetic progressions would be
useful only for q � x1/2.

II.3. The Large Sieve inequality

Our main goal for this chapter is to study the error of the prime number theorem
for arithmetic progressions in the arithmetic mean. The main tool for this is known
as the large sieve inequality, which in its modern formulation is an analytic, Fourier-
type inequality relating exponential sums to their coefficients. Let

e(x) = e2πix,

then one is interested in sums of the shape

S(α) =
M+N∑
n=M+1

ane(nα) (II.3.1)

with some number-theoretic data an ∈ C. In particular, for a set of pairwise distinct
α1, . . . , αR one would like to have a bound

R∑
r=1

|S(αr)|2 ≤ ∆
M+N∑
n=M+1

|an|2

where ∆ depends only on the length N of the exponential sum and the spacing of
the αr modulo 1. Write ‖x‖ = minn∈Z |x− n| for the distance on R/Z, and let

δ = min
r 6=s
‖αr − αs‖. (II.3.2)

A typical choice for the αr might be the fractions a/q with q ≤ Q; in this case we
would have δ = 1/(Q(Q− 1)).

Theorem II.3.1 (Large Sieve, analytic version). Let S(α) and δ be given by (II.3.1)
and (II.3.2), respectively, where M ∈ Z and N ∈ N. We have

R∑
r=1

|S(αr)|2 ≤ (πN + δ−1)
M+N∑
n=M+1

|an|2. (II.3.3)

We follow a fairly analytic approach to the large sieve, starting with the Sobolev–
Gallagher inequality.

Lemma II.3.2. Let f ∈ C1[x− ξ, x+ ξ]. Then

|f(x)| ≤ (2ξ)−1
∫ x+ξ

x−ξ
|f(t)|dt+

1

2

∫ x+ξ

x−ξ
|f ′(t)|dt.

Proof. Suppose first that f ∈ C1[0, 1], and observe that∫ 1

0

f(u)du+

∫ x

0

uf ′(u)du+

∫ 1

x

(u− 1)f ′(u)du

=

∫ 1

0

f(u)du+ xf(x)−
∫ x

0

f(u)du− (x− 1)f(x)−
∫ 1

x

f(u)du

= f(x).
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Taking x = 1/2, we see that

|f(1/2)| =

∣∣∣∣∣
∫ 1

0

f(u)du+

∫ 1/2

0

uf ′(u)du+

∫ 1

1/2

(u− 1)f ′(u)du

∣∣∣∣∣
≤
∫ 1

0

|f(u)|du+ (1/2)

∫ 1

0

|f ′(u)|du.

For general x we apply this result to the function f ◦ g with g(u) = x − ξ + 2uξ.
This yields the desired result. �

Proof of Theorem II.3.1. In order to prove Theorem II.3.1 we take ξ = δ/2. Then
the Sobolev–Gallagher inequality applied to the right hand side of (II.3.3) yields

R∑
r=1

|S(α)|2 ≤
R∑
r=1

∫ αr+δ/2

αr−δ/2
δ−1|S(α)|2 + |S(α)S ′(α)|dα.

The intervals are chosen in such a way that they do not overlap, and the integrand
is positive, so we obtain

R∑
r=1

|S(α)|2 ≤ δ−1
∫ 1

0

|S(α)|2dα +

∫ 1

0

|S(α)S ′(α)|dα.

Now recall Parseval’s identity∫ 1

0

∣∣∣∣∣∑
n∈Z

ane(αn)

∣∣∣∣∣
2

dα =
∑
n∈Z

|an|2.

Setting an = 0 for all n not in the interval [M + 1,M + N ], this takes care of the
first term, and for the second term we apply Cauchy’s inequality∫ 1

0

|S(α)S ′(α)|dα ≤
(∫ 1

0

|S(α)|2dα
)1/2(∫ 1

0

|S ′(α)|2dα
)1/2

=

(∑
n∈Z

|an|2
)1/2(∑

n∈Z

|2πinan|2
)1/2

,

where we used the fact that

d

dα

M+N∑
n=M+1

ane(nα) =
M+N∑
n=M+1

2πinane(nα).

Now suppose thatM = −[(N+1)/2], so that the interval of summation is −N/2 ≤
n ≤ N/2. Then ∑

−N/2≤n≤N/2

|2πinan|2 ≤ (πN)2
∑

−N/2≤n≤N/2

|an|2,
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and hence combining our estimates yields

R∑
r=1

|S(α)|2 ≤ δ−1
∑

−N/2≤n≤N/2

|an|2 +

 ∑
−N/2≤n≤N/2

|an|2
1/2 ∑

−N/2≤n≤N/2

|2πinan|2
1/2

≤ (δ−1 + πN)
∑

−N/2≤n≤N/2

|an|2.

This proves the statement for M = −[(N + 1)/2].
For general M it remains to observe that a change of variables yields

M+N∑
n=M+1

ane(nα) = e((K −M)α)
K+N∑
n=K+1

aM−K+ne(nα).

Thus Theorem II.3.1 is proved for all M . �

Remark II.3.3. By stronger methods one can even show
R∑
r=1

|S(αr)|2 ≤ (N − 1 + δ−1)
M+N∑
n=M+1

|an|2.

This bound is sharp, as can be seen as follows. Suppose that R|(N − 1), and take
αr = r/R, so that δ = 1/R. Take further M = −1 and an = 1 if R|n and an = 0
else. Then

N−1∑
n=0

|an|2 =
N−1∑
n=0
R|n

1 = 1 +
N − 1

R
.

On the other hand, we have

R∑
r=1

∣∣∣∣∣
N−1∑
n=0

ane(nr/R)

∣∣∣∣∣
2

=
R∑
r=1

∣∣∣∣∣∣
(N−1)/R∑
m=0

e(mr)

∣∣∣∣∣∣
2

= R

(
1 +

N − 1

R

)2

= (N − 1 +R)
N−1∑
n=0

|an|2.

II.4. What is a sieve?

In this section we will motivate the nomenclature large sieve for the inequality of
Theorem II.3.1. Sieve theory stems essentially from the attempt of generalising the
sieve of Eratosthenes. The underlying idea is simple: Let N ⊂ N be finite and P a
subset of the primes, and for each p ∈ P let Ωp denote a set of residue classes, then
we are interested in the set

N ∗ = {n ∈ N : n 6≡ a (mod p) for all a ∈ Ωp for all p ∈ P}

In this notation, the sieve of Eratosthenes has N = {2, 3, . . . , [x]}, P = {p : p ≤
√
x}

and Ωp = {0} for each p. If we take Ωp = {0, 2} instead, then N ∗ denotes the set
of twin primes up to x. Here, as often, it is hard to derive an explicit expression for
the cardinality of N ∗, so we are interested in finding an upper bound.
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In any applications one would like to set an = 0 whenever n 6∈ N ∗, so that |
∑
an|2

gives information about the size of N ∗. We set

w(p) = #{a (mod p) : an = 0 for all n ≡ a (mod p)},
and define the multiplicative function

h(p) =
w(p)

p− w(p)
, h(pk) = 0 if k ≥ 2.

Then we have the following statement.

Lemma II.4.1. We have

h(q)

∣∣∣∣∣∑
n

an

∣∣∣∣∣
2

≤
q∑

a=1
(a,q)=1

|S(a/q)|2. (II.4.1)

Proof. Suppose first that q = p, and write

Z(p, a) =
∑

n≡a (mod p)

an, Z =
∑
n

an = S(0) = S(1).

Then
p∑
a=1

|S(a/p)|2 =

p∑
a=1

∑
m,n

anāme

(
(n−m)a

p

)
= p

∑
m≡n (mod p)

anām = p

p∑
a=1

|Z(p, a)|2,

where we used the fact that
q∑

n=1

e(nx/q) =

{
q if x ≡ 0 (mod q)

0 otherwise.

It follows that
p−1∑
a=1

|S(a/p)|2 = p

p∑
a=1

|Z(p, a)|2 − |S(1)|2 = p

p∑
a=1

|Z(p, a)|2 − Z2.

But Cauchy’s inequality implies that

|Z|2 =

∣∣∣∣∣
p∑
a=1

Z(p, a)

∣∣∣∣∣
2

≤

 p∑
a=1

Z(p,a)6=0

1

( p∑
a=1

|Z(p, a)|2
)
,

and since the first sum is at most p− w(p), the above becomes
p−1∑
a=1

|S(a/p)|2 = p

p∑
a=1

|Z(p, a)|2 − |Z|2 ≥ p

p− w(p)
|Z|2 − |Z|2 =

w(p)

p− w(p)
|Z|2.

This shows the statement for q = p.
For prime powers it is trivial, so the lemma is proven if we can show multiplica-

tivity. Here we observe that replacing an by ane(βn) does not affect the value of
w(p), so (II.4.1) is true if and only if

h(q)|S(β)|2 = h(q)

∣∣∣∣∣∑
n

ane(nβ)

∣∣∣∣∣ ≤
q∑

a=1
(a,q)=1

|S(a/q + β)|2
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for all β. Now suppose that q = q1q2 and (q1, q2) = 1, then we have
q∑

a=1
(a,q1q2)=1

∣∣∣∣S ( a

q1q2

)∣∣∣∣2 =

q1∑
a1=1

(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

∣∣∣∣S (a1q1 +
a2
q2

)∣∣∣∣2

≥ h(q2)

q1∑
a1=1

(a1,q1)=1

∣∣∣∣S (a1q1
)∣∣∣∣2

≥ h(q2)h(q1)|S(0)|2.

This completes the proof of the lemma. �

As a corollary to Lemma II.4.1 we obtain an upper bound for #N ∗. Let ω(p) =
#Ωp if p ∈ P and ω(p) = 0 else, and define the multiplicative function

g(p) =
ω(p)

p− ω(p)
, g(pk) = 0 if k ≥ 2.

Then we have the following upper bound for N ∗.

Theorem II.4.2 (Large Sieve, arithmetic version). Let N ⊆ [M + 1,M +N ], then
in the above notation we have

N ∗ ≤ (πN +Q2)

(∑
q≤Q

g(q)

)−1
.

Proof. Summing (II.4.1) over q ≤ Q and then applying Theorem II.3.1 yields

Q∑
q=1

h(q)

∣∣∣∣∣∑
n

an

∣∣∣∣∣ ≤
Q∑
q=1

q∑
a=1

(a,q)=1

|S(a/q)|2 ≤ (πN +Q2)
∑
n

|an|2.

Here we used the fact that

min

{∥∥∥∥aq − a′

q′

∥∥∥∥ :
a

q
6= a′

q′
, q, q′ ≤ Q

}
=

1

Q(Q− 1)
.

Now set an = 1 if n ∈ N ∗ and an = 0 else, then∑
n

an =
∑
n

|an|2 = #N ∗.

Furthermore, we have ω(p) ≤ w(p) for all p ∈ P and hence g(q) ≤ h(q), and the
statement follows at once. �

In practice, one will take Q �
√
N , so that the terms of the factor are balanced.

Theorem II.4.2 is then useful if
∑

q�
√
N g(q) grows as N tends to infinity, and works

best if g(q)� 1. However, this is equivalent to asking ω(p)� p. Generally, a sieve
is said to be large if ω(p) � p, and small if ω(p) � 1. In this nomenclature, the
sieve of Eratosthenes and the twin prime sieve from above are small sieves, whereas
a sieve that sieves e.g. for quadratic residues is a large sieve.
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II.5. More on Dirichlet characters

In order to apply the large sieve to prime numbers in arithmetic progressions,
we need to formulate it in terms of Dirichlet characters. This requires some further
background.

Any Dirichlet character χ modulo q has period q. It is, however, possible that
there are shorter periods, in other words, that there exists a q′|q such that χ = χ0χ

′,
where χ0 is the principal character modulo q and χ′ is a character modulo q′. In
such a case we say that χ is induced by χ′.

Lemma II.5.1. Let χ be a character modulo q. There exists a unique minimal
integer q′|q and a unique primitive Dirichlet character χ′ modulo q′ such that χ(n) =
χ′(n) for all (n, q) = 1.

Proof. It is clear from the definition of an induced character that q′ is unique. It
is also clear that χ′(n) = χ(n) whenever (n, q) = 1, so it remains to show that
this completely determines χ′. Suppose that (n, q) > 1 and (n, q′) = 1. Since χ′
is periodic modulo q′, we need to find some t such that (n + tq′, q) = 1, and set
χ′(n) = χ′(n+ t1q

′). This is then well-defined, because if there are two distinct t1, t2
with this property, then it follows from the the q′-periodicity of χ′ and the definition
of induced characters that
χ(n+ t1q

′) = χ′(n+ t1q
′)χ0(n+ t1q

′) = χ′(n+ t2q
′)χ0(n+ t2q

′) = χ(n+ t2q
′).

We construct such a t by setting

t =
∏

p:p|q,p-q′n

p.

Suppose that r is a prime dividing (n+q′t, q), then r|q and r|n+q′t. Suppose r|t, then
by construction r - n and therefore r - n + q′t, a contradiction. Suppose therefore
that r - t, then by construction r|n or r|q′. However, if r|n then the assumption
r|n+ q′t implies r|q′, so r|(n, q′) = 1, a contradiction again. Similarly, assuming r|q′
leads to the conclusion r|n, which produces the same contradiction. �

To a Dirichlet character χ (mod q) we associate the Gauss sum

τ(χ) =
∑

a (mod q)

χ(a)e(a/q).

Since χ respects the multiplicative structure of (Z/qZ)× and e(a/q) is a homomor-
phism on the additive group Z/qZ, Gauss sums play a role in relating the additive
and multiplicative structure of Z/qZ. In fact, it can be used to transform a character
sum into an exponential sum, which is often easier to handle, and which is required
if we want to apply the large sieve of Theorem II.3.1.

Lemma II.5.2. Let f be an arithmetic function and χ a primitive character modulo
q. Then we have∑

n≤x

f(n)χ(n) =
1

τ(χ̄)

∑
a (mod q)

χ̄(a)
∑
n≤x

f(n)e(an/q).

Proof. We show that for primitive χ (mod q) the relation

χ(n)τ(χ̄) =
∑

a (mod q)

χ̄(a)e(an/q) (II.5.1)
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holds for any n (mod q). The claim then follows upon multiplying both sides by
f(n) and summing.

We start by proving (II.5.1) in the case (n, q) = 1. In this case the multiplicative
inverse n̄ of n is defined and we have

χ(n)τ(χ̄) =
∑

a (mod q)

χ(n)χ̄(a)e(a/q) =
∑

a (mod q)

χ̄(n̄a)e(a/q) =
∑

a (mod q)

χ̄(a)e(an/q).

Now suppose (n, q) = d > 1, then the left hand side of (II.5.1) vanishes. In order to
understand the right hand side, we write n = n′d and q = q′d, and set a = cq′ + b
with 0 ≤ c < d and 0 ≤ b < q′. Then∑

a (mod q)

χ̄(a)e(an/q) =
∑

b (mod q′)

∑
c (mod d)

χ̄(cq′ + b)e(bn′/q′).

It thus suffices to show

S1(b) =
∑

c (mod d)

χ̄(cq′ + b) = 0

for all b (mod q′). Observe that S1(b) is q′-periodic in b. We fix a number v ≡
1 (mod q′) with the property χ(v) 6= 1. Such a number exists because χ is primitive
and therefore cannot have period q′ < q. We then have

χ̄(v)S(b) =
∑

c (mod d)

χ̄(vcq′ + vb) =
∑

c (mod d)

χ̄(cq′ + vb) = S(vb) = S(b).

Since we had chosen v such that χ(v) 6= 1, this equality can be satisfied only if
S(b) = 0. �

In order to take full profit of Lemma II.5.2 we need some information on the size
of the Gauss sum.

Lemma II.5.3. Suppose χ is a primitive character modulo q, then we have

|τ(χ)|2 = q.

Proof. We square the identity (II.5.1). This yields

|χ(n)|2|τ(χ̄)|2 =

∣∣∣∣∣∣
∑

a (mod q)

χ̄(a)e(an/q)

∣∣∣∣∣∣
2

=
∑

a (mod q)

∑
b (mod q)

χ(āb)e

(
(a− b)n

q

)
.

After summing over n ≤ q we find

ϕ(q)|τ(χ̄)|2 =
∑

a (mod q)

∑
b (mod q)

χ(āb)

q∑
n=1

e

(
(a− b)n

q

)
= q

∑
a (mod q)

|χ(a)|2 = qϕ(q).

�

We expect that in sums involving characters other than the principal one some
cancellation occurs. With the help of Lemma II.5.2 this can be shown.

Theorem II.5.4 (Pólya–Vinogradov inequality). Let χ be a non-principal character
modulo q. Then ∣∣∣∣∣∑

n≤N

χ(n)

∣∣∣∣∣ ≤ 2
√
q log q.
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Proof. If χ is primitive, Lemma II.5.2 applied to f = 1 shows that∑
n≤x

χ(n) =
1

τ(χ̄)

∑
a (mod q)

χ̄(a)
∑
n≤x

e(an/q).

The inner sum is a geometric sum and can be evaluated explicitly. We find
x∑

n=1

e(an/q) =
x∑

n=1

(e2πia/q)n = e2πia/q
e2πiax/q − 1

e2πia/q − 1

= e2πia/q
eπiax/q

eπia/q
eπiax/q − e−πiax/q

eπia/q − e−πia/q
= e

(
a(x+ 1)

2q

)
sin(πax/q)

sin(πa/q)
,

and thus for a 6≡ 0 (mod q) the useful inequality∣∣∣∣∣
x∑

n=1

e(an/q)

∣∣∣∣∣ =

∣∣∣∣sin(πax/q)

sin(πa/q)

∣∣∣∣ ≤ 1

| sin(πa/q)|
.

Inserting this above and using Lemma II.5.3 gives∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ =
1
√
q

q−1∑
a=1

1

sin(πa/q)
.

We can estimate this sum by comparing it with an integral. For every function f
that is convex on an interval I we have f(x) ≤ 1

2
(f(x+ h) + f(x− h)) for all values

x, h satisfying x± h ∈ I. Integrating over h yields

f(x) ≤ 1

2H

∫ H

0

1

2
(f(x+ h) + f(x− h))dh =

1

H

∫ x+H

x−H
f(h)dh.

The function 1/ sin(πa/q) is convex in the interval I = [0, q]. Taking H = 1/(2q),
we see that

q−1∑
a=1

1

sin(πa/q)
≤

q−1∑
a=1

q

∫ a/q+1/(2q)

a/q−1/(2q)

1

sin(πx)
dx

= q

∫ 1−1/(2q)

1/(2q)

1

sin(πx)
dx = 2q

∫ 1/2

1/(2q)

1

sin(πx)
dx.

For x ≤ 1/2 we have 1/ sin(πx) ≤ 1/2x, so we obtain

2

∫ 1/2

1/2q

1

sin(πx)
dx ≤

∫ 1/2

1/2q

dx

x
= log(1/2)− log(1/2q) = log q.

Altogether we have shown that for primitive characters we have the estimate∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ =
1
√
q

∑
a (mod q)

1

sin(πa/q)
≤ 2
√
q

∫ 1/2

1/2q

1

sin(πx)
dx ≤ √q log q.

This proves the statement for primitive characters.
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It remains to consider the case when χ is not primitive, but induced by a primitive
character χ′ modulo q′. In this case we have q = q′r and thus∑

n≤x

χ(n) =
∑
n≤x

(n,r)=1

χ′(n) =
∑
n≤x

∑
d|(n,r)

µ(d)χ′(n)

=
∑
d|r

µ(d)
∑
n≤x
d|n

χ′(n) =
∑
d|r

µ(d)χ′(d)
∑
k≤x/d

χ′(k).

The inner sum involves a primitive character and is thus at most as large as
√
q′ log q′.

Since ∑
d|r

|µ(d)| ≤
∑
d|r

1 ≤ 2
∑
d≤
√
r

d|r

1 ≤ 2
√
r,

the theorem follows also for non-primitive characters. �

Unconditinally, our form of the Pólya-Vinogradov inequality is essentially the best
known (with more work the factor 2 can be removed). One can prove

∑
n≤x χ(n)�√

q log log q conditionally on GRH, and this is sharp as there are quadratic characters
having

∑
n≤x χ(n)� √q log log q.

II.6. The Theorem of Barban–Davenport–Halberstam

We will now show that the prime number theorem for arithmetic progressions
holds on average. The first step is to rephrase the large sieve in terms of characters.

Theorem II.6.1. Let an ∈ C, M ∈ Z and N ∈ N, then

∑
1<q≤Q

q

ϕ(q)

∑
χ (mod q)
χ primitive

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

≤ (N +Q2)
M+N∑
n=M+1

|an|2

Proof. Suppose for a start that χ is primitive. Then we have by Lemma II.5.2 that

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1

τ(χ̄)

∑
a (mod q)

χ̄(a)
M+N∑
n=M+1

ane(an/q)

∣∣∣∣∣∣
2

=
1

q

∣∣∣∣∣∣
∑

a (mod q)

M+N∑
n=M+1

χ̄(a)ane(an/q)

∣∣∣∣∣∣
2

,

where we used Lemma II.5.3 for the Gauss sum. We now take the sum over all
primitive characters modulo q; note that, since we are summing only positive terms,
the right hand side only increases if we extend the sum to include the non-primitive
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characters as well. Hence∑
χ (mod q)
χ prim

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

≤
∑

χ (mod q)

1

q

∣∣∣∣∣∣
∑

a (mod q)

M+N∑
n=M+1

χ̄(a)ane(an/q)

∣∣∣∣∣∣
2

=
∑

χ (mod q)

1

q

 ∑
a (mod q)

M+N∑
n=M+1

χ̄(a)ane(an/q)

 ∑
b (mod q)

M+N∑
m=M+1

χ(b)āme(−bm/q)


=
ϕ(q)

q

∑
a (mod q)
(a,q)=1

M+N∑
m,n=M+1

anāme

(
a(n−m)

q

)

by Corollary II.1.2. Setting

S(α) =
M+N∑
n=M+1

ane(αn)

and summing over q ≤ Q, we obtain the relation∑
q≤Q

q

ϕ(q)

∑
χ (mod q)
χ prim

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

≤
∑
q≤Q

∑
a (mod q)
(a,q)=1

|S(a/q)|2.

We now apply the Large Sieve Inequality. We have

ρ = min

{
a

q
− a′

q′
:
a

q
6= a′

q′
and q, q′ ≤ Q

}
=

1

Q(Q− 1)
≥ Q−2,

so Theorem II.3.1 yields∑
q≤Q

q

ϕ(q)

∑
χ (mod q)
χ prim

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

≤ (πN +Q2)
M+N∑
n=M+1

|an|2,

as claimed. �

Corollary II.6.2. Let an ∈ C, M ∈ Z and N ∈ N, then∑
R<q≤Q

1

ϕ(q)

∑
χ (mod q)
χ primitive

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

� (
N

R
+Q)

M+N∑
n=M+1

|an|2.

Proof. Exercise. �

Recall our initial discussion of the prime number theorem for arithmetic progres-
sions. There we had

ψ(x; q, a) =
1

ϕ(q)

∑
χ (mod q)

χ̄(a)ψ(x, χ),
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and we had noticed that ψ(x, χ0) ∼ x. Denote

ψ∗(x, χ) =

{
ψ(x, χ) if χ 6= χ0

ψ(x, χ)− x if χ = χ0,

then we have

ψ(x; q, a)− x

ϕ(q)
=

1

ϕ(q)

∑
χ (mod q)

χ̄(a)ψ∗(x, χ).

Observe that

q∑
a=1

(a,q)=1

∣∣∣∣∣∣
∑

χ (mod q)

χ̄(a)ψ∗(x, χ)

∣∣∣∣∣∣
2

=
∑

χ,χ′ (mod q)

q∑
a=1

(a,q)=1

χ̄(a)χ′(a)ψ∗(x, χ)ψ̄∗(x, χ′)

= ϕ(q)
∑

χ (mod q)

|ψ∗(x, χ)|2,

and therefore

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣2 =

q∑
a=1

(a,q)=1

∣∣∣∣∣∣ 1

ϕ(q)

∑
χ (mod q)

χ̄(a)ψ∗(x, χ)

∣∣∣∣∣∣
2

=
1

ϕ(q)

∑
χ (mod q)

|ψ∗(x, χ)|2. (II.6.1)

Observe further that for primitive characters Corollary II.6.2 implies that∑
R<q≤Q

1

ϕ(q)

∑
χ (mod q)
χ prim

|ψ∗(x, χ)|2 � (x/R +Q)
∑
n≤x

|Λ(n)|2 � (x/R +Q)x log x,

where in the last step we used

∑
n≤x

Λ(n)2 ≤ (log x)2

∑
p≤x

1 +O

∑
p2≤x

1

� (log x)2
(

x

log x
+ x1/2

)
� x log x.

Hence if we could reduce the character sum in (II.6.1) to a sum over only primitive
character, we would be able to obtain an average result on the primes in arithmetic
progressions.

If a character χ (mod q) is induced by a character χ′ (mod q′), then χ = χ′χ0

where χ0 is the principal character modulo q, and therefore

ψ(x, χ′)− ψ(x, χ) =
∑
n≤x

(1− χ0(n))χ′(n)Λ(n) =
∑
pk≤x
p|q

χ′(pk) log(p)�
∑
pk≤x
p|q

log(p).

Observe that∑
pk≤x
p|q

log(p)�
∑
p|q

[
log x

log p

]
log p� log xΩ(q)� log x log q � (log xq)2
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where we used the argument of (II.2.1). Thus, if χ′ is used to denote the primitive
character that induces χ, this implies∑

q≤Q

1

ϕ(q)

∑
χ (mod q)

|ψ∗(x, χ)|2 =
∑
q≤Q

1

ϕ(q)

∑
χ (mod q)

(
|ψ∗(x, χ′)|2 +O((log xq)2)

)
=
∑
q≤Q

1

ϕ(q)

∑
χ (mod q)

|ψ∗(x, χ′)|2 +O(Q log(Qx)2).

Furthermore, every character mod q induces precisely one character for all multiples
of q. Hence we find∑

q≤Q

1

ϕ(q)

∑
χ (mod q)

|ψ∗(x, χ)|2 =
∑
q≤Q

∑
q′|q

∑
χ′ (mod q′)
χ prim

|ψ∗(x, χ)|2
∑

χ (mod q)
χ induced by χ′

1

ϕ(q)

=
∑
q′≤Q

∑
χ′ (mod q′)
χ prim

|ψ∗(x, χ)|2
∑

1≤k≤Q/q′

1

ϕ(kq′)
.

Since ϕ(pk) = pk − pk−1 = pk(1− 1/p), we have ϕ(n) = n
∏

p|n(1− 1/p) and thus
ϕ(kq′) ≥ ϕ(k)ϕ(q′). It follows that∑

1≤k≤y

1

ϕ(kq′)
≤ 1

ϕ(q′)

∑
1≤k≤y

1

ϕ(k)
.

In order to bound the inner sum we observe that∑
1≤k≤y

1

ϕ(k)
≤
∏
p≤y

∞∑
i=0

1

ϕ(pi)

≤
∏
p≤y

(
1 +

1

p− 1
+

1

p(p− 1)
+

1

p2(p− 1)
+ . . .

)
.

Furthermore, we have(
1− 1

p

)(
1 +

1

p− 1
+

1

p(p− 1)
+

1

p2(p− 1)
+ . . .

)
= 1− 1

p
+

1

p− 1
= 1 +

1

p(p− 1)
,

and therefore ∑
1≤k≤y

1

ϕ(k)
≤
∏
p≤y

(
1− 1

p

)−1(
1 +

1

p(p− 1)

)
� log y. (II.6.2)

With this information we find∑
q≤Q

1

ϕ(q)

∑
χ (mod q)

|ψ∗(x, χ)|2 �
∑
q′≤Q

log(Q)

ϕ(q′)

∑
χ′ (mod q′)
χ′ prim

|ψ∗(x, χ′)|2 +O(Q log(Qx)2).

Now fix a suitable parameter R. The contribution of q′ > R is∑
R≤q′<Q

log(Q)

ϕ(q′)

∑
χ′ (mod q′)
χ′ prim

|ψ∗(x, χ′)|2 � log(Q)
∑

R≤q′<Q

1

ϕ(q′)

∑
χ′ (mod q′)
χ′ prim

|ψ∗(x, χ′)|2

� (x/R +Q)x(log x)2.
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It remains to bound the contribution arising from small q. Here we use the Theo-
rem of Siegel-Walfisz (Theorem II.2.5). Suppose χ′ is a primitive character modulo
q′ with q′ � (log x)A, then we have

ψ(x, χ′) =
∑
n≤x

χ′(n)Λ(n) =

q′∑
b=1

(b,q′)=1

χ′(b)
∑
n≤x

n≡b (mod q′)

Λ(n) =

q′∑
b=1

(b,q′)=1

χ′(b)ψ(x; b, q′)

=

q′∑
b=1

(b,q′)=1

χ′(b)
x

ϕ(q′)
+O

 q′∑
b=1

(b,q′)=1

χ′(b)xe−C
√
log x


� ϕ(q′)xe−C

√
log x,

where in the last step we applied the character relations of Corollary II.1.2. (Note
that χ′ is not principal since it is primitive).

Setting R = (log x)A this yields∑
q′≤R

log(Q)

ϕ(q′)

∑
χ′ (mod q′)
χ′ prim

|ψ∗(x, χ′)|2 �
∑
q′≤R

log(Q)(q′x)2e−2C
√
log x

� R3 logQx2e−2C
√
log x � x2(log x)−A.

Altogether this gives the following.

Theorem II.6.3 (Barban–Davenport–Halberstam). Let A be arbitrary. We have∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣2 � x2(log x)−A +Qx log x.

In order to get an idea of the strength of the result, assume that we knew the
Theorem of Siegel–Walfisz for all q ≤ Q. Then this would yield∑

q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣2 �∑
q≤Q

ϕ(q)x2e−2C
√
log x � Q2x2e−2C

√
log x.

This is worse than Barban–Davenport–Halberstam wheneverQ is larger than roughly
e−C

√
log x, in particular if Q is comparable to any power of x.

Now assume that we know GRH. In this case, we would find∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣2 �∑
q≤Q

ϕ(q)x(log x)4 � Q2x(log x)4.

Even this is weaker than Barban–Davenport–Halberstam as soon as Q is larger than
roughly

√
x.

In fact, the Barban–Davenport–Halberstam theorem implies that

ψ(x; q, a)− x

ϕ(q)
�
(

x

ϕ(q)

)1/2+ε

(II.6.3)

for the vast majority of moduli q. This statement is much stronger than even GRH.
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In fact, average results similar to that of Barban–Davenport–Halberstam hold for
a much wider class of cunctions.

Theorem II.6.4 (Bombieri–Friedlander–Iwaniec). Suppose f is an arithmetic func-
tion satisfying∑

n≤x
n≡a (mod q)

(n,l)=1

f(n)− 1

ϕ(q)

∑
n≤x

(n,ql)=1

f(n)�
√
x

(log x)A

(∑
n≤x

|f(n)|2
)1/2

for every A > 0 and every q ≤ x, l ≤ x and (a, q) = 1. Then the inequality

∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

f(n)− 1

ϕ(q)

∑
n≤x

f(n)

∣∣∣∣∣∣∣∣
2

� (Q+ x(log x)−B)
∑
n≤x

|f(n)|2

holds for every B > 0.

The Barban–Davenport–Halberstam theorem is the case f = Λ. Other functions
covered by the theorem of Bombieri–Friedlander–Iwaniec are µ, µ2 or d.

A result without averages is the theorem of Bombieri and Vinogradov.

Theorem II.6.5 (Bombieri–Vinogradov). Let A be arbitrary. We have∑
q≤Q

max
(a,q)=1

max
y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣� x(log x)−A +Q
√
x(logQx)6.

It is clear that this is most useful for Q � x1/2(log x)−A, when the first term
dominates. In this range it shows that a statement similar to the Theorem of Siegel–
Walfisz holds for all moduli q ≤ x1/2−ε. In fact, even more is true: An error of the
size x(log x)−A can occur only a finite number of times. Furthermore, inserting GRH
shows that∑

q≤Q

max
(a,q)=1

max
y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣� Q
√
x(log x)2 � x(log x)−A,

so we recover the theorem of Bombieri-Iwaniec. In this sense, Bombieri–Iwaniec is of
a strength often comparable to GRH and can in many applications be substituted
for it.

A conjectured stronger version of Bombieri–Iwaniec is the conjecture if Elliott and
Halberstam.

Conjecture II.6.6 (Elliott–Halberstam). The inequality∑
q≤xθ

max
(a,q)=1

max
y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣� x(log x)−A

is true for any θ < 1.

The parameter θ is often called the level of distribution. Obviously, Bombieri–
Vinogradov proves Elliott–Halberstam for all θ < 1/2. Observe that using GRH
trivially only reproduces Bombieri–Vinogradov, so for the Elliott–Halberstam con-
jecture to be true, the error term should in most cases be closer to (II.6.3). In this
sense, Elliott-Halberstam is much stronger than GRH.
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In his work on bounded gaps between primes, Zhang managed to establish a mod-
ification of Bombieri–Vinogradov that, under some extra conditions, admitted for
some values θ slightly larger than 1/2, and this was the key to his argument. James
Maynard found a different argument for which Bombieri–Vinogradov is sufficient.


