MATHEMATICAL TRIPOS PART III (2017–18)

Algebraic Number Theory - Example Sheet 3 of 4

C. Johansson

- 1. Let L/K be a finite extension of local fields and let $q = \#k_K$. If L/K is unramified of degree *n*, show that $L = K(\zeta_{q^n-1})$. Conversely, if *m* is coprime to *q* and $L = K(\zeta_m)$, show that L/K is unramified and compute its degree. Here ζ_r denotes a primitive *r*-th root of unity, for any *r*.
- 2. Let L/K be a finite Galois extension of local fields, with Galois group G = Gal(L/K). Assume that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ and let $f(T) \in \mathcal{O}_K[T]$ be the minimal polynomial of α . Let v_L be the normalized valuation on L. Show that

$$v_L(f'(\alpha)) = \sum_{1 \neq \sigma \in G} i_G(\sigma) = \sum_{s \in \mathbb{Z}_{\geq 0}} (\#G_s - 1).$$

Deduce that the ideal $\mathfrak{D}_{L/K}$ of \mathcal{O}_L generated by $f'(\alpha)$ is independent of the choice of α , and that it is equal to \mathcal{O}_L if and only if L/K is unramified ($\mathfrak{D}_{L/K}$ is called the *different* of L/K).

- 3. Compute the lower and upper ramification groups of $\mathbb{Q}_3(\zeta_3, \sqrt[3]{2})/\mathbb{Q}_3$.
- 4. Prove that \mathbb{Q}_2 has a unique Galois extension with Galois group $(\mathbb{Z}/2\mathbb{Z})^3$ (you may use the results of Question 12, Example Sheet 1). Compute the lower and upper ramification groups.
- 5. Let $K = \mathbb{F}_p((t))$. Let L be the extension of K obtained by adjoining a root of $f(X) = X^p - X - t^{1-p}$. Show that L/K is Galois and compute the lower ramification groups of L/K (Hint: If α and β are roots of f, consider $(\alpha - \beta)^p$).
- 6. Prove that if L/K is a Galois extension of local fields with Galois group S_4 , then the residue characteristic of K is 2. Can you find a Galois extension L/\mathbb{Q}_2 with $\operatorname{Gal}(L/\mathbb{Q}_2) \cong S_4$?
- 7. Let (I, \leq) be a directed system. Let $J \subseteq I$ be a subset such that for all $i \in I$, there exists $j \in J$ with $i \leq j$. Show that (J, \leq) is a directed system. If $(G_i, f_{ik})_{i,k \in I, i \leq k}$ is an inverse system of topological groups indexed by I, then $(G_i, f_{ik})_{i,k \in J, i \leq k}$ is an inverse system indexed by J. Show that there is a natural isomorphism

$$\lim_{i \in I} G_i \xrightarrow{\sim} \lim_{j \in J} G_j.$$

- 8. Let M/K be a Galois extension of fields (not necessarily finite).
 - (i) Let I be the directed system of finite Galois subextensions L/K of M/K. Prove that the map

$$\phi : \operatorname{Gal}(M/K) \to \prod_{L \in I} \operatorname{Gal}(L/K);$$

hcj24@cam.ac.uk

11th November 2017

 $\phi(\sigma) = (\sigma|_L)_{L \in I},$

is injective with image $\varprojlim_{L\in I} \operatorname{Gal}(L/K).$

- (ii) Show that $\lim_{L \in I} \operatorname{Gal}(L/K)$ is a compact Hausdorff space, when each $\operatorname{Gal}(L/K)$ is given the discrete topology. You may use the fact that an arbitrary product of compact topological spaces is compact (Tychonoff's Theorem) (Hint: Show that the inverse limit is closed inside the product).
- (iii) Show that ϕ is a homeomorphism onto its image when $\operatorname{Gal}(M/K)$ is given the Krull topology, and deduce that $\operatorname{Gal}(M/K)$ is compact and Hausdorff.
- 9. Consider the directed set $(\mathbb{Z}_{\geq 1}, |)$, i.e. *a* is "less than or equal to" *b* if $a \mid b$.
 - (i) Show that $(\mathbb{Z}/n\mathbb{Z}, f_{m,n})_{n.m \in \mathbb{Z}_{\geq 1}, m \mid n}$ is an inverse system of topological groups, where $\mathbb{Z}/n\mathbb{Z}$ is given the discrete topology and $f_{m,n} : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is the natural map (for $m \mid n$).
 - (ii) Put $\widehat{\mathbb{Z}} = \varprojlim_{n \in \mathbb{Z}_{\geq 1}} \mathbb{Z}/n\mathbb{Z}$. Let q be a prime power and let $\overline{\mathbb{F}}_q$ be an algebraic closure of \mathbb{F}_q . Show that there is an isomorphism $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \cong \widehat{\mathbb{Z}}$ sending $1 \in \widehat{\mathbb{Z}}$ to the q-th power Frobenius map on $\overline{\mathbb{F}}_q$.
 - (iii) Show that $\mathbb{Z} \subseteq \widehat{\mathbb{Z}}$ is a non-closed subgroup, and compute its fixed field in $\overline{\mathbb{F}}_q$ under the isomorphism $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \cong \widehat{\mathbb{Z}}$.
- 10. Let K be a local field, let K^{sep} be a separable closure of K and let $n \in \mathbb{Z}_{\geq 1}$. If K has characteristic 0, show that there are only finitely many extensions $K \subseteq L \subseteq K^{sep}$ of degree n. What happens if K has characteristic p?
- 11. (R. Coleman) This question extends Question 7, Sheet 2. For any $n \ge 1$, let

$$f_n(T) = \sum_{k=1}^n \frac{T^k}{k!} \in \mathbb{Q}[T]$$

and set $E_n(T) = n! f_n(T) \in \mathbb{Z}[T]$. Let $p \geq 8$ be a prime. By Bertrand's postulate, there is a prime q such that p/2 < q < p - 2. Let $\operatorname{Gal}(E_p/\mathbb{Q}) \subseteq S_p$ be the Galois group of E_p over \mathbb{Q} .

- (i) Show that E_p is irreducible (in fact E_n is irreducible for all n).
- (ii) By considering the Newton polygon of E_p for the prime q, show that the Galois group of E_p contains a q-cycle. By a theorem of Jordan, this implies that $A_p \subseteq \text{Gal}(E_p/\mathbb{Q})$.
- (iii) Let $\alpha_1, \ldots, \alpha_n$ be the roots of E_n . Set $D_n = \prod_{i \neq j} (\alpha_i \alpha_j)$; D_n is the discriminant of E_n up to sign. Prove that $|D_n| = (n!)^n$ (Hint: Use the formulas $f'_n(T) = f_{n-1}(T)$ and $f_n(T) = f_{n-1}(T) + T^n/n!$). Deduce that $\operatorname{Gal}(E_p/\mathbb{Q}) = S_p$.
- (iv) Deduce that for any finite group G, there exists a Galois extension L/K of number fields with $\operatorname{Gal}(L/K) \cong G$.