PERFECTOID SHIMURA VARIETIES AND THE CALEGARI-EMERTON
CONJECTURES

DAVID HANSEN AND CHRISTIAN JOHANSSON

ABSTRACT. We prove many new cases of a conjecture of Calegari-Emerton describing the qualita-
tive properties of completed cohomology. The heart of our argument is a careful inductive analysis
of completed cohomology on the Borel-Serre boundary. As a key input to this induction, we prove
a new perfectoidness result for towers of minimally compactified Shimura varieties, generalizing
previous work of Scholze.
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1. INTRODUCTION

1.1. Motivation for completed cohomology. This paper is motivated by the notion of reci-
procity in the Langlands program. Let G/Q be a connected reductive group. Roughly speaking,
reciprocity is the expectation that there should be some precise relationship between

1
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i) algebraic automorphic representations = of G(Ag), and

ii) p-adic Galois representations p : Gal(Q/Q) — “G(Q,) which are geometric in the sense of
Fontaine-Mazur.

For a more precise conjectural formulation of this relationship, we refer the reader to [Clo90,
BG14]. While there are many partial results, the general problem of reciprocity seems very difficult
to attack, for (at least) two reasons:

1. Algebraic automorphic representations are inherently of an archimedean /real-analytic nature,
while p-adic Galois representations are (of course) inherently p-adic.

2. Algebraic automorphic representations are rigid, while p-adic Galois representations naturally
deform into positive-dimensional families.

These observations suggest that one should try to bridge the gap, by seeking a genuinely p-adic
variant of the notion of automorphic representation, which is flexible enough to accommodate all
p-adic Galois representations. At present, the only viable candidate for such a theory is the notion
of completed (co)homology, introduced by Emerton [Eme06].

Let us recall the key definitions; we refer the reader to the body of the paper for any unexplained
notation. Fix a connected reductive group G/Q. Let A C G be the maximal Q-split central
torus, and let K, C G(R) be a maximal compact subgroup. Let X¢ = G(R)/A(R)K be the
(connected) symmetric space for G; we write X for X & if G is clear. For any open compact subgroup
K C G(Ay), we have the associated locally symmetric space X = G(Q)"\(X x G(Ay))/K.

Definition 1.1. Let KP? C G(A?) be any open compact subgroup. Then we define completed
cohomology for G with tame level K? as

H*ZI&H llﬂ H*(XKPKP,Z/an>
n KpCG(Qp)

Similarly, we define completed homology for G with tame level KP as

H* = @ H*(XKpr,Zp).
KpCG(Qp)

We also define compactly supported completed cohomology I:I;*(Kp) and completed Borel-Moore
homology HEM (KP) by the obvious variants on these recipes.

By construction, these spaces admit commuting actions of G(Q,) and T(KP?), and the G(Q,)-
actions are continuous for the natural topologies. Moreover, these spaces are not “too big”. In
particular, they are all p-adically separated and complete with bounded p°°-torsion. Additionally,
H, and HBPM are finitely generated as modules over the completed group ring Zyp|[ K] for any open
compact subgroup K, C G(Q,), while H *(Kp)[%] and H* (Kp)[%] are naturally admissible unitary
Qp-Banach space representations of G(Q)).

The main motivations for considering completed (co)homology are summarized in the following
conjecture, which we don’t attempt to formulate precisely. For a more careful discussion, we refer
the reader to [CE12] and [Emel4].

Hope 1.2. Let ¢ : T(K?) — Q, be a system of Hecke eigenvalues occurring in I:I*(Kp)[]%].
Then there exists a continuous, odd, almost everywhere unramified Galois representation py :
Gal(Q/Q) — “G(Qp) which matches 1 in the usual sense. Moreover, the w-isotypic part of
H*(Kp)[%], as a Qp-Banach space representation of G(Qyp), should (up to multiplicities) depend
only on pylcag,/g,)-

Finally, every (suz’tfable} continuous, odd, almost everywhere unramified Galois representation
p: Gal(Q/Q) — “G(Q,) should occur in this way.
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Here G denotes the C-group of G as defined in [BG14], which is a mild extension of “G. When
G = GLy/Q, this is a theorem of Emerton [Emell]. However, in general, very little is known. As
mentioned, the precise formulation of this conjecture should not be taken too seriously. The reader

wondering about the appearance of the C-group and what “suitable” might mean might consider
the case G = PGL2/Q.

1.2. Main results. In this paper, we study the qualitative properties of completed (co)homology,
which are encapsulated in a beautiful conjecture of Calegari—-Emerton. To state this conjecture,
we need a small amount of additional notation. If G/Q is a connected reductive group, we define
nonnegative integers [y = rank G(R) — rank A(R)K, and ¢y = %. Roughly speaking,
lp measures the failure of the semisimple group G%"(R) to admit discrete series representations,
while qg is the lowest degree in which the locally symmetric spaces X should have “interesting”
cohomology.

Conjecture 1.3 (Calegari-Emerton). Let G/Q be a connected reductive group. Let qo and ly be
the invariants of G defined above. Let KP C G(AI}) be any open compact subgroup. Then

1) For all i > qo, HY(KP) = H'(KP?) = 0.

2) For all i > qo, HPM (KP) = H;(KP?) =0, and I;TqE;M(Kp) and Hy,(KP) are p-torsion-free.

3) For any compact open pro-p subgroup K, C G(Qp), the groups H;(KP) and fIZBM(Kp) have
codimension > qo + lo — i over the completed group ring Zy|[Kp)] for any i < qo.

4) The groups Hy (KP) and I;Tq]iM(Kp) have codimension exactly ly.

The individual portions of this conjecture are far from independent, and in fact there are natural
implications 1) = 2) = 3). Amusingly, these implications are “asymmetric” in the sense that 1)
for H* implies 2) for H, implies 3) for H5M  and similarly 1) for H? implies 2) for HZM implies
3) for H,.

Let us discuss what was previously known about this conjecture.

e For some groups of small rank (e.g. GL2, or Resg/gGLa for K/Q quadratic, or GSp,), one
can prove Conjecture by hand using various tricks involving the congruence subgroup
property, the cohomological dimension bounds of [BS], Poincaré duality, etc. However, these
methods quickly run out of steam.

e When lp = 0, part 4) of the conjecture was proved by Calegari-Emerton [CEQ9], as
a consequence of Matsushima’s formula and limit multiplicity results for discrete series
representations.

e When G admits a Shimura datum of Hodge type, Scholze proved part 1) of Conjecture
but for H* only, by perfectoid methods [Schif].

The main result of this paper is the following theorem (cf. Theorems and .

Theorem 1.4. Let G/Q be a semisimple group such that X is a Hermitian symmetric space and

(G, X) is a connected Shimura datum of pre-abelian type. Then Conjecture is true for G.
More generally, let G/Q be a connected reductive group such that Z(G) satisfies the Leopoldt con-

jecture and such that G admits a connected Shimura datum of pre-abelian type. Then Conjecture

is true for G.

The assumptions on G here guarantee that lo(G9") = 0, which allows us to prove part 4) of
Conjectureby a fairly straightforward analysis combining the results of [CE09] with the Leopoldt
conjecture for Z(G). By our previous remarks, the whole conjecture now follows if we can prove
part 1). Note that when /) = 0 and X is a Hermitian symmetric domain, part 1) of the conjecture
simply asserts that H. = H? =0 for all i > d = dim¢ X. It is this vanishing conjecture which we
focus on.



4 DAVID HANSEN AND CHRISTIAN JOHANSSON

Our proof of the vanishing conjecture builds on Scholze’s methods and combines them with some
new ideas. Roughly speaking, we first reduce to the case where (G, X) is a connected Shimura
datum of pre-abelian type, and then proceed in two steps:

Step One. We prove the vanishing of H “for i > d by pushing Scholze’s methods to their limit.

Step Two. We prove the vanishing of H for i > d by a careful analysis of boundary cohomology,
using Step One for G and for various auxiliary Levi subgroups related to the boundary strata of
the minimal compactification.

Let us now describe these steps in more detail.

1.3. Step One: p-adic methods. As described above, the proof of Theorem [I.4] proceeds in two
essentially distinct steps. In the first step, we prove the vanishing of H. i{(KP) for i above the middle
degree, using the p-adic geometry of Shimura varieties. For Shimura data of Hodge type, this is
one of the main results of [Sch15], where it is deduced from the existence of perfectoid Shimura
varieties of Hodge type.

We thus need to generalize the geometric results of [Sch15| to a wider class of Shimura data. To
this end, we prove the following theorem.

Theorem 1.5. Let (G, X) be a Shimura datum of pre-abelian type, with reflex field E. Fiz a
complete algebraically closed field C'/Q, and an embedding E — C. Fix any open compact subgroup
KP C G(AZ}). For any open compact subgroup K, C G(Qy), let X[*(pr denote the adic space
over Spa C' associated with the base change of the minimal compactification Shirg, (G, X)* along
E—C.

Then there is a perfectoid space Xy, such that

Xic» = lim Xivi,:
KpCG(Qp)
as diamonds over SpdC. Moreover, the Hodge-Tate period map mut : Xjp — Flg, exists as

a map of adic spaces over C and has all expected properties. Finally, the boundary of Xj, is
Zariski-closed.

Recall that a Shimura datum (G, X) is of pre-abelian type if there exists a Shimura da-
tum (G’, X') of Hodge type admitting an isomorphism of connected Shimura data (G%¢, Xt) ~
(G’ X'T). This is slightly more general than the (somewhat more well-known) notion of a
Shimura datum of abelian type. While it is probably true that every tower of minimally com-
pactified Shimura varieties with infinite level at p is perfectoid, we expect that Theorem is the
most general result which can be proved via current technology. We also state and prove a similar
result for connected Shimura varieties, cf. Theorem [5.20

While the idea behind the proof of Theorem [I.5]is clear, the argument is unfortunately somewhat
technicalﬂ Roughly speaking, there are two key ingredients:

e “Perfectoidization results” & la Bhatt-Scholze, building in particular on [BSI9, Theorem

1.16(1)]. Roughly speaking, these techniques let us prove that if (X;);er Uidier (Yi)ier is a

(pro-)finite morphism between two reasonable inverse systems of rigid analytic spaces, and
limZ s Y; is perfectoid, then Liinie I X, is also perfectoid. For a precise statement, see Lemma

e A general and user-friendly existence result for quotients of perfectoid spaces by finite
groups, cf. Theorem [5.8

We also note that for open Shimura varieties of abelian type, the problem of proving perfectoid-
ness at infinite level was previously considered by Shen [Shel7].

1A glance at the proof of the key Proposition should convince the reader of this.
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1.4. Step Two: Topological methods. The second step is totally disjoint from the first, and
doesn’t use any p-adic geometry. We content ourselves with a somewhat impressionistic sketch
here. In what follows, assume G is a semisimple group such that (G, X) is a connected Shimura
datum of pre-abelian type, and set d = dim¢ X as before.

First, we prove an isomorphism of the form H'(K?) & H'(Xgrk,, € (Kp,Zy,)) for any choice
of open compact subgroup K, C G(Qp). Here € (K, Z,) denotes the Kj-module of continuous
Zy-valued functions on K. This is essentially a version of Shapiro’s lemma, and goes back to a
paper of Hill [Hil10]. Next, by standard properties of manifolds with boundary, this isomorphism
induces an isomorphism H'(K?) = H*(X g» Kp> € (Kp, ZLp)), where X ok, denotes the Borel-Serre
compactification of Xgrp,.

By repeated use of excision for compactly supported cohomology, it now suffices to prove that for
some stratification X grg, = UzezZ, we have HA(Z,€ (Kp, Zp)|z) = 0 for all i > d and all Z € Z.
Let us say that Z is an adapted stratification if this holds. The key idea can now be phrased as
follows:

(1) If we take Z to be the stratification of X g»f, obtained by pulling back the usual stratification
of X7 Ky along the canonical map 7 : X g» K, = Xgo K, then Z is an adapted stratification.

The idea that (1) is both true and provable is perhaps the most novel contribution of this paper.
Let us give a sketch of the key ideas. Let S C X, K, be a boundary stratum, with preimage

Z =718) C Xk» K, By the structure theory of the minimal compactification, the strata S are
indexed by (equivalence classes of) pairs (@, «) where @ C G is a Q-rational parabolic subgroup
whose projection to each simple factor of G is maximal or equal to G%¢, and « is some auxiliary
data depending on the level structure. (We will suppress all dependences on level structures in the
following discussion.) Moreover, the parabolic () comes equipped with a canonically defined almost
direct product decomposition ) = U - L - H. Here U is the unipotent radical of @, L is a reductive
group, H is a semisimple group whose associated symmetric space is Hermitian, and L - H is the
full Levi subgroup of Q.

In parallel with this decomposition of (), the stratum Z almost admits a direct product decom-
position Z & Zy x Z1, X Zgr, where Zy is a torus, Zy, is the Borel-Serre compactification of a locally
symmetric space for the group L, and Zy = S is a locally symmetric space for the group H. The
key idea now is that H!(Z, ¢ (Kp,Zy)|z) can also be decomposed accordingly, by a Kiinneth-like
formula, into contributions coming from each of these three factors, which can each be controlled:

e The contribution of Zy is trivial, which follows from a well-known vanishing principle for
completed cohomology of unipotent groups.

e The contribution of Zp can be expressed in terms of compactly supported completed
cohomology for H, which can be controlled by Step One.

e The contribution of Z; can be expressed in terms of completed cohomology for L, which
can be controlled using the bounds in [BS73], or even using the trivial bound.

The critical observation here is that Step One gives such good control over the contribution of
Z g that we need very little control over the contribution of Zj,.

In reality, the above sketch is somewhat oversimplified, because Z does not really admit a direct
product decomposition; rather, it has the structure of an iterated fibration whose fibers are as
described above. This leads to a number of irritating complications in the proof. Nevertheless, the
essential idea follows the outline given above.

Acknowledgments. The authors would like to thank Bhargav Bhatt, Frank Calegari, Ana Cara-
iani, Matt Emerton, Michael Harris, Ben Heuer, Vincent Pilloni, Peter Scholze, and Jack Thorne
for very helpful and interesting conversations related to the material in this paper. Moreover, they
wish to thank the Herchel Smith Foundation and the Max Planck Institute for Mathematics in
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2. PRELIMINARIES

In this section we collect some facts and definitions from topology and algebraic groups that we
will need. We make no attempt to state results in maximal generality and none of them are original,
but we have often had difficulties locating the precise statements that we need in the literature.
We hope that collecting this material here is of sufficient aid to the reader to justify its inclusion.

The topological spaces that we will work with will mostly be smooth manifolds with boundary;
we will simply write “manifold with boundary” to mean a smooth manifold with boundary. Any
smooth manifold with boundary admits a combinatorial triangulation for which the boundary is
a subsimplicial complex (see e.g. [Mun63, Theorem 10.6]). We recall that if X is a manifold
with boundary with interior X and U C X is an open subset containing X, then the inclusion
j : U — X is homotopy equivalence. In a very similar vein, if F is a local system on X, then a
simple local calculation shows that Rj,j~!F = F. In particular, we obtain canonical 1somorphlsms
HY(U,F) = H'(X,F) which we will often treat as equalities.

All actions of groups on topological spaces will be left actions in this section. Of course, all
results have natural analogues for right actions (and we will use them).

2.1. Local systems. Let X be a topological space and let I' be a group acting from the left on X.
In this paper most of our actions will be freeEL by which we mean that every point x € X has an
open neighborhood U such that U N~U # (0 only if ¥ = 1. The quotient map 7 : X — Xp =T\X
is then a covering map, and we recall that any left I'- modull M defines a local system M on Xr
given by -
M(U) = Mapyep(n~(U), M)

where the right hand side denotes the locally constant functions f : 7=Y(U) — M satisfying
f(yz) =~.f(z) for all y € T and all 2 € 7~ }(U). When X is a manifold with boundary, this may
be written as -

M(U) = Mapr (o (7~ (U)), M),
where Map simply denotes set-theoretic functions (as mo(7~1(U)) is discrete). The following
theorem is well known, and follows directly from the fact that the singular chain complex Cq(X)
is a resolution of Z by free I'-modules.

Theorem 2.1. Let X is a contractible manifold with boundary with a free action of I'. Then
H*(Xr, M) = Extl(Z, M) = H*(T, M)
canonically for every I'-module M.

We now consider a relative version of Theorem Let p : E — B be a fibre bundle with
contractible fibre F' (all spaces are manifolds with boundary). Assume that we have a group I'
acting (from the left) on both E and B, making p I'-equivariant. We assume further that the
action of I' is free on F, and that the action of I' on B factors through a quotient A which acts
freely on B. Set N = Ker(I' — A); N then acts freely on the fibres of p. Consider the induced map

q: Er — Ba

on quotients.

2The most common terminology for this seems to be a free and properly discontinuous action, but we find this
terminology rather cumbersome.
3By which we always mean a (left) Z[I'-module, unless otherwise stated.
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Corollary 2.2. Let M be a I'-module and let i > 0. Then Riq*M is the local system on Ba given
by the A-module H' (N, M).

Proof. We begin by proving the case i = 0. Write ng : F — Er and np : B — Ba for the quotient
maps and let U C B be open. From the definitions, one sees that

¢ M(U) = Map,.p(p” 75" (U), M).

Since the fibres of p are connected and the action of NV preserves the fibres, we have Maplqp(pflﬂgl (U),M) =
Maplc’A(ﬁgl(U), M™N), which is the desired statement.

This proves that the diagram of functors

MOdF — Sh(Ep)

lM»—)MN lq*

Moda — Sh(Ba)

commutes up to natural isomorphism, where the horizontal functors are the local systems functors
M +— M. The horizontal functors are exact (by looking at stalks), so it suffices to show that

M +s M sends injective I'-modules to g.-acyclic sheaves on Er (then the diagram above commutes
also after passing to derived categories and derived functors, which is what we want).

So, let M be an injective [-module, and let i > 1. Riq*M is the sheafification of the presheaf
U+ Hi(g7'(U), M) on Ba. There is a basis of open subsets U of Ba which are contractible and
for which the fibre bundle ¢ : ¢~ (U) — U is trivial. In this case ¢~ }(U) 2 U x N\F and hence

H'(q"'(U), M) = H'(N, M)

by Theorem But M is an injective N-module since the restriction functor from I'-modules to
N-modules has an exact left adjoint V' — Z[I'] @z V. Thus Hi(qg=Y(U),M) = 0 for all such U,

and hence Rq,M = 0 as desired. [l
We will also use a (less precise but more general) version for pushforwards with proper support.

Proposition 2.3. Let f: X =Y be a fibre bundle of manifolds with boundary, with fibre Z (also
a manifold with boundary). Let F be a local system on X. Then, for any i > 0, R'fiF is a local
system on Y with fibre H.(Z,F).

Proof. We will use the commutation of derived pushforward with proper support with (arbitrary)
pullbacks; see [KS94, Proposition 2.6.7]. Let U C Y be a contractible open subset such that f is
trivial over U, i.e. isomorphic to the canonical projection py : U x Z — U. These form an open
cover of Y, so since R'f, commutes with pullback it suffices to show that RipUJ]: is a constant
sheaf. Since U is contractible, the restriction of 7 to U x Y F comes by pullback from a local
system on Y, which we will call Fz. Consider the cartesian diagram

UxzX .z
\LPU lg
v—1! pt,

where pt denotes the point and f and g are the canonical maps. Then we have

Ripy)F = R'pyw, Fz = f'R'gFy.
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In other words, RipUjg,F is the pullback of Hi(Z, Fz) via the canonical map U — pt. This proves
the proposition. O

Next, let X be a manifold with boundary with a free left action of a group I', and assume that
I C T is a finite index subgroup. Consider the natural map ¢ : X — Xp. If M is a IV-module,
we put

Indp M = {f:T = M| f('7) =+.f(7) V¥ €',y €T},

which is a left I-module under right translation (vy.f)(x) = f(z7y). We then have the following.

Proposition 2.4. With notation and assumptions as above, Riq*]\/\j =0 fori>1, and q*M is the
local system attached to Indf, M.

Proof. The map q is proper, so if x € X, then (Riq*]g)r = H'(q Y(z), ]\7) (by [KS94) Proposition
2.6.7]), and ¢~ !(z) has no higher cohomology since it is a finite set. This proves the first part. To
compute q*]\7 , let U C X1 be open and write 7 : X — Xt for the quotient map. Unwinding the
definitions, we see that s

Q*M(U) - MapF’(WO(W_l (U>)7 M)a
and the right hand side is easily seen to be equal to Mapy(mo(7~*(U)), Indk, M) functorially in U,
as desired. 0

We move on to results on the commutation of M — M with direct limits. First, let X be a
manifold with boundary, with a free left action of a group I'. Write X := I'\ X; we assume that
Xr is compact, so it has a finite triangulation. Fix such a triangulation and pull it back to X;
this gives a triangulation whose corresponding complex of simplicial chains C2(X) is a bounded
complex of finite free Z[[']-modules. Let (M;);c; be a directed system of I-modules with direct
limit M = hgll M;.

Lemma 2.5. The natural map

ling H*(Xr, M;) — H*(Xr, M)

s an tsomorphism.

Proof. The canonical map

i: C8(X) = Co(X)
is '-equivariant and a quasi-isomorphism; since the terms of both complexes are projective Z[I'|-
modules the map is therefore a chain homotopy equivalence. This then gives us a commutative
diagram of complexes

ling, Homp(Co(X), M;) —— Homp(Co(X), M)

| |

ling, Homp (C3(X), M;) —— Homr(C3H(X), M)

where the vertical maps are induced by 7 and the horizontal maps are the natural maps. The
vertical maps are then quasi-isomorphisms since they are induced from ¢, and the lower horizontal
map is an isomorphism since C(X) is bounded complex of finite free Z[T']-modules. The top
horizontal map is therefore a quasi-isomorphism as well, and taking cohomology gives the desired
result. 0

We can then prove the result in greater generality. With X and T as above, let U C X be a
I-invariant open subset containing the interior of X. Set Up :=T\U, Z := X \ U and Zp :=T\Z.
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Proposition 2.6. The natural map

liy H5 (Xr, M) — Hi (X, M)

is an isomorphism, for ? € {0, c}.

Proof. For 7 = () this reduces directly to Lemma by our setup, so assume that ? = ¢. By
naturality of the excision sequence and exactness of direct limits we have a commutative diagram
i i

o limy, HY (U, My) —= liny, HY (Xp, M;) — lim, B (Zp, M) — ..

! i i

HZ(UF,M) Hj(ylﬁﬁ) Hj(ZDM)—>"'

with exact rows. The result then follows from Lemma (since it is applicable to both X and
Zr) and the five lemma. O

We also state an analogous result for inverse limits.

Proposition 2.7. Keep the setup above, and assume additionally that all M; are finite (as sets).
Then natural map
%

H (X, Jm M;) — im H5 (Xp, M)
is an isomorphism, for 7 € {0, c}.

Proof. The proof is the same as for direct limits, using the finiteness of the M; to ensure that the
inverse limits occurring are exact. ([l

2.2. “Completed cohomology”. In this subsection we make some definitions and recall a theo-
rem of Hill which we will use to handle completed cohomology later. To begin with, we make the
following general definition. Let R = lﬁnz R/I" be an adic ring, with I a finitely generated ideal of
definition.

Definition 2.8. Let (X;)icr be an inverse system of topological spaces, with inverse limit X. We
define the completed cohomology groups H5 (X, R) of (X;)ier with coefficients in R, to be
H3(X, R) = lim lim H3 (X;, R/T").
no 14
Here ? € {0, ¢}, i.e. we consider either usual or compactly supported cohomology, when the latter
makes sense.

Remark 2.9. A few remarks on this definition:

(1) The notation is chosen for simplicity; we make no assertion that fNI;(X, R) only depends
on X. One weak form of independence is clear though: We may replace I with a cofinal
subsystem J. In particular, we may always assume that I contains an initial element 0 € 1.

(2) We will almost exclusively work with discrete R, where the inverse limit in the definition of
H3 (X, R) disappears.

We now recall the computation of completed cohomology as the cohomology of a “big” local
system at finite level in some circumstances, which first appeared in [Hill0]. Let X be a manifold
with boundary, equipped with a left action of a group G. We assume that there is a subgroup
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I' C G which acts freely on X, and suppose that I' =T 2 I'y 2 T'2 2 ... is a sequence of finite
index subgroups of I'. Let X C X be a I'-stable open subset containing the interior of X. Set

X i=lim (- — T\X = T\ X — To\X).

and define
K = l'&nfi\F;

this is a profinite set with a right action of I'. Assume that Xr is compact. Then we get the
following formula for completed cohomology of X (cf. [Hill0, Corollary 1]):

Proposition 2.10. With assumptions as above, let R be a discrete ring and let ? € {0, c}. Then
there is a canonical isomorphism

—_~—

H; (X, R) = H (X, Map,, (K, R))
where I' acts on Map,,,(K, R) via right translation.

Proof. By Lemma [2.4] and the definition, we have

P

H; (X, R) = liny H (Xr,Map(T,\T', R)) .

Our setup implies that we may apply Proposition to the right hand side, so it remains to show
that

hﬂ Map(I';\I', R) = Map, (K, R)
as I'-modules. But this is immediate from the definition of K. OJ

We will also encounter local systems slightly bigger than the one appearing in Proposition [2.10}
We keep the notation and assumptions of Proposition[2.10} except that we forget the groups denoted
by K and I';, ¢ > 1. Let G be a profinite group with closed subgroups K C H C G, and assume
that K is normal in H. For simplicity, we assume that there is a countable basis of neighborhoods
of 1 € G. Suppose that we have a group homomorphism I' — H/K; then Map_,(H/K, R) and
Map_,,(G/K, R) become left I'-modules via right translation, and hence induce local systems on
the space Xp. Then we have the following simple but useful lemma.

Lemma 2.11. Fiz an integer ¢ > 0 and let 7 € {0, c}.

(1) H}(Xr,Map.,(H/K,R)) =0 if and only if Hj(Xr,Map.,(G/K,R)) = 0;

(2) HY(Xr,Map,,(H/K,R)) — HY(Xp,Map_.(H/K, R)) is injective (or surjective, or bijec-
tive) if and only if HI(Xr,Map,,(G/K,R)) — HY(Xr,Map,,(G/K, R)) is injective (or
surjective, or bijective).

Proof. Choose a continuous splitting of the natural map G/K — G/H (the existence of which is
easy to prove using the assumption that 1 € G has a countable basis of neighborhoods); this gives
a homeomorphism

G/K ~G/H x H/K
of right H/K-spaces (where H/K acts on the right hand side through the second factor). Then
Mapcts(G/K7 R) = Mapcts(G/H x H/Kv R) = Mapcts(G/H7 R) ®R Mapcts(H/K7 R)
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as H/K-modules (and hence as I-modules), where the action is trivial on Map_,,(G/H, R). Now
Map,,(G/H, R) is a direct limit of finite free R-modules, so using Proposition we have an
isomorphism

H‘,(?](Xl—‘a MapctS(G/Ka R)) = Mapcts(G/I_L R) QR H‘(?](Xl—‘a Mapcts(H/Kv R))
which respects the maps in part (2). The lemma follows from this (since Map.;(G/H, R) is a free
R-module). O

2.3. Arithmetic and congruence subgroups. Here we quickly recall some material on arith-
metic and congruence subgroups. Let G be a connected linear algebraic group over Q. Congruence
subgroups of G(Q) are subgroups of the form G(Q) N K, where K C G(Ay) is a compact open
subgroup and the intersection is taken inside G(Af). A subgroup in G(Q) is arithmetic if it is
commensurable with one (equivalently any) congruence subgroup. Let H be another connected
linear algebraic group, and let I' C G(Q) be an arithmetic subgroup. If H C G is a subgroup, then
directly from the definitions we see that I' N H(Q) is an arithmetic subgroup in H(Q), which is
congruence if ' is. If we instead have a surjection f : G — H, then f(I') is an arithmetic subgroup
(see [PR94, Theorem 4.1]); this will be important in this paper and we will use it freely. We note,
however, that f(I') need not be a congruence subgroup even if I' is. Before moving on, we recall
that group cohomology for any torsion-free arithmetic subgroup I' commutes with direct limits.

We recall the notion of neatness from [Bor69, §17.1]. An element v € G(Q) is called neat if there
is a faithful representation r : G — GL(V) such that the multiplicative group generated by the
eigenvalues of r(v) (in one, or equivalently any, algebraically closed field containing Q) is torsion-
free. A neat element cannot have finite order. An arithmetic subgroup I' C G(Q) is called neat if
all its elements are neat; such subgroups are in particular torsion-free. From the definitions, we see
that if H C G is a connected linear algebraic subgroup and I' C G(Q) is neat, then I' N H(Q) is
neat. If an element ~ is neat, then for any representation p : G — GL(W), the subgroup generated
by the eigenvalues of p(7y) is torsion-free [Bor69, Corollaire 17.3]. An easy consequence of this that
if f: G — H is a surjection of linear algebraic groups and I is neat, then f(I') is neat.

For language reasons, let us also introduce notions of neatness for adelic and p-adic groups. The
notion of neatness for an element g = (g,), € G(Ay) and a subgroup K C G(Ay) is defined in
[Pin90, §0.6]. For p-adic groups, we make the definition analogous to the case of arithmetic groups:
An element g € G(Q,) is called neat if there is a faithful representation p : Gg, — GL(W) over
Qp such that the multiplicative group generated by the eigenvalues of p(g) (in one, or equivalently
any, algebraically closed field containing Q,) is torsion-free. Again, this is independent of the
choice of p. A subgroup K, C G(Qp) is called neat if all of its elements are neat. We note the
following implications among these concepts: If K, C G(Q)) is a neat compact open subgroup,
then KPK, C G(Ay) is neat for any compact open K? C G(A?). If a compact open K C G(Ay) is
neat, then I' = I'(Q) N K is a neat congruence subgroup of G.

We record the following version of the standard result that “sufficiently small” congruence
subgroups are neat; it will be important for us to be able to only impose congruence conditions at
a fixed prime p.

Proposition 2.12. Let p be a prime. Then sufficiently small compact open subgroups of G(Qp)
are neat. In particular, if KP C G(A’Ji) is compact open, then K = KPK, and I' = G(Q) N K are
neat for sufficiently small K, C G(Qp).

Proof. By choosing a faithful representation p : G — GL,, (and remembering that any compact

subgroup of a locally profinite group is contained in a compact open subgroup), we may reduce to
G = GL,. In this case, set K, , = Ker(GL,(Z,) = GL,(Z/p")); we will prove that if r > n/(p—1),
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then K,, is neat, so we assume this condition on r from now on. To show neatness, it suffices
to show that if v € K, ,, then the group generated by the eigenvalues of v is torsion-free. Let
aq,...,ap be the eigenvalues of 4 (in some choice of @p, with valuation v, normalized so that
vp(p) = 1). The characteristic polynomial of v reduces to (X — 1)” modulo p", so by looking at
Newton polygons v,(o; — 1) > r/n for all . Thus, if v is any element in the multiplicative group
generated by the a;, v,(a — 1) > r/n. In particular, since r > n/(p — 1), @ cannot be a nontrivial
root of unity. This finishes the proof of the proposition. O

We also recall another fact about “sufficiently small” congruence subgroups, and set up some
notation. For any real Lie group J, we write J* for the identity component of J. The following is
[Del79, Corollaire 2.0.14].

Proposition 2.13. Let G be a connected reductive group over Q. Then there exists a congruence
subgroup T' C G(Q) which is contained in G(R)". In particular, if A C G(Q) is any congruence
subgroup, then AN G(R)" is also a congruence subgroup.

We remark that, unlike neatness, the condition I' C G(R)* cannot be enforced only by congruence
conditions at a single prime (chosen independently of G). For a simple example, consider G =
Rengm with F := Q(v/3), and consider the totally negative unit & = —2 + /3 € F. One checks
easily that o®" = 1 modulo 3" for all n but all the o®" are totally negative. For an example with
a semisimple G, consider G = Res(gPGLg and the matrices

a3 0
(O 1 ) n217

again these tend to the identity 3-adically but they all lie in a non-identity component since they
have totally negative determinant.

2.4. Cohomology of unipotent groups. From now on we fix a prime number p. Let N be a
unipotent algebraic group over (. The goal in this subsection is to prove the following theorem
(we remark that N satisfies strong approximation and that all arithmetic subgroups of N(Q) are
congruence subgroups):

Theorem 2.14. IfI' C N(Q) is a congruence subgroup with closure K, C N(Qp) and V is a
smooth K-representation over F,, then the natural map

H (K, V) — HY(T,V)

cts

is an isomorphism for all i.

We start with some recollections. First, in the situation above, I' = N(Q) N K for some open
compact subgroup K C N(Ay), and I' is dense in K by strong approximation for V. In particular,
K, is the image of K under the projection map N(Ay) — N(Qp), and hence open. We have a
natural forgetful functor

Mod g (Kp, Fp) — Mod(I')
and if V' € Modg, (K, Fp), then V' = V&> by smoothness of V and density of T in K. In light of
this, Theorem follows directly from the following special case, which is in fact all we will need.

Proposition 2.15. Let V be an injective smooth K,-representation over F,. Then H'(T,V) =0
for all i > 1.

We will prove this by induction on dim N. Before the main argument, we will discuss the structure
of injective K-representations. Let W be any IF,-vector space, which we give the discrete topology.
We can form Map,,,(K,, W), where K, acts by right translation. This is the smooth induction of
W, viewed as a representation of the trivial group, to K. Since smooth induction has an exact left
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adjoint (restriction), Map,,(Kp, W) is injective for any W. We will refer to these representations
as “standard injectives”. Now if V' € Modgp,(K)) is arbitrary, there is a Kj,-equivariant injection

V= Mapcts(va V)

given by v — (k — kv), where K, acts on Map,,(Kp, V) by right translation. Thus there are
enough standard injectives, and any injective is a direct summand of a standard injective. In
particular, it suffices to prove Proposition [2.15| for standard injectives. Moreover, since group coho-
mology of I' commutes with direct limits, it suffices to prove Proposition for Map ., (K, Fp).

We now begin the induction. First assume that dimN = 1, i.e. that N = G,. Then
(up to isomorphism) I' = Z and K, = Z,. There are a number of ways of proving that
HY(Z,Map,,4(Zy,F,)) = 0 for i > 1. For example, by Proposition

H'(Z, Map,;s(Zp, Fp)) = hﬂHi(R/anan) = hﬂHi(Slan)

where on the right the transition maps come from pullback along the maps S' — S, z — 2P. All
groups are 0 for ¢ > 2, and for ¢ = 1 one easily sees that the transition maps are all 0, so this proves
Proposition for N = G,.

We move on to the induction step. By the structure of unipotent groups, we can choose a proper
non-trivial normal subgroup U C N. Set H = N/U and let f : N — H denote the natural map.
Put I'y =TNUQ), 'y = f(I'), Kup = K,NU(Qp) and Ky p = f(K,) C H(Qp). Then Ky, is
the closure of I'y in U(Q,) and Ky is the closure of I'y in H(Q,). Let V' be an injective smooth
K -representation over IF,,. We have the Hochschild-Serre spectral sequence

H'(Ty, H (Ty,V)) = H"™(T,V).

The restriction of V' to Ky, is still injective by [EmelOb, Proposition 2.1.11]. Thus, by the
induction hypothesis, H/(I';;,V) = 0 for j > 1, and hence the spectral sequence degenerates
to H{(I',V) = H(T'y,V'V). By above, VI'U = VKu»r which is an injectiveﬁ Ky p-module. By the
induction hypothesis again we get

HYI,V)=H Iy, VEur) =0

for ¢ > 1, as desired. This finishes the proof of Proposition [2.15] and hence the proof of Theorem
214

3. COMPLETED COHOMOLOGY OF LOCALLY SYMMETRIC SPACES
We continue to fix a prime number p.

3.1. Locally symmetric spaces. In this section we recall some material on locally symmetric
spaces and their Borel-Serre compactifications. Let G be a connected linear algebraic group
over Q, let A = Ag C G be a maximal torus in the Q-split part of the radical of G and let
Ky = Kgoo C G(R) be a maximal compact subgroup. We will work with the (connected)
symmetric space
X =X%:=GR)"/JAR)' KL = G(R)/A(R) Kwx,
which is the symmetric space part of any space of type S — Q for G, in the terminology of [BS73].
If ' C G(Q) is a torsion-free arithmetic subgroup, then I" acts freely on X and the quotient I'\ X
is a locally symmetric space. If K C G(Ay) is a compact (not necessarily open) subgroup, we will
set
X§ = GQN\X x G(Af)/K,

AN MEUp preserves injectives, since inflation from Kp j, to K, provides an exact left adjoint.
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where G(Q)T := G(Q) N G(R)" and K and G(Ay) carry their usual adelic topologies. When K
is additionally open and g € G(Ay), set I'y = Ty x := G(Q)™ N gKg~'; these are congruence
subgroups by Proposition We have the following decomposition as topological spaces
Xg = Ll ToX
geG@QT\G(Ay)/K
where the set ¥ := G(Q)"\G(Ay)/K is finite by [Bor63, Theorem 5.1]. If K is neat, then all the

I'y are neat and in particular torsion-free, so Xg is a (possibly disconnected) manifold of dimension
dimp X.

Recall the Borel-Serre bordification X = X of X = X€ from [BS73]. X has a natural structure
of a manifold with corners, with interior X. We write 0.X = X \ X. The action of G(Q) on X
extends to an action of X, and again any torsion-free arithmetic subgroup I' C G(Q) acts freely on

X. As a set,
X=||x¢
Q
where @ runs through the (rational) parabolic subgroups of G. The closure of X© inside X is
X© = |_|P,QQ X' Write Cq for the set of parabolics ' of G which are conjugate to @ (over Q);

Cq carries a (tautological) left G(Q)-action by conjugation. Fix a minimal parabolic P of G over
Q for simplicity. We can then write

X=||x°=1]] ] x¢,
Q Q2P Q'eCq
and the subsets X&@ = |_|Q,€CQ X9 are stable under G(Q). If g € G(Q), then gX@ = X9Q9"
and hence the stabilizer of X is Q'(Q). In particular, if ' C G(Q) is an arithmetic subgroup, we

see that
NX=1|] || re\x¢,
QOPQ'eCqr
where Cor = I'\Cg and 'y = T'N Q(Q). If T is neat, then I'¢y is neat for all Q. The space
I'\X is a compact manifold with corners, which in particular implies that it is homeomorphic to a
manifold with boundary [BST73, Appendix], so the results of §2| apply to it.

3.2. The vanishing conjecture for completed cohomology. In this subsection we assume
that G is reductive. Fix a compact open subgroup K? C GG (A’;). Let R be an adic ring with finitely
generated ideal of definition I. We define completed cohomology of G' (with respect to K?) to be
H3(K?, R) := H (X, R) = limlim H} (Xgoi,, R/T") ,
n K,
where ? € {0,c} and K, runs through the compact open subgroups of G(Qp). We recall the
quantities
lo = lp(GQ) = rank(G(R)) — rank(A(R) K )

and die X ]
111 -
@0 = qo(G) = —— 5,

where rank denotes the rank as a Lie group. With these preparations, we may state the main
vanishing conjecture of Calegari—Emerton:

Conjecture 3.1. Let ? € {0,c}. Then ﬁ?(Kp,Zp) =0 for all n > qp.
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Remark 3.2. While Conjecture is not explicitly stated in |[CEI12], it is a direct consequence of
[CE12, Conjecture 1.5(5)-(8) and Theorem 1.1(3)]. We will discuss [CE12, Conjecture 1.5] in §3.4

We will focus on the following equivalent version, which is also implicit in [CE12].
Conjecture 3.3. Let ? € {0,c}. Then fI;‘(Kp,IFp) =0 for all n > qo.
Proposition 3.4. Conjecture is equivalent to Congecture [3.3

Proof. That Conjecture implies Conjecture follows from [CE12, Theorem 1.16(5)]. For the
converse, note first that we have long exact sequences
o= H{(KP, Z/p"™") — Hy(KP,Z/p") — Hy(K?,Fp) — ...

coming from the the corresponding long exact sequences at finite level, so by induction on r we
see that Conjecture implies that Hi(KP,Z/p") = 0 for all r and n > go. Conjecture then
follows since H3(KP?,7Zy,) = Hm_ H3(KP,Z/p"). O

As usual in the Langlands program, adelic double quotients have the advantage that they make
the Hecke actions and group actions transparent. These actions will, however, play essentially no
role in this paper, and we found it simpler to work non-adelically. The rest of this subsection will
discuss a version of Conjecture [3.3]in this language that we will treat. To this end, let us define
G(R)4 to be the inverse image of G*(R)™ under the natural map G(R) — G*4(R), where G* is
the adjoint group of G. Then we set G(Q)+ := G(Q) N G(R)4 and

Cp = Cp(KP) :={G(Q)+ N KPK,, | K, C G(Qp) compact open}.
Informally, this is the set of congruence subgroups of G(Q) with fixed tame level K? contained in
G(R)+. Armed with this definition, we set
X = X9 = X(K?) = X9(K?) := lim T\X.
rec,

We can then state the following conjecture.
Conjecture 3.5. Let ? € {0, c}. Then we have ﬁ?()?,Fp) =0 for all n > qq.

This is the conjecture that we will focus on. A priori, it is slightly stronger than Conjecture
because we are looking at congruence subgroups inside G(R); instead of G(R)*. We give a
general discussion of the passage between disconnected spaces and their components, and formalize
the implication relevant to this paper. To simplify notation, we drop the notation M used in §2|to
denote the local system associated with a representation M, simply writing M for the local system
as well in the rest of this paper.

First, for any compact subgroup K C G(Ay), define
X = X% = GQT\X x G(Ay)/K,

where now we give G(Ay) the discrete topology. Note that Xx = Xx when K is open. In general,
Xk is a manifold when K is neat. If K; C Ky are neat, with K; normal in Ky, then Ky/K; acts
freely on Xx, with quotient Xx,. We similarly define X, replacing X by X. In particular, using
Xx» and Xg», we may apply Theorem to deduce that

FI%(KPJFP) = H%(XKa Map,, (Kp, Fp))
where K = KPK,, with K, neat. Using the decomposition into connected components, we see that
H%(Kpa]Fp) = @ H?i(rg\Xv Map, ;s (Kp, Fp)).
geEG(Q)MN\G(Ay)/K
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Here, the right K,-module Map_ (K, F,) (action via left translation) becomes a right I'y =
G(Q)" N gKg t-module via the composition I'y — K — K, where the first map is conjugation
by ¢g~! and the second is the projection, and then a left I'y-module by inversion. In particular, we
have an isomorphism

Mapcts(KP’ FP) = Mapcts(ngpgp_la Fp)
of I'j-modules (with the obvious I'g-structure on the right hand side). Then, note that the left
I'y-module Map,.;(9,Kpg, 1.F,), where the action is via inverting the left translation action, is
isomorphic to the left I'j-module Mapcts(ngpgp_ 1,Iﬁ‘p) where the action is the right translation
action (the isomorphism is given by inversion on g,K,g, ). This proves the following:

Proposition 3.6. Fiz i and KP. Choose K, sufficiently small to make K = KPK,, neat. For
any other K' C G(Ays) compact open, set I' = G(Q)" N K'. Then Hi(K?,F,) = 0 if and
only if Hy(I"\X,Map,(K,,Fp)) = 0 for all conjugates K' of K in G(Ay), where I'" acts on
Map, (K, Fp)) either via right translation or by inverting the left translation action.

As a corollary we get the implication between Conjecture [3.5 and Conjecture [3.3

Proposition 3.7. Choose ? € {0,c}. Then Conjecture[3.5 (for all conjugates of a fized K?) for ?
implies Conjecture (for KP) for 7.

Proof. Let KP C G(AI}) be compact open and let n > ¢y. By Proposition it suffices to show
that H}(I'\ X, Map,,,(Kp,Fp)) = 0 for some sufficiently small K, where I' = G(Q)" N K?K,
acts on Map,,(Kp,[F,)) via right translation. I' is a congruence subgroup by Proposition SO
I' = KK, N G(Q) for some K C K?, K1, C K,. In particular I' = K?K; , N G(Q)+ as well.
By shrinking K, we may assume that K, = Ki,. To simplify notation, we then choose a cofinal
sequence
Kp=Kpo 2 Kp1 2 Kpo 2 ...

of compact open subgroups of G(Q,) with K, , normal in K, for all n, and set I'; = G(Q)4+ N
KYKp;, Xi =Ti\X and X =lim X;. By Conjecture[3.5, H#(X,F,) = 0. By Theorem 2.10L

H;Z(F\Xa Mapcts(H7 FP)) = ﬁg(‘}?an) =0

where H = lim I /T is the closure of I" in K, and I" acts on Map,(H,F,) via right translation.
An application of Lemma then gives that Hy (I'\ X, Map,,(Kp,F,)) = 0, as desired. O

3.3. The case of Hermitian symmetric domains. In this subsection, we assume that G
is semisimple and that X is a Hermitian symmetric domain. In this case, l[g = 0 and g9 =
(dimg X)/2 = dim¢ X; we will simply write d for this quantity. We briefly recall some material
from the theory of hermitian symmetric domains and their boundary components; some references
for this material are [AMRT10, BB66, [Hel78]. We do not assume that G has no R-anisotropic
Q-simple factors.

First, let us recall that an element g € G(R) acts holomorphically on X if and only if g € G(R);
see [BB66, Proposition 11.3] (note that G is assumed to be adjoint in this reference). The space
X = X€ has a bordification X* = X%* obtained by adding the rational boundary components
of X, see [BB66]. To describe it, we make a definition. If G is Q-simple, we call a parabolic
subgroup @ mazximal if there is no parabolic subgroup Q' with Q@ € Q" € G. For general G, we
will call a parabolic subgroup ) maximal if its projection to every Q-simple factor is maximal
in the previous sense. Let @) be such a maximal parabolic subgroup of G; we write Ng for its
unipotent radical and Mg for its Levi quotient. Mg decomposes into an almost direct product
Mg = MgMgp; see [AMRTIO, Item (5), p. 142] (in the notation of that reference, we take
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Mgy = % and Mgy = %, - M). Mgy is called the linear part; it is a connected reductive
group. Mg p, is called the Hermitian part and it is a semisimple group whose symmetric space is a
Hermitian symmetric domain. Our main result in the topological part of this paper is the following.

Theorem 3.8. With assumptions as above, assume that Conjecture holds for Mgy for all
mazximal parabolics Q of G (including Q = G) and 7 = c¢. Then Congecture holds for G and
7=10.

The proof will occupy the rest of this subsection. Let us now describe the bordification X*.
Set-theoretically,

X* — |—| xMan — |_| XGvMQ,h’

@ maximal @D P maximal

where X&Maon .= |_|Q,€CQ XMo'.n and we recall that P is a fixed choice of a minimal parabolic

subgroup. The action of G(Q) on X extends to an action on X*, but torsion-free arithmetic
subgroups will no longer act freely (in general). The spaces XGMan are stable under G(Q).
If I' € G(Q)4 is a torsion-free arithmetic subgroup, then I'\X* has a canonical structure of a
projective algebraic variety over C. Let us now assume that I' is in addition neat, and let I’ Mg,
be the image of I'qy in Mg ,(Q); this is a neat arithmetic subgroup. We have a stratification 7

* M,
nx = || | ] T, \ XM
QDOP maximal Q’€Cq r

of the quotient. By construction FMQ/,h acts holomorphically on XMQ’vh, o) PMQ/,h C Mg n(Q)+.

In [Zuc83], Zucker constructs a G(Q)-equivariant continuous map 7 : X — X* that we will make
use ofE| With Q as above, let us write Y(Q) = 7~ }(XMer). By [Zuc83, (3.8), Proposition], we
have a natural homeomorphism

Y(Q) = XMan 5 XMt 5 xNa
and the projection maps
Y(Q) = Y (M) = XMen x XMt _y xMas

are Q(Q)-equivariant (and fibre bundles). Write Lo = Mg ¢/(Mge N Mg ); the natural map

Mgy — Lg is a central isogeny and XMet — X% Then we remark that, in the displayed
equation above, Q(Q) acts via the projection map Q(Q) — M (Q) on Y (Mg) and via the projection

map Q(Q) — Lg(Q) on xMer particular, we note that Y (Q) is contractible and that if " is
torsion-free, then I'g acts freely on Y (Q).

We now begin the proof of Theorem Fix a compact open subgroup K? C G (A}}). Our goal
is to understand IA{T*()A(, F,) = H*(X, F,) in terms of the H? ()?MQ’h,Fp), where

~

=~ =~G =~ ~G o
X=X =X(KP)=X (Kp)::@lF\X,
rec,

Ot is, strictly speaking, not necessary for us to use minimal compactifcations and Zucker’s work [Zuc83], as all we
need is the resulting stratification of the Borel-Serre compactification which one may describe directly. Nevertheless,
we have opted to include the minimal compactification in our discussion as it gives a conceptual way of understanding
the stratification that we use, and why we use it.
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and we recall that C), = C,(KP) is (informally) the collection of congruence subgroups of G(Q)
with fixed tame level K? contained in G(Q);. We choose once and for all a neat I' € Cp; this is
possible by Proposition Set
S= lm I\I;
roIVed,

~

S is the closure of I' in G(Q),). Proposition[2.10|then gives us the following description of H*(X, F,).

Proposition 3.9. We have a canonical isomorphism
H*(X,Fy) =2 H*(T\X, Mapy, (S, Fp)).

The ‘stratification’ (Y(Q))g of X induces a finite stratification (I'g\Y(Q))g of I'\X into locally
closed subsets, parametrized by I'-conjugacy classes of maximal parabolic subgroups ). By repeated
use of the excision sequence, it suffices for us to prove that

H{(TQ\Y(Q), Map,(S,Fy)) =0
for i > d and for all (). From now on we fix ) and drop the subscripts —¢g from all associated
algebraic groups for simplicity. Consider the proper map f : I'g\Y(Q) — I'a/\Y (M), which
is a fibre bundle with fibre Iy\X™2. Here I'y = N(Q) NTg and T is the image of I'g

under Q(Q) — M(Q); these are both congruence subgroups. Set Sy = SN N(Q,p); by strong
approximation this is the closure of I'y in N(Q),) (and hence open). Then we have

H:(PQ\Y(Q)7 Ma‘pcts(S7 FP)) = H:(FM\Y(M)v Rf* Mapcts(‘s’ Fp))
Since I'N Sy =T'n, 'y =g /T'v acts by right translation on S/Sy.

Proposition 3.10. f, Map(5,Fp) = Map.,(S/Sn,Fp) with I'ns acting by right translation, and
R'f, Map,,(S,Fp) =0 for all i > 1.

Proof. By Corollary R'f. Map,;5(S,F,) is the local system on I'p/\Y (M) corresponding to the
I"ps-representation H*(I' v, Map,, (S, Fp)). When ¢ = 0, the description is clear since Iy is dense in
Sn. In general, choose a continuous section S — Sy of the inclusion, which gives a homeomorphism
S = S/Sny x Sy of right Sy-spaces. Arguing as in Lemma we see that

Hi(FNv Mapcts(s7 IFP)) = Mapcts(S/SN7 FP) ®]Fp Hi(FNﬂ Ma’pcts(SN7 FP))

By Proposition and the injectivity of Map,,,(Sn,Fp) (discussed in , the right hand side
is 0 when ¢ > 1. OJ

So, we are down to computing H}(I'y\Y (M), Map.,,(S/Sn,Fp)), for which we use the fibre
bundle

g:Ta\Y (M) - T \X,

with fibre Tp\XMr. Here I', = My, (Q) NIy and Ty = r(T'as), where » : M — L denotes the
canonical map. I'j, is a neat congruence subgroup of M;(Q), and I'z, is a neat arithmetic subgroup
of L(Q). The Leray spectral sequence reads

HZ(Fl\X g, Mapcts(S/SN7Fp)) = Hé—H(FM\Y(M)’Mapcts(S/SN7FP>)'
The key is then the following.

Proposition 3.11. R/g Map,,(S/Sn,F,)) is a local system on FL\YL and vanishes for j >
dime XMn,
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Proof. RI g Map,,s(S/Sn,Fp)) is a local system with fibre HZ(T;,\ X" Map.,(S/Sy,F,)) by
Proposition Consider the closure T}, of I'y, in M} (Q)), which we may also view as the closure
of I'y, in S/Sn. Write S, for the preimage of T}, under S — S/Sy. Sj is a group containing Sy as
a normal subgroup, and T, = Sp,/Sn. Applying Lemma with G =5, H=195,, K =Sy and
[ =Ty, H(D\XM" Map,,,(S/Sn,Fp)) vanishes if

Hg (Fh\Xth Mapcts (Th7 Fp)) :

But H (T \XMP Map,,s(Th, Fp)) is compactly supported completed F,-cohomology for M, by
Proposition so this vanishes for j > dim¢ X™r by assumption. ]

Before we put everything together, we need to relate d to dime X*» and dimg X”. Recall that
Ay is the maximal Q-split torus in the center of L, and write Z (V) for the center of N. The result
is then the following.

Lemma 3.12. dim¢ XM + dimg X* = d — } (dim N — dim Z(N)) — dim Ay
Proof. The symmetric space X has a decomposition

XY= XMw 5 C(L) x N(R)
as real manifoldeﬂ by [AMRTT0, Equation (4.1)]. This gives

1
dime XMh = d — 5 (dimg C(L) + dim ).

The space C(L), called C(F) in [AMRTI0], is an open subset of Z(NN)(R) and diffeomorphic to
L(R)/Kp s by [AMRTI0, Theorem 4.1(2)], where K, o, denotes a maximal compact subgroup of
L(R). Thus dimg X* = dimg C(L) — dim A}, and dimg C(L) = dim Z(N). Combining this with
the displayed equation above and rearranging gives the desired result. U

We may now put everything together to prove a more precise version of Theorem [3.8] From now
on we let () denote an arbitrary maximal parabolic of G again, and set

1
Q) = 3 (dim Ng — dim Z(Ng)) + dim A, + ss.rankg(Lq)

whenver @ # G. Here ss.rankg(H), for H a reductive group over Q, denotes the Q-rank of the
derived group of H (the ‘semisimple Q-rank’ of H). Note that v(Q) is non-negative and only
depends on the conjugacy class of Q. In fact, dim Az, and hence (@), is always positive. This
follows, for example, from [BS73| §4.2, Equation (2)], upon noting that dim Az, = dim Ag. More
precisely, this shows that dim Ay, is equal to the number of Q-simple adjoint factors of G — H in
which the projection of @) is not equal to H.

Theorem 3.13. Assume that Conjecture holds for Mg p for all mazximal parabolics Q) of G
(including Q@ = G) and ? = c. Then the natural map

Hé<)?7 FP) - HZ()?v IFP)
is an isomorphism when i > d + 1 — infg.qv(Q), and surjective for i = d+ 1 —infgrqv(Q). In
particular, C’onjecture holds for G and ? = 0, and HY(X, F,) — HY(X, F,) is an isomorphism.

6This is written as D = F x C(F) x W(F) in [AMRTT0]; with respect to our notation D = X% F = XMn
C(F)=C(L) and W(F) = N(R).
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Proof. This merely summarizes the work done above, so we will be rather brief. By Proposi-
tion and repeated use of the excision sequence, it suffices to show that, for all Q@ # G,
H{(To\Y(Q),Map.,(S,F,)) = 0 for i > d — v(Q). Propositions and then give us a
spectral sequence

HI (Fl\yLa ng! Mapcts(S/SN7 Fp) = Hg+k (FQ\Y(Q)v Ma‘pcts(S7 Fp))

and shows that R*g Map,,,(S/Sn,F,) is a local system which is 0 for & > dim¢ X*». By [BST73,

Corollary 11.4.3] the cohomology of local systems on FI\YL vanishes in degrees > dimp X% —
ss.rankg(L), so we see that H{(I'g\Y(Q), Map,(S,F,)) = 0 for i > dim¢ XM + dimg X% —
ss.rankg(L). Finally, by Lemma this quantity is equal to d — y(Q) as desired, finishing the
proof. O

3.4. The Calegari—Emerton conjectures on completed homology. We return to the setting
of We recall from [CEI2] that completed homology of G with tame level KP C G(Nf’) values
in an adic ring R is defined as

Hy(K?, R) = lim 1, (Xkrk,, R),

where K, runs through the compact open subgroups of G(Q,). One may define completed Borel-
Moore homology H; HBM (P R) s1mllarly (again see [CE12]). Let ? € {(, BM}. For any compact

open subgroup K, C G(Q,), H(KP,Z,) is a finitely generated right module for the Iwasawa
algebra Z,[K,], Wthh is an Auslander— Gorenstein ring and has well-defined codimension (or grade)
function on its finitely generated right modules, defined by

cd(M) = inf{j | Eth N ]](M7 Zp|Kp]) # 0}

We refer to [AW13, §2.5] for more details on the properties of the codimension function. In particular

we remark that by general propertles cd(H ?(KP,Z,)) is independent of the choice of K,. Recall the
quantities gy and [y from § We may then state a slightly weaker version of [CE12 Conjecture

1.5]. For simplicity, from now on we write H for H (KP,Zyp).
Conjecture 3.14 (CalegarifEmerton) Let 7 € {0, BM}. Then the following holds:
(1) Ifi < qo, then cd(H 1) > qo+ 1o —i.
(2)
(3) ?O is p-torsionfree.
) H

(4

The difference between this conjecture and [CE12, Conjecture 1.5] is that the latter predicts

H has codimension l.

—Oforz>q0

cd(H ?) > qo+lo—i when i < gg. Completed (Borel-Moore) homology is closely related to completed
(Compacty supported) cohomology via [CEI2, Theorem 1.1]. Moreover, completed homology and
completed Borel-Moore homology are related via the two Poincaré duality spectral sequences

EY = Ext!(H;, A) = HBEM_ i

EY —ExtA(HBM A) = Hp_i j,

where A = Z,[Kp] and D = dimg X = 2¢o + lo; see [CEI2 §1.3]. We have the following relation
between Conjecture [3.1] and Conjecture [3.14
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Proposition 3.15. Conjecture for compactly supported completed cohomology implies Con-
jecture[3.1)(3)-(4) for completed Borel-Moore homology and Conjecture [3.14](1) for completed ho-
mology. Similarly, Conjecture [3.1] for completed cohomology implies Conjecture [3.14(3)-(4) for
completed homology and Conjecture E(I) for completed Borel-Moore homology.

Proof. The first part is essentially [Sch15, Corollary 4.2.3]; the proof there works verbatim (note
that there is a small typo in that proof; the quantity ¢ there should be chosen to be minimal, not
maximal, with respect to the given property). For the second part the proof is the same, swapping
the roles of completed cohomology and compactly supported completed cohomology, and completed
homoology and completed Borel-Moore homology. ([l

Let us also indicate that Conjecture 2) is known when G is semisimple and Iy = 0; this is
part of [CE12, Theorem 1.4] (and follows from [CE09] and known limit multiplicity formulas for
discrete series).

Theorem 3.16. Assume that G is semisimple with no compact Q-factors, that lo = 0, and let
?e{0,BM}. Then the codimension of H;O s equal to 0.

4. SHIMURA VARIETIES

In this section we discuss Shimura varieties of Hodge and (pre-) abelian type, and how the
conditional results of §3| together with the results §o| give many unconditional cases of Conjectures

B and B.14

4.1. Recollections on Shimura varieties. We use the definition and conventions for Shimura
data, morphisms of Shimura data, and connected Shimura data from [Del79]; see also [Mil05].
Given a Shimura datum (G, X), there are three other data which one can attach to it, one Shimura
datum and two connected Shimura data. They are as follows

e The connected Shimura datum (G, XT);
e The connected Shimura datum (G4, X*);
e The Shimura datum (G, X ).

Here X+ C X is any choice of a connected component, and if 2 € X, then X is the G4 (R)-
conjugacy class of the composition of A with Ggr — G]‘fgd (this is independent of the choice of k). The
Shimura datum (G4, X?) will only feature when we discuss the Hodge-Tate period map later, the
other two will feature throughout the rest of this article. We recall that a Shimura datum (G, X)
is said to be of Hodge type if there exists a Siegel Shimura datum (G’, X’) and a closed immersion
(G,X) — (G', X") of Shimura data. A Shimura datum (G, X) is said to be of abelian type if there
exists a Shimura datum (G1, X;) of Hodge type and a central isogeny Giler — G%7 which induces
an isomorphism (G¢4, X{") = (G, XT). We make the following slightly more general definition,
following [Mo098, 2.10].

Definition 4.1. Let (G, X) be a connected Shimura datum. We say that (G, X) is of pre-abelian
type if there exists a Shimura datum (G,X) of Hodge type such that (G, X) = (G, X+). We
say that a Shimura datum (G, X) is of pre-abelian type if (G, XT) is of pre-abelian type.

Remark 4.2. Recall that, if G is semisimple, then by the convential definition G admits a connected
Shimura datum (G, X) if and only if G has no compact Q-factors and X is a hermitian symmetric
domain; in this case X = X<. The assumption that G has no compact Q-factors could be dropped,
but we will keep phrasing our results in terms of Shimura data for simplicity.

To be able to apply the inductive arguments from we will need the following lemma.
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Lemma 4.3. Assume that G admits a connected Shimura datum of pre-abelian type and let Q C G
be a mazximal parabolic with hermitian part Mp. Then My admits a connected Shimura datum of
pre-abelian type.

Proof. The assertion does not depend on the choice of G inside the isogeny class of GG, so we may
assume that (G, X) = (G¢", X{") with (G1, X1) a Shimura datum of Hodge type. The assertion
then follows from the well known fact that the rational boundary components of (Gp, X;) are of
Hodge type. (Il

4.2. Results for semisimple groups. The following is the main theorem of this paper on the
Calegari—-Emerton conjectures; at this point the proof is simply a summary of the results so far.

Theorem 4.4. Let G be a semisimple group which admits a connected Shimura datum of pre-
abelian type. Then Conjectures and [3.14] hold for G. Moreover, for any KP, the natural
map H{(KP,Z,) — H'(KP,Z,) is an isomorphism fori > d+1—infg.c v(Q), where d = dim¢ X ¢,
Q is a mazimal parabolic subgroup of G and we recall that the quantities v(G) are defined in .

Proof. We start with Conjecture For 7 = ¢, this Corollary For 7 = (), it then follows
from Lemma and Theorem The more precise statement about the map Hi(K?,Z,) —
Hi(KP, Zp) follows from Theorem
of Proposition Conjecture then follows, and as does Conjecture (using Proposition
Theorem and the fact that ﬁd(Kp,Zp) = ﬁfM(Kp, Lp)). O
4.3. Results for reductive groups. Here we will briefly indicate what type of results can be
proved towards the Calegari—-Emerton conjectures for more general reductive groups. Recall that if
(G, X) is a Shimura datum, then X+ need not equal the symmetric space X in general. Indeed,
Xt 2 G(R)/Z(R)K, where Z C G is the center and Ko, € G(R) is a maximal compact subgroup.
Recall that A C Z is the maximal QQ-split subtorus and set

Z = ﬂKerx,
X

Lemma m and an analysis of components as in the proof

where x runs over the characters of Z defined over Q. Then Z = Z%A with AN Z° finite, and
X% — Xt is a (trivial) fibration with fiber Z¢(R)/(Z%(R) N K4 ). In particular, X¢ = X if and
only if Z%(R) is compact. Note that this is equivalent to all arithmetic subgroups of Z being finite,
and to lp(Z) = 0. When this happens, we get clean results. Let d = dim¢ X.

Theorem 4.5. Assume that G admits a Shimura datum of pre-abelian type and that Z°(R) is

compact. Then Conjectures and hold for G. Moreover, the natural map ﬁg(Kp, ZLp) —
HY(KP?,7,) is an isomorphism.

Proof. We start with Conjecture Fix K? and n > qo. Let T = G/G?" be the cocenter of G.
Since Z — T'is an isogeny, all arithmetic subgroups of 7" are finite as well. For sufficiently small K,
I' = G(Q)4+ N KPK) is neat and therefore its image in 7'(Q) is neat, hence trivial. So I is contained
in G%"(Q),, and one readily sees that Conjecture for G is equivalent to Conjecture q for
G which follows from Theorem Conjecture then follows, and as does Conjecture
(using Proposition apart from part (2). For a proof of this we refer to Corollary below,
though we also note that one could give an easier proof in this special case. The last statement
follows from the corresponding statement for G%" by the same arguments as in Theorem U

Remark 4.6. We have elected to state the isomorphism f[g(Kp, Lp) — I:Ti(Kp,Zp) only in degree
i = d for simplicity, but of course the proof also shows that we get an isomorphism in (possibly)
more degrees as in Theorem[{.J} We will continue to do so throughout this section.
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Corollary 4.7. Assume that G admits a Shimura datum of Hodge type. Then Conjectures[3.1,
and hold. Moreover, the natural map HY(KP,7Z,) — HY(KP,7Z,) is an isomorphism.

Proof. If G admits a Shimura datum of Hodge type, then Z*(R) is compact, so Theorem
applies. ]

When Z%(R) is non-compact, the Leopoldt conjecture interferes in deducing the Calegari—
Emerton conjectures for G from G%" or G*. Indeed, if G = T is a torus, then the Leopoldt
conjecture for T is equivalent to Conjecture for T'; see [Hill0), §4.3.3] (note that Hill uses the
symmetric spaces G(R)/K« instead of our X“). We recall this briefly. Let K = KPK), be a
compact open subgroup of T'(Ay) with K? arbitrary and K, neat. Set I' = T(Q) N K; this is a
finitely generated torsion-free abelian group. Let T be the p-adic completion of I' and consider
the natural map f : T — Kp; set A = Kerf and I = Im f. A is a finite free Z,-module and
the Leopoldt conjecture asserts that A = 0 (this assertion is independent of the choice of K). An
application of [Hil10l Lemma 14] gives that

H' (T, Map,(1, Fp)) = Homg, (A7, A, Fp),

and by Lemma HY(T',Map,(I,F,)) vanishes simultaneously with H*(I', Map (K, F,)), so by
Proposition [3.6] the vanishing of A is equivalent to Conjecture In fact, the Leopoldt conjecture
is also equivalent to Conjecture [3.14)(2) for T' (note that go(7) = 0). This is certainly well known;
we give a very brief sketch of the proof.

Proposition 4.8. Let KP C T(A?) be compact open. Then the codimension of f[o(Kp,Zp) 18
lo —rankz, A. In fact, the projective dimension of ETO(KP,ZP) is lp — rankz, A.

Proof. We give a very brief sketch. Choose K, neat and set I' = T(Q)* N KPK,. As a right
K,-module, a straightforward computation (using the commutativity of T") shows that

ﬁO(Kp7 Zp) = @ Zp[[I\Kp]]

where t runs over the finite set T(Q)"\T'(A;)/KPK), and I denotes the closure of I' in K),. Set
M = Zy[I\K,], A = Zy[I] and B = Z,y[K,]; B is a projective (left and right) A-module by
[Bru66, Lemma 4.5] and M is a finitely generated right B-module, which is isomorphic to Z, ® 4 B.
A computation then shows that Ext (M, B) = B ®4 ExtYy(Z,, A), so the codimension of M as

lo—rankz, A
a right B-module is equal to the codimension of Z, as a right A-module. Since I = Zpo B ,

a computation usng the Koszul complex shows that the codimension of Z, is lp — rankz, A. This
finishes the proof of the first part. For the second part about the projective dimension, note that
the Koszul complex of A is a resolution Py of Z;, of length Iy —rankz, A by finite free A-modules. Tt
follows that P @4 B is a resolution of M of length lo —rankz, A by finite free B-modules. Together
with the first part, this finishes the proof of the second part. O

We may now give the most general result for reductive groups that we can prove.

Theorem 4.9. Let G be a connected reductive group over Q with center Z. Assume that the
Leopoldt conjecture holds for Z and that G** admits a Shimura datum of abelian type. Then
Conjecture 3.5 holds for G.

Proof. We sketch a proof, which requires a minor extension of the results stated in this paper that
is easily proved by the same methods. Fix K? and choose a sufficiently small K}, which is a product
K, = KpZ X Kgd of a compact open KPZ C Z(Qp) and a compact open Kgd C G (Q,); note that

the image of Kl‘jd in G*(Q,) is open and isomorphic to Kgd; we will conflate the two (this explains
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the notation). Set I' = G(Q)+ N KPK,. By Proposition and Lemma it suffices to show
that

H;L(I‘\X, Mapcts(Kpa Fp)) =0

for n > qo = q(G) = qo(G*). Let T = Z(Q) NT and let T% be the image of I' in G4 (Q)+.
Consider the proper fibration 7 : T\ X — T'%\ X with fiber I'*\ XZ (here X% = XGad) and the
corresponding Leray spectral sequence

HE (TN X RS, Map (Kp, Fp)) = HyT5(D\X, Map, (Kp, Fp)).

By Corollary Rém. Map,,(Kp, Fp) is the local system corresponding to H*(T'Z, Map,,, (K, Fp)).
Using the discussion on Leopoldt’s conjecture above, the assumption that Leopoldt holds for Z,
and Lemma we see that H*(I'Z, Map,(K,,Fp)) = 0 for s > 0. We then compute

z
Mapcts(Kp7 FP)F = Mapcts(KpZ/FZ7 Fp) ® Mapcts(Kgdv FP)

as I'*-modules, where I'*¢ acts trivially on the first factor, which is an [Fp-vector space that we call
V. So, the Leray spectral sequence reduces to

H;L(F\X, Mapcts (KP7 Fp)) = Hg (Fad\Xad¢ V®Mapcts (Kgd? FP)) = H:;L (Fad\Xadv Mapcts(Kgda Fp)>®v

If 7% was a congruence subgroup of G, then the vanishing of H2(I'*®\ X4, Mapcts(Kgd, [F,)) for
n > qo would follow from Theorem and Lemma As it is, we only know that T'%¢ is an

arithmetic subgroup which is contained in a congruence subgroup. However, the generalization of
Conjecture 3.5/ for towers of the form (I'"\ X%¢)p/, where T runs through the subgroups of the form
I Kgd" with Kgd’/ - G“d((@p) compact open, still holds by the methods of this paper. To prove it
when ? = ¢, we only need to observe that the tower of rigid spaces corresponding to (I'"\ X %%*)p is
perfectoid in the limit by Theorem [5.20|and Lemma[5.10] For ? = (J, note that the proof of Theorem
goes through without changes once one assumes that the corresponding generalization for 7 = ¢
(for all boundary components). This finishes the sketch of proof. O

Corollary 4.10. Keep the notation and assumptions of Theorem [4.9. Then Conjectures[3.1] and
hold for G. Moreover, the natural map HE(K?,Z,) — H®(K?,Z,) is an isomorphism.

Proof. We keep the notation from the proof of Theorem Note that ly = lo(G) = 1p(Z)
and qo = qo(G) = qo(G*). We will use the notions of [Emel0a, [Emel0b] freely in this proof.
Fix KP C G(A’}). Using Theorem H everything apart from Conjecture (2) follows as
before, and additionally ﬁIqO(Kp,Zp) = ﬁgM(Kp,Zp) . The argument in Proposition also
shows that ﬁqo (KP?,Z,) has codimension > [y, so we need to show the opposite inequality. We
have ﬁqO(Kp,Zp) = Homzp(ﬁ]qo(Kp,Zp),Zp) by |[CE12, Theorem 1.1(3)] and the vanishing of
H w+L(KP Z,), so it suffices to prove that H ©+1(KP 7Z,) has a sub K,-representation of injective
dimension < [y. Since H7*(I'\X, Map ., (Kp,Zp)) is a direct summand of H®(KP,7,), it suffices to
show that HY*(I'\X, Map,,,(Kp,Zy)) has a submodule of injective dimension < ly. Here we view
Map;,(Kp, Zp) as a left I'-module via inverting the left translation action; it has a commuting
left Kp-action via right translation which gives HJ*(I'\X, Map,,(Kp,Zp)) its structure of a left
K,-module.

Using the computations in the proof of Theorem with F,, replaced by Z/p" and taking inverse
limits over r (using Proposition , we see that

~ z
I{?q0 (F\X? Mapcts(Kp7 ZP)) = H‘?O (Fad\Xad7 Mapcts(Kgda Zp))® Mapcts(KpZ7 ZP)F ’
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asleft K, = K gdepZ -representations. By Propositionand the assumption on Z, Map (K. pZ , Zp)FZ
has injective dimension ly. By Theorem HJP(P*\ X4, Map ., (K2%, Zp)) contains an injec-

tive admissible Kgd—subrepresentation W. Tt follows that W& MapCtS(KpZ ,Zp)F “is a sub K-
representation of HY’(T'\X, Map,,(Kp,Zy)) of injective dimension < ly, as desired. O

Remark 4.11. We make a few additional remarks on these results.

(1) Examples of cases when Theorem and Corollary are unconditional include G =
Resg GSpy, for abelian totally real fields F', since the Leopoldt conjecture is known for tori
which split over an abelian extension of Q. One could also get weaker unconditional results
by assuming the known bounds for the Leopoldt defect.

(2) Congecture has a natural analogue for F,-coefficients, stated in [CE12, §1.7]. Our
methods prove this conjecture too under the same assumptions. We content ourselves by
noting that the arguments to prove Proposition[3.19 and Corollary[{-10 go through with only
superficial changes for Fp-coefficients (though one could simplify the argument in Corollary
for [F,-coefficients). Note here that Theorem implies its Fp-version if one knows

p-torsionfreeness of Hy,, using the results of [CE12) §1.7].

5. PERFECTOID SHIMURA VARIETIES

5.1. Preparations in p-adic geometry. In this long preliminary section, we prove a number of
loosely related results in p-adic geometry. We continue to fix a prime p. Group actions on spaces
will mostly be right actions throughout this section.

Until further notice, “adic space” means “analytic adic space over Z,”. In what follows, we freely
use the language of diamonds and some standard notation from [Schi7]. Recall that a diamond is a
pro-étale sheaf on the site Perf of characteristic p perfectoid spaces with certain properties. If X is
an adic space, the corresponding diamond X© comes equipped with a natural map X9 — Spd L
since Perfg,q z, s naturally equivalent to the category Perfd of all perfectoid spaces, one is free

to think of X as a functor on Perfd. If X is a diamond with a G-action for some profinite group
G, we write X/G for the quotient sheaf computed as a pro-étale sheaf.

Lemma 5.1. Let X be a spatial diamond with a G-action for some profinite group G. Suppose that
G acts with finitely many orbits on mo X, and that each connected component of X is a perfectoid
space. Then X is a perfectoid space.

Proof. Let Xy be some connected component of X, and let x € Xy be any point. Choose some
open affinoid perfectoid neighborhood U C Xg of . This spreads out (e.g. by [Sch17, Proposition
11.23(iii)]) to a small open spatial subdiamond U C X with UNn Xy =U. Let K C G be the
open subgroup stabilizing U. Then for any k € K, U N Xok = Uk N Xok = (U N Xo)k = Uk is an
affinoid perfectoid space. Since our assumptions on the group action guarantee that the orbit XoK
is an open spatial subdiamond of X, we deduce that U N XK is an open spatial subdiamond of X
containing z, with the property that each connected component of U N XK is affinoid perfectoid.
By [Schi7, Lemma 11.27], we deduce that U N XoK itself is affinoid perfectoid. Since Xy and
were arbitrary, we get the result. O

We now turn to some general results on group quotients. Let X be an adic space equipped
with an action of a finite group G. The coarse quotient X/G always exists in Huber’s category V,
but in general it may not be an adic space. We need some general results showing that if X is
a rigid analytic space or a perfectoid space, then so is X/G. The first author already considered
this problem in [Hanl6], but the results there can be difficult to apply, since they included the
assumption that X admits a G-invariant affinoid covering, and such coverings can be hard to
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exhibit in “real-life” situations. Here we obtain much more satisfying and user-friendly results,
which don’t assume the a priori existence of G-invariant affinoid covers. In the rigid analytic
situation we obtain a very general result, c¢f. Theorem below. In the perfectoid situation,
we need slightly stronger hyptheses, cf. Theorem but the result is sufficient for our intended
applications to Shimura varieties.

Let X be a topological space with an action of a finite group G by continuous automorphisms.
Let x € X be any point, with stabilizer H, C G. We say an open neighborhood U of x is G-clean
if Uh = U for all h € H, and moreover U NUg = () for all g € G ~ H,. Note in particular that if
U is a G-clean neighborhood of z, then the natural map

U xHe g 973 x

is an open embedding, and its image is just the union inside X of [G : H,] many disjoint translates
of U, so this is an especially pleasant type of G-stable open containing the orbit zG.

Lemma 5.2. Let X be a Hausdorff topological space with a G-action. Then every point x € X
admits a G-clean open neighborhood.

Proof. Fix x € X, with stabilizer H. Choose coset representatives G = [[,,.,, Hg; with g1 = 1;
the orbit of x is then {xi,...,z,}, with x; = xzg;. Since X is Hausdorff we may choose pairwise
disjoint open neighborhoods U] of the z;’s. Clearly g, LHg; is the stabilizer of z;, so the open set

U= () Uk
keg; 'Hgi

contains z; and is stable under g;- 'H gi; moreover the U;’s are pairwise disjoint. Now set V; = U;g,” 1,
so x € V; and V; is H-stable. Finally, set W = (), Vi; we claim that W is a G-clean open
neighborhood of x. Indeed, W is H-stable since the V;’s are, so it remains to check that if ¢ # j,
then Wg; N Wg; = 0. But Wg; C Vig; = U; and similarly for Wg;, so Wg; "\ Wg; CU;NU; = 0,
as desired. O

Theorem 5.3. Let X be a rigid analytic space over some nonarchimedean field K with an action of
a finite group G. Assume that X is separated, and that for every rank one point x € X, the closure
m C X is contained in some open affinoid subspace U = Spa(A, A°) C X. Then the categorical
quotient X/G = (|X|/G,(¢:0x)%,---) is a rigid analytic space, and the natural map X — X/G is
finite. Moreover, the canonical map X°/G — (X/G) is an isomorphism.

The auxiliary conditions on X in this theorem are satisfied e.g. if X is affinoid, or if X is
partially proper. In particular, the theorem applies whenever X is the analytification of a separated
K-scheme of finite type. We would like to emphasize that these auxiliary conditions do not involve
the G-action in any way. In particular, we are not assuming a priori that X admits a covering by
G-stable affinoid subsets (though, a posteriori, the theorem shows that this is the case).

Proof. Let z € | X| be any rank one point, with stabilizer H, and closure {z} C |X|. Let |X|" be
the maximal Hausdorff quotient of [X|, and let 7 : [ X| — |X|" be the natural map, so if z € | X]| is
any rank one point, then {z} C Tr_l(ﬂ'(m)) By functoriality of the maximal Hausdorff quotient,

7 One might guess that in fact {z} = 7~ '(x(z)), but this is not clear to us. Indeed, let |X|* be the quotient of
|X| by the transitive closure of the pre-relation “z ~ y if U NV # 0 for all open neighborhoods = € U,y € V”. Then
7 naturally factors as a composition of quotient maps |X| = |X|* 2 |X|". By some standard structure theory of
analytic adic spaces, 7 induces a bijection from the rank one points of |X| onto |X|*, and 7~ (7(z)) = {z} for any
rank one point = € | X|. However, the map ¢ may not be a homeomorphism: for a general topological space T, T"
can be obtained by transfinitely iterating the construction 7"~ T%. When |X]| is taut, one can prove that ¢ is a
homeomorphism by combining [Hub96, Lemmas 5.3.4 and 8.1.5].
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G naturally acts on |X|* and 7 is G—qquivariant. By Lemma we can choose a G-clean open
neighborhood U, C |X|" of w(z). Set U, = 7~1(U,) C |X|, so U, is a G-clean open neighborhood
of x containing {z}.

By assumption, we can choose an open affinoid subspace V, = Spa(4,A°) C X containing
m. Since X is separated, the intersection Npecp, Vi h is still affinoid, so after replacing V, by
Nhem, Vzh, we can assume that V,, is H,-stable. The intersection W, = Ux NV, is still a G-clean
open neighborhood of = containing m Now, observe that W, xH= G C X is a G-stable open
subspace of X containing mG with the crucial property that

W,/H, = (W, x" G) /G C X/G

is naturally a rigid analytic space, because V,/H, = Spa(Af= A°Hz) is an affinoid rigid space and
|Wy|/H, is an open subset of |V, |/H,. Varying over all rank one points = € X, the spaces W, /H,,
give an open covering of X/G by rigid analytic spaces, so X/G is a rigid analytic space, as desired.

For finiteness of the map X — X/G, note that f: W, — W, /H, is finite, since it’s the pullback
of the finite map V, — V,,/H, along W, /H, — V,/H,. It then suffices to observe that the pullback
of X — X/G along the open embedding W, /H, — X/G is given by the map

og: !
Wo x G I Wao 12% wo/m,,

1<i<n
which is clearly finite.

For the last point, it suffices to prove that the canonical maps V’/H, — (Vi/H,)® are iso-
morphisms of pro-étale sheaves. We claim that in fact for any Tate Zj,-algebra A with an ac-
tion of a finite group G and a G-stable subring of integral elements A", the canonical map
Spd(A, A*)/G — Spd(A%, ATE) is an isomorphism. It suffices to check that Spd(4,AT) x G =
Spd(A, AT) is a presentation of Spd(A%, AT®) as a pro-étale sheaf. Arguing as in [CGJI9,
Proposition 2.1.1], this reduces to the fact that the maps Spd(A4,A") — Spd(A%, AT%) and
Spd(A, AT) x G — Spd(A, A) Xgpq(ac,a+c) Spd(A, AT) are quasi-pro-étale. Since the morphisms
in question are separated, this can be checked on rank one geometric points by [Sch17, Proposition
13.6], where it is obvious. O

Unfortunately, the perfectoid variant of the previous theorem is not so clean, primarily because
of “problems” with the notion of a “separated” perfectoid space. For example, for perfectoid spaces
over a perfectoid field, the notion introduced in [Sch17, Definition 5.10] is too weak for our purposes.
The following notion of separation is more than sufficient for our purposes. In what follows, we will
frequently use the fact that if X and Y are perfectoid spaces over Spa(K, KT) for some affinoid
field (K, K™), then the fiber product X Xgpa(K,k+) Y is naturally a perfectoid space. By gluing,
this reduces to the claim that this fiber product is naturally affinoid perfectoid if X and Y are each
affinoid perfectoid, which is [KL15, Corollary 3.6.18].

Definition 5.4. (1) A map of perfectoid spaces Z — X is a Zariski-closed embedding if for
any open affinoid perfectoid subset U C X, the map Z xx U — U is a Zariski-closed
embedding of affinoid perfectoid spaces in the sense of [Schlbl, §2.2]. We say that an open
subset U of a perfectoid space X is Zariski open if the inclusion X \ U — X is a Zariski
closed embedding.

(2) A perfectoid space X over a nonarchimedean field Spa(K, KT) is analytically separated if
the diagonal map X — X Xgpa(r,+) X 15 a Zariski-closed embedding.
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We caution the reader this definition of being a Zariski-closed embedding is rather delicate:
among other things, it’s not clear whether this property can be checked locally on a single affinoid
cover of X, or whether this property is stable under base change. The key property of analytically
separated perfectoid spaces that we will use is part (2) of the following lemma.

Lemma 5.5. (1) If a perfectoid space X is analytically separated, then it is separated in the
sense of [SchiT], i.e. X® — Spd(K, K™T) is a separated map of v-sheaves.
(2) If X is analytically separated, then for any two open affinoid perfectoid subsets U,V C X,
the intersection U NV is affinoid perfectoid.

Proof. Part (1) is straightforward and left to the reader (and we won’t need it anyway). Part (2)
is immediate upon writing U NV = (U Xgpa(k,x+) V) XX x gty XA X - O

In practice, analytic separation can often be checked via the following lemma.

Lemma 5.6. Let (X;);cr be a cofiltered inverse system of separated rigid analytic spaces over some
Spa(K, K°), and suppose there is some perfectoid space Xoo such that Xoo = @11 X, as diamonds.
Suppose moreover that each X; is an open subset of the analytification of a projective variety over
K. Then X is analytically separated.

Proof. By assumption, we can choose open immersions X; — V;*" for some projective varieties V;.
Let U C Xoo Xspa(k,K°) Xoo be some open affinoid perfectoid subset. Set

R ac] an
Wi=U X XiXspa(, k) XirA Xi=U XV X spa(k,k0) VA Vit

A priori, we are computing this fiber product as diamonds. However, by the subsequent lemma,
W; is affinoid perfectoid and the resulting map W; — U is a Zariski-closed embedding. Then
U x Koo Xspa(i,1c0) XoosA Xeo = lglZ W; is affinoid perfectoid, and @Z W; — U is a cofiltered limit of
Zariski-closed embeddings. Since any cofiltered limit of Zariski-closed embeddings with fixed target
is a Zariski-closed embedding, we get the result. O

Lemma 5.7. Let Y — X be a closed immersion of quasi-projective varieties over a nonarchimedean
field K, and let Z be any perfectoid space equipped with a map f : Z — X**. Then the diamond
W = Z X xan Y is a perfectoid space, and the natural map W — Z is a Zariski-closed embedding.

Proof. Unwinding the definitions, it suffices to prove that if Z is affinoid perfectoid, then W =
Z X xan Y — 7 is a Zariski-closed embedding of affinoid perfectoid spaces.

Replacing X by its closure in some projective space, and replacing Y by its closure in X, we can
assume that Y — X is a closed immersion of projective varieties. Let Z C Oxan be the ideal sheaf
cutting out Y2". By rigid GAGA and the projectivity of X, we can choose a vector bundle £ on
X3 together with a surjection & — Z. Then f*& is naturally a vector bundle on Z, and the image
of the natural map f*€ — Oy is just the ideal sheaf generated by f~'Z. However, Z is affinoid
perfectoid, so f*& is generated by its global sections, which are just a finitely generated projective
Oz(Z)-module. In paticular, if eq,...,e, € H*(Z, f*€) is any set of generators, then their images
in Oz(Z) generate an ideal I corresponding to the ideal sheaf generated by f~'Z. Let W C Z be
the Zariski-closed subset cut out by I. It is then easy to see that W represents the fiber product
claimed in the statement of the lemma. g

Theorem 5.8. Let X be a perfectoid space over a nonarchimedean field, with an action of a finite
group G. Assume that X is analytically separated, and that for every rank one point x € X, the
closure {x} C X is contained in some open affinoid perfectoid subspace U = Spa(A, AT) C X.
Then the categorical quotient X/G is a perfectoid space, and the natural map q : X — X/G is
affinoid in the (weak) sense that any point y € X/G admits a neighborhood basis of open affinoid
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perfectoid subsets Y C X whose preimages ¢~ (Y') are affinoid perfectoid. Moreover, the canonical
morphism X° /G — (X/G)° is an isomorphism.

Proof. The first portion of the proof is nearly identical to the proof of Theorem but we repeat
the details for the reader’s convenience.

Let z € X be any rank one point, with stabilizer H, and closure {z} C X. Let |X|" be the
maximal Hausdorff quotient of |X|, and let 7 : |X| — |X|" be the natural map, so if » € |X| is
any rank one point, then {z} € 7~ '(7(z)). By functoriality of the maximal Hausdorff quotient,
G naturally acts on |X|* and 7 is G-equivariant. By Lemma we can choose a G-clean open
neighborhood U, C |X|" of 7(z). Let U, be the preimage of U, in |X|, so U, is a G-clean open
neighborhood of « containing {x}.

By assumption, we can choose an open affinoid perfectoid subspace V, = Spa(4,A") C X
containing {z}. Since X is analytically separated, the intersection Npep, Vi h is affinoid perfectoid
by Lemma 5.5 . , so after replacing V, by Npep, Vih, we can assume that V, is H,-stable. The
mtersectlon W, = U, NV, is still a G-clean open neighborhood of # containing {z}. Now, observe
that W, xf* G c X is a G-stable open subspace of X containing {CL‘}G with the crucial property
that

W,/H, = (W, x* G) /G C X/G
is naturally a perfectoid space, because V. /H, = Spa(Aff=, ATHz=) is an affinoid perfectoid space
by [Hanl6, Theorem 1.4] and |W,|/H, is an open subset of |V;|/H,. Varying over all rank one
points x € X, the spaces W, /H, give an open covering of X/G by perfectoid spaces, so X/G is a
perfectoid space, as desired.

To see that ¢ is affinoid, let y € X/G be any point, so y is contained in some W, /H,. Let
Y C W, /H, C X/G be any open subset containing y such that Y is a rational subset of V,./H,.
The set of such Y’s is clearly a neighborhood basis of . Moreover, ¢~ (Y') is a finite disjoint union
of copies of the preimage of Y in V, but the latter preimage is a rational subset of V,, and hence
is affinoid perfectoid, so ¢~ 1(Y) is affinoid perfectoid. Varying y, we get the claim.

The last point follows exactly as in the proof of Theorem O

The next lemma will allow us to extend the Hodge-Tate period map across the boundary of the
minimal compactification, in situations where we already know it extends on some finite cover of
the Shimura variety.

Lemma 5.9. Let X be a perfectoid space over an affinoid field (K, K+) with an action of a finite
group G satisfying the hypotheses of the previous theorem. Let ¢ : X — X = X/G be the natural
map. Let U C X be a dense Zariski-open subset, with preimage U C X. Finally, let Z be a
quasiseparated adic space over (K,K™) such that any finite subset of |Z]| is contained in an open
affinoid, and let f : X — Z be any map such that f]U foq for some f:U — Z. Then f extends
uniquely to a map f : X — Z such that f = fogq.

The conditions on Z hold, for example, if Z is the analytification of a quasiprojective variety.
This is the only case we will need.

Proof. Let z € X be any point. Let W C Z be any open affinoid subset containing f(zG),
SO f Lw) c X is a retrocompact open subse containing G. Now let T C X be any open
affinoid perfectoid subset with g(z) € T and with T = ¢~*(T) affinoid perfectoid. Then ¥ =

8If T CXisa quasicompact open subset, then the quasiseparatedness of Z implies that 7' N fﬁl(W) 2T xz W
is quasicompact.
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TN N e f~1(W)g is a G-stable quasicompact open subset of T containing G such that f maps

Y into W. Shrinking Y = ¢(Y) C T further if necessary, we can assume that ¥ and Y are affinoid
perfectoid. It’s enough to show that the map flyny : UNY — W extends uniquely to a map
f:Y — W such that f|; = foq.

Write W = Spa(R, RT) and Y = Spa(A, A1), so Y = Spa(A®, AtC). Then f\}; corresponds
to a map ¢ : (R,RT) — (A4,A"), and we need to show that the latter map factors through a
map (R, RT) — (A9 AT¢). Since AT¢ = A% N A*, it’s enough to show that ¢ : R — A has
image contained in A, Let r € R be any element, with image (1) € A. Then for any g € G,
lgp(r) — @(r)], = 0 for all 2 € UNY. Since the vanishing locus of any element a € A is closed and
UNY is dense in Y, this shows that |go(r) — ¢(r)|, = 0 for all z € Y. Since A is uniform, this
implies that gp(r) = ¢(r), and so ¢ : R — A factors over ¢ : R — A%, as desired. O

In the next section, we will often be in a situation where we have a morphism between two
inverse systems of Shimura varieties for some closely related Shimura data. In the remainder of
this section, we prove some results which will allow us to transfer information from one inverse
system to the other.

Lemma 5.10. Let (X;)ier N (Yi)ier be a morphism of cofiltered inverse systems of locally
Noetherian adic spaces. Assume moreover that the maps f; and the transition maps in the inverse
systems are all finite maps, and that Yoo = 'mi Y; is perfectoid.

Then X = @z X, is perfectoid, and the morphism fo : Xoo — Yoo @8 quasicompact. Moreover,
if U C Yoo s an open affinoid perfectoid subset which arises as the preimage of an open affinoid
U; CY; for some i, then f .} (U) C Xoo is also affinoid perfectoid.

With more effort, one can show that the morphism f,, is proper and quasi-pro-étale in the sense
of [Sch17]. We will not need this.

Proof. Without loss of generality, we may assume that I contains an initial element 0. Next, observe
that

Xoo 2 lim Xoo Xy, Yao
J

1>]
i

using the cofinality of the diagonal to get the last line. Choose an open affinoid subset Uy C Yj
with preimages U; C Y;, W; C X;, Uy C Yoo, Woo € Xo. To prove the first part of the theorem,
it suffices to prove that W, is a perfectoid space. This can be checked locally on some covering of
Uso by open affinoid perfectoid subsets V' = Spa(R, RT) C Us. By our assumptions, the natural
maps W; — U; are finite maps of affinoid adic spaces, so in particular O (U;) — OT(W;) is an
integral ring map. By general nonsense, the fiber product X; xy, V.= W; xy, V is computed
as Spd(S, ST), where S = R ®o(u,) O(W;) (topologized in the usual way) and S is the integral
closure of im(R* @+ ;) O (W;) — ) in S. In particular, Rt — ST is an integral ring map, so
the subsequent lemma implies that W; X, V' is an affinoid perfectoid space. Passing to the limit
over i, we deduce that W Xy V is an affinoid perfectoid space, and then varying over all choices
of Uy C Yy and V C Uy as above, we conclude that X, is a perfectoid space.

Quasicompactness of fo, is clear. For the final claim of the theorem, choose some U; C Y; and
U C Y asin the statement of the claim, and let U; C Y; and W; C X denote the evident preimages
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for all j > 4. Arguing as in the first part of the proof, we see that f 1(U) = l'glj% W; xy,; U and

that W; xy; U is an affinoid perfectoid space for any j > i. Passing to the limit over j gives the
claim. 0

In the course of this proof, we crucially used the following result, which is essentially just a
rephrasing of a theorem of Bhatt-Scholze.

Lemma 5.11. Let (R,R") — (S,S") be a map of Tate-Huber pairs such that R is a perfectoid
Tate ring and the ring map R — ST is integral. Then the diamond Spd(S,S™) is an affinoid
perfectoid space.

Proof. Choose a pseudouniformizer @ € RT. Since R™ is integral perfectoid and Rt — ST is an
integral ring map, [BS19, Theorem 1.16(1)] guarantees the existence of an integral perfectoid S+-
algebra S;erfd such that any map from ST to an integral perfectoid ring factors uniquely through

the map S* — ST ;4. Set T =S¥ ¢[1/w], and let T C T be the integral closure of ¥ 4, in

T. Then T is a perfectoid Tate ring, and the natural map (S,S*) — (7,77") induces a bijection
Hom((T,T7), (A, A")) = Hom((S, ST), (A, AT)) for any perfectoid Tate-Huber pair (A4, AT). This
shows that Spd(S,S™) = Spd(T,T™") is affinoid perfectoid, as desired. O

In applications, we will usually care about inverse systems with the following restrictive proper-
ties.

Definition 5.12. Fix a nonarchimedean field K. A good tower is a cofiltered inverse system of
locally Noetherian adic spaces (X;)i;er over Spa K with the following properties.
(1) Each X; is the analytification of a projective variety over K, and the transition maps are
finite.
(2) The inverse limit X = @Z X; 1s a perfectoid space.
(3) There exists a pair of coverings of X by open affinoid perfectoid subsets Uj, V; such that
U; CV; for all j, and such that for each j, U; and V; occur as the preimages of some open
aﬁinozds Uj,i;» Vi, X, for someij € 1.

ZJ_

The point of this definition is captured in the following proposition.

Proposition 5.13. (1) Let (Y;)ier be a good tower. If (X;)ier N (Yi)ier is any map of
cofiltered inverse systems such that the morphisms f; are finite, then (X;)ier is a good
tower.

(2) If (Xi)ier is a good tower with an action of a finite group G, then the categorical quotient

X/G is a perfectoid space and X/G = lim, Xi/G.

Note that in part (2), we are not claiming that (X;/G)ecr is a good tower: it’s not clear to us
whether condition (3) is preserved.

Proof. For part (1), let f: X — Y denote the map between the limits of the towers. Note that
since X; — Yj is finite, the tower (X;);c; satisfies condition (1) of Definition by rigid GAGA.
Conditions (2) and (3) then follow from Lemma Indeed, (2) is immediate, and (3) follows
from the observation that if U; C V; C Y are open affinoid perfectoid subsets pulled back from
some finite-level affinoids U; .,V C Y;, then f _I(Uj) is affinoid perfectoid by Lemma and

is clearly the preimage of the affinoid f L Uji;) € Xi; (and similarly for the V;’s). Finally, the
condition on closures follows from the 1nclus1ons Uy C YTy € FH(V).

For part (2), X/G is perfectoid by Theorem since by design the limit of a good tower satisfies
the conditions of that Theorem. Indeed, the limit of any good tower is analytically separated by
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Lemma Moreover, if U;, V; C X are as in the definition of a good tower, then any rank one
point z € X is contained in some Uj, in which case {z} C U; C V;.

It remains to check that the natural map f: X/G — 1£11 X;/G is an isomorphism of diamonds.
The source and target of this map are spatial diamonds, so the map is automatically qcgs. Thus,
by [Schi7, Lemma 11.11], it suffices to prove that f induces a bijection on (C, C™)-points for every
algebraically closed perfectoid field C' with an open and bounded valuation subring C*™ C C. In
what follows, we will freely use the fact that (C,C™)-points can be computed “naively”: if X is
a pro-étale sheaf with a G-action for some profinite group G and X/G denotes the quotient as
pro-étale sheaves, then X (C,C")/G = (X/G)(C,C™"). This is an easy consequence of the fact that
any pro-étale cover of a geometric point (C,C™) has a sectionﬂ

For surjectivity, let (x; € X;(C,C1)/G)ics be any inverse system of points. Let W; C X (C,C™)
be the preimage of ;. Since W; = @j W, ; where W, ; C X,;(C,C™) is the preimage of x;, and
each W; ; is finite and nonempty (use that X; — X; is finite), W; naturally has the structure of a
(non-empty) profinite set. Then W = @Z W; is an inverse limit of non-empty compact Hausdorff
spaces, and thus is non-empty. Any choice of x € W C X (C,C™) maps to the inverse system
(zi)ier-

For injectivity, let z,y € X(C,C™") be two elements with the same image in lim, X;(C, CH)/G.
Let z;,y; € X;(C,CT) be the images of z and y, and let G; C G be the set g € G with gx; = y;.
Then G; is nonempty by assumption, and G; — Gj is injective for all j > 7, so 1&1@ G; is nonempty.
Choosing any g € @11 G, we then have gxr = y, as desired. O

5.2. Perfectoid Shimura varieties of Hodge type. We now return to Shimura varieties. Let
(G, X) be a Shimura datum of Hodge type, with reflex field £ and Hodge cocharacter p. For any
open compact subgroup K C G(Ay), we write Shg (G, X) for the canonical model of the associated
Shimura variety; this is a normal quasi-projective scheme over F. This has a canonical projective
minimal compactification Shi, (G, X), which is also normal. Fix a prime p of E lying over p, and
let Xk, resp. Aj; denote the rigid analytic space over E, associated with Shi (G, X) ®g E,, resp.
Shi(G,X) ®g Ey. As K varies, these spaces form a pair of inverse systems with finite transition
maps, and compatible open immersions Xx — X};. Recall the (rigid analytic) flag variety Flq ,
attached to (G, X), as defined over E, in [CS1T, §2.1].

Proposition 5.14. Fixz any open compact subgroup KP C G(Afc). Then Xjop = @Kp XI*@KP 18
a perfectoid space, and there is a G(Qp)-equivariant Hodge-Tate period map wur : Xjep — Fla
with all expected properties.

Moreover, Xj, is analytically separated, and we can find a pair of coverings by finitely many
open affinoid perfectoid subsets U;, V; C Xj, such that U; C V; for all i and such that U; and V;
arise as the preimages of some open affinoid subsets of some XI*{,,KP.

In particular, for any cofinal system of open compact subgroups K, C G(Qp), (XI*(,,KP)KP s a
good tower (over Ey) in the sense of Definition .

Note that Xz, may not coincide with the “ad hoc” compactification X’ Ii(p constructed in [Sch15],
although by construction there is certainly a map Xz, — X Ii(p.

Proof. Fix a closed embedding ¢ : (G, X) — (GSpQg,ﬁéc) into a Siegel Shimura datum. For any
open compact subgroup K C GSpy,(Qp), let Sk, resp. Sj- denote the rigid analytic space over Ej,

IMore generally, if F is a presheaf of sets on a site C, and X € C is any object with the property that every covering
of X admits a section, then the natural map F(X) — F*"(X) is a bijection, where (—)*" denotes sheafification. This
is easy and left to the reader.
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associated with Sh (GSpy,, H7) @ By, resp. Shi(GSpy,, H7) @g Ey. By [Sch15, Theorem 3.3.18],
@Kp Sker K, is a perfectoid space for any open compact subgroup K? C GSpQQ(Qp) contained in
some conjugate of a principal congruence subgroup of level > 3. However, this last condition can
easily be removed using [Hanl6, Theorem 1.4], noting in particular that S}, is covered by finitely
many GSpy, (Qp)-translates of a certain open affinoid perfectoid subset S}“(p(e)aﬂ and that these
subsets are invariant under the action of K'?/KP for any normal inclusion K? C K'? of tame level
groups.

The chosen embedding ¢ gives rise to compatible finite maps Xxng(a H Sk for any K C
GSpy,(Ay) as above, which naturally extend to compatible finite morphisms XI*mG( Ay Sk
Now, choose any KP C G(A’}) as in the proposition, and choose an open compact K'P? C GSpgg(AI})
such that K? C K'P. Choosing a cofinal set of (neat) open compact subgroups Ko 2 K1 2 Ko - --

*

in GSpy,(Qp), we get a map of inverse systems (X;(prl(Kn))nZO — (Skwi, Jn>0 satisfying all the
hypotheses of Lemma Applying that lemma, we deduce that X%, is a perfectoid space and
the natural map f : X%, — Sk is quasicompact. Moreover, Xy, is analytically separated by
Lemma

Now choose some 0 < € < ¢ < 1/2 and some finitely many g; € GSpy,(Q,) such that the
translates S/, (€)q - gi cover Sy, Note that any such translate is the preimage of an open affinoid
subset of some Sy p , s0 again by Lemma we see that the preimages

Ui = f_l(Sik('P(e)a 'gi) CVi= f_l(S;('p(el)a - i)

are affinoid perfectoid and give open covers of X%, and arise by pullback from some finite level.
Moreover, Sk, (€)a - gi C Sken(€)a - gi for any € < € < 1/2, and clearly U; C f~1(Sk(€)q - 9i), 50
we conclude that U; C V; as desired.

The Hodge-Tate period map is the composition of the natural map Xz, — X;{p with the
(previously known) Hodge-Tate period map X, — F; ,, cf. [CGHT18, Theorem 3.3.1] for a
discussion of the latter (the argument there also works to construct mgr : Xjp — Fg,, without
the use of ad hoc compactifications). O

For later use, we also record an extremely mild generalization of this result.

Corollary 5.15. For any open compact subgroup K C G(Ay) and any cofinal system of open
compact subgroups K, C G(Qp), (Xgng, )k, is a good tower (over Ey) in the sense of Definition
2.12

Here and in what follows, we adopt the following notational convention: if G is an algebraic
group over Q, H is a subgroup of G(Ay), and K, is a subgroup of G(Qy), then H N K, denotes
the group of elements h € H whose image in G(Q)) lies in K),. In other words, H N K, is short for
Hn(G (A’})Kp). We hope this doesn’t cause any confusion.

Proof. Let KP C G (Ai’f) denote the image of K along the natural projection. Then K MK, has finite
index in K?PK),, so we get natural finite morphisms X' K, Xiep K, which compile into a map of
towers (X} Kp) K, = (Xgp Kp) K,- Since the target is a good tower by the previous proposition, we
may apply Proposition i) to conclude. O

10This subset is denoted AL (poo) (€)a in [Schlbl §3].
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5.3. Perfectoid Shimura varieties of pre-abelian type. In this section we change notation
slightly. Given a Shimura datum (G, X) and an open compact subgroup K C G(Ay), we write
Shi (G, X) for the associated Shimura variety regarded as a quasi-projective variety over C, and
Shi (G, X) for its projective minimal compactification. For a (usually implicit) choice of connected
component X+ C X, we write Shx (G, X)? for the connected component of Shy (G, X) whose
analytification is the image of the natural map

Xt x{e} - GQ)+\(XT x G(Ay))/K = Shk (G, X)*,

and we write Shi (G, X)? for the Zariski closure of Shx (G, X)? in Sh% (G, X). Note that since
Sh;(G, X) is normal, the map moShi (G, X) — mShj (G, X) is a homeomorphism.

Now, fix once and for all an isomorphism C ~ C,, (for simplicity), and let C'//C, be a complete
algebraically closed extension of nonarchimedean fields. All of the following results hold for any
choice of C. We write X} (G,X) for the rigid analytic space associated with Shi (G, X) ®c
C. Similarly, we get rigid analytic spaces Xk (G, X), Xx(G,X)°?, X% (G, X)? with the obvious
meanings.

For any fixed open compact subgroup K? C G (A’}), define

X7 (G,X) = m X, (G X)
K, CG(Qp) open compact

where the inverse limit is taken in the category of diamonds over Spd C. We also write Xx» (G, X),
X5 (G, X)Y, and X (G, X)? for the obvious variants.

Proposition 5.16. Maintain the above notation. The following conditions on a Shimura datum
(G, X) are equivalent.

(1) The diamond X}, (G, X) is a perfectoid space for any choice of KP.

(2) The diamond X}, (G, X)® is a perfectoid space for any choice of KP.
We say the Shimura datum (G, X) satisfies Property P if either of these equivalent conditions
holds.

Proof. (1) implies (2): In general, X}, (G,X)" is an inverse limit of open-closed subfunctors
X € Xip (G, X). Therefore, if X, (G, X) is perfectoid and U C X}, (G, X) is any open affinoid
perfectoid subset, then U N X}, (G, X)° = 1£1Z U N X; and each U N A is affinoid perfectoid, so
UNX;i, (G, X)? is affinoid perfectoid. Varying U then gives the result.

(2) implies (1): Choose any open compact subgroup K, C G(Q,), so the diamond X};,(G, X)
has a natural Kj,-action. Then K, acts with finitely many open orbits on the profinite set
ToX i (G, X) =2 G(Q)4\G(Ay)/KP (by [Bor63, Theorem 5.1]). Moreover, each connected com-
ponent of X}, (G, X) is isomorphic to X;Kpg_l(G,X)O for some g € G(A’;), and in particular is
perfectoid. By Lemma , we deduce that X7}, (G, X) is a perfectoid space, as desired. O

We also need to work with connected Shimura varieties. Let (G, X ™) be a connected Shimura
datum and let 7 : G(Q)T — G%(Q)* denote the natural map. Let us say that an arithmetic
subgroup I' C G*(Q)* is a pre-congruence subgroup (for G) if it satisfies the equivalent conditions
of [Mil05, Proposition 4.12]. In particular, T is pre-congruence iff 771(T') is a congruence subgroup
of G(Q)*, and if G is an adjoint group then I is pre-congruence iff it is congruence.

IfT' € G*(Q)7 is an arithmetic subgroup, then the quotient I'\ X * is the analytification of a con-
nected normal quasiprojective complex variety, defined uniquely up to unique isomorphism, which
we denote by Shr(G,X™T). Again, this has a canonical minimal compactification Sh}(G, X ™),
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which is a connected normal projective variety. If T is torsion-free, then Shr(G, X ™) is smooth.
Again, we denote the associated rigid analytic spaces over C by A (G, X ™), etc.

Definition 5.17. We say a connected Shimura datum (G, X™) satisfies Property P if for every
pre-congruence subgroup I' C G*(Q)*, the diamond

Xf‘k,oo(Ga X+) = w XFOKP(G7X+)
K,CG%4(Qp) open compact

is a perfectoid space.

In this statement, recall our notational convention that I' N K, is shorthand for I' N (G(A’})Kp)
(cf. the discussion following Corollary . Note that in this case we could also view I' as a
subgroup of G%(Q,) via the natural embedding G¢(Q)* C G%(Q,), and then I' N K, is literally
the intersection of these two subgroups inside G%(Q,). The reader should also note that G(Q,)
and G“d((@p) are locally isomorphic in a neighborhood of the identity. We are also implicitly using
the easy fact that for any open compact subgroup K, C G“d((@p) and any pre-congruence subgroup
I', I'N K, is still a pre-congruence subgroup.

Proposition 5.18. Let (G, X) be a Shimura datum or a connected Shimura datum. Suppose that
(G, XT) satisfies Property P. Then (G, X) satisfies Property P.

Proof. We do the case a Shimura variety (G, X) first. Let 7 : G — G denote the natural map.
It’s enough to show that X}, (G, X)? is perfectoid for any K C G(A%). Let I' = G(Q)* N K be
a choice of congruence subgroup for some open compact subgroup K C G (A ) with the property
that 7(K?) C KN Gad(A?). Then for any open compact subgroup K, C G(Qp), there is a natural
finite morphism X, K, (G, X)) — Xli‘m( Kp)(G“d, X ). Moreover, these morphisms are compatible
as K, varies, and the transition maps in the two towers are finite. Passing to the inverse limit over
K, the result now follows from Lemma [5.10]

Now assume that (G, X) is a connected Shimura datum (then X = XT)and I' C G*(Q)" is
a pre-congruence subgroup for G. Choose a congruence subgroup I'** C G%(Q)* containing I'.

Then we have finite maps XFOKP(G,X) = Xadng (G, X) for all K, C G*(Q,) compact open
P

compatible with the transition maps. Lemma then applies to give the result. ]
We now come to the key result in this subsection.

Proposition 5.19. Let (G, X) be a Shimura datum of Hodge type. Then the connected Shimura
datum (G, X+) satisfies Property P.

Proof. Fix any congruence subgroup I' C G¢(Q)*. We need to prove that
lm A (G X)
KpCGoH(Qp)
is a perfectoid space.

Let 7 : G — G denote the natural map. Choose a congruence subgroup I' = K N G(Q), C
G(Q)4 with 7(I") C T, and set I = T" N G%*"(Q), so I'" is also a congruence subgroup. Choose a
cofinal descending family of open compact subgroups

Kpo2 Kp1 22 Kpp 2 -+

in G(Qp), and write ng,f = K,n NG (Q,). Without loss of generality, we can assume that
K,0N G (Qp) N Zg(Qp) = {1} and that TV C K0, so then I C Kgf{ and I N Za(Qp) = {1},
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and the map 7 induces isomorphisms 7(I"" N Ky, ,) = n(I"” N K<) = x(I'") N w(K2). Moreover,
the inclusion I C I induces a natural map of towers

(X ronse, ) (G X))o = (X, (G X))nz0
where the map at every level n is finite. By Corollary the target of this map is a good tower.

Now define I = ﬂvep/ﬁ(p//)'yw(F”)'y_l. By design, I'” is an arithmetic subgroup of G?¢(Q)*,
and is a normal subgroup of I with finite index. Since I N W(Kgﬁf) is of finite index in 7(T") N
m(Kfr) = n(I" N K,,y), we get another natural map of towers

(XF"’mw(Kgfg) (Gadv X+))n20 - (X:(F"pr,n) (Gad7 X+))n20

where the map at every level n is finite. For any n > 0, I N W(Kg%') is a normal finite-index
subgroup of I' N w(Kdr). Set A, = (I N x(KE)\(L N w(KLr)), so Ay is a finite group
and the natural maps A,+1 — A, are injective. Write A = @n A,, so A = A, for all

sufficiently large n. Then A operates naturally on the tower (X )(Gad,X ))n>0, and

:(F'”)mn(Kgf,;'
Xf‘k”’ﬁﬂ(Kd”)(G ad | X+)/A = Fmr(Kder)(Gad’ X ) for all sufficiently large n.

Summarizing the situation so far, we have a diagram of towers

(X:(F///)mﬂ(Kder)(Gad7X+))n20 i (X:(r//pryn)(Gadv X+))n20 7 (Xl*prm (G7X))n20

|

(X rcgery (GO X))z

where all the morphisms at any given level n are finite. We’ve already observed that the upper-
right tower is a good tower, so by two applications of Proposition |5.13(i), we deduce that
the upper-left tower is a good tower. Since A operates naturally on the upper-left tower and

X;,,,mﬂ(Kder)(G“d XT)/A = Fﬂw(KdET)(Gad’ X ) for all sufficiently large n, we may apply Proposi-
tion (11) to deduce that X, (Gad X+)/A is a perfectoid space and that A7, (G XH) /A~
L F///mﬂ.(Kder (G ad X+)/A But L F”’ﬂ (Kgf,,f)(G ad XJr /A L Fﬂﬂ' Kder)(Gad7X+) =

XF’OO(G“‘Z, X ), so we conclude that XFm(G“d, X ) is a perfectoid space, as desired. O

We may now summarize our results in this section the following theorem.

Theorem 5.20. Let (G,X) be a Shimura datum (resp. a connected Shimura datum) of pre-
abelian type. Then, for any compact open subgroup KP C G(Ay) (resp. pre-congruence subgroup
[ C GYQ)T), the diamond X}, (G, X) (resp. Af (G, X)) is a perfectoid space.

Proof. Choose a Shimura datum (G1, X1) of Hodge type with a central isogeny G%¢" — G inducing
an isomorphism (G“d X)) = (G, X*). By Proposition (G X ) satisfies property P, and
then Proposition implies that (G, X) satisfies property P, as desired. O

This has the following consequence for compactly supported completed cohomology, which may
be viewed as a generalization of [Sch15, Corollary 4.2.2].

Corollary 5.21. Let (G, X) be a connected Shimura variety of pre-abelian type. Then Conjecture
[3.5 for 7 = ¢ holds for G.
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Proof. Note that the towers used to formulate Conjecture [3.5] are easily seen to correspond to
the towers used in this section. Once we know that the towers of minimal compactifications are
perfectoid in the limit (by Theorem , the argument in the proof of [Sch15l Corollary 4.2.2]
goes through verbatim. O
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