MATHEMATICAL TRIPOS PART III (2016–17)

Local Fields - Example Sheet 1 of 4

C. Johansson

Note: Absolute values are non-trivial, but not necessarily non-archimedean. v_p denotes the p-adic valuation on \mathbb{Q}_p , and $|-|_p$ denotes the p-adic absolute value on \mathbb{Q}_p .

- 1. In lectures, we defined absolute values on fields. More generally, if R is a ring, an *absolute value* on R is function $|-|: R \to \mathbb{R}_{\geq 0}$ satisfying the axioms for an absolute value. Show that R is an integral domain, and that |-| extends uniquely to an absolute value on the fraction field of R.
- 2. Let R be a ring with an absolute value |-|. Let C denote the set of all Cauchy sequences in R.
 - (i) Show that the rules $(x_n)_n + (y_n)_n = (x_n + y_n)_n$ and $(x_n)_n \cdot (y_n)_n = (x_n y_n)_n$ define a ring structure on C.
 - (ii) Show that set I of the of sequences tending to 0 form a prime ideal in C. Denote the quotient C/I by \hat{R} , and show that the map $j : R \to \hat{R}$ sending $x \in R$ to the equivalence class of the constant sequence $(x)_n$ is an injective ring homomorphism.
 - (iii) If $(x_n)_n \in C$, show that $\lim_{n\to\infty} |x_n|$ exists and that the function $|(x_n)_n|' = \lim_{n\to\infty} |x_n|$ is constant on cosets of I, hence defines a function $|-|': \widehat{R} \to \mathbb{R}_{\geq 0}$.
 - (iv) Show that |-|' is an absolute value on \widehat{R} . Show moreover that |x| = |j(x)|' for all $x \in R$, that j(R) is dense in \widehat{R} , and that \widehat{R} is complete with respect to |-|'. We call \widehat{R} the *completion* of R.
 - (v) Show that if R is a field, then \hat{R} is a field. Find an example of an R which is not a field, but such that \hat{R} is a field.
- 3. If $c \in \mathbb{Z}_p$ satisfies $|c|_p < 1$ show that $(1+c)^{-1} = 1 c + c^2 c^3 + \dots$ Hence or otherwise find $a \in \mathbb{Z}$ such that $|4a 1|_5 \leq 5^{-10}$.
- 4. Let $x = \sum_{n>N} a_n p^n \in \mathbb{Q}_p$, with $a_n \in \{0, 1, ..., p-1\}, N \in \mathbb{Z}$ and $a_N \neq 0$.
 - (i) Show that $x \in \mathbb{Q}$ if and only if the sequence $(a_n)_n$ is eventually periodic.
 - (ii) Assume that $x \in \mathbb{Z}$ and let $s_p(x) = \sum_n a_n$. Prove the formula $v_p(x!) = (x s_p(x))/(p-1)$.
- 5. (Hensel's Lemma) Let K be a complete valued field with valuation ring \mathcal{O} and maximal ideal \mathfrak{m} . Let $f(x) \in \mathcal{O}[x]$ be a monic polynomial, and assume that $a_0 \in \mathcal{O}$ is such that $f(a_0) \in \mathfrak{m}$ but $f'(a_0) \notin \mathfrak{m}$. For each $n \geq 1$, define

$$a_n = a_{n-1} - \frac{f(a_{n-1})}{f'(a_{n-1})}.$$

Prove that $a = \lim_{n \to \infty} a_n$ exists and is a simple root of f. Show also that there are no other roots of f which are congruent to a modulo \mathfrak{m} .

hcj24@cam.ac.uk

10th October 2016

- 6. Show that the equation $x^3 3x + 4 = 0$ has a unique solution in \mathbb{Z}_7 , but has no solutions in \mathbb{Z}_5 or in \mathbb{Z}_3 . How many are there in \mathbb{Z}_2 ?
- 7. Consider the series

"
$$\sqrt{1+15}$$
" = 1 + $\sum_{n=1}^{\infty} {\binom{1/2}{n}} 15^n$

where $\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$. Show that the series converges to 4 with respect to the 3-adic absolute value, to -4 with respect to the 5-adic absolute value, and diverges with respect to all other absolute values on \mathbb{Q} .

- 8. Show that a subgroup of \mathbb{Z}_p is open if and only if it has finite index.
- 9. Let \widehat{R} be the completion of a ring R with respect to a non-archimedean absolute value |-|. Prove that $|\widehat{R}| = |R|$.
- 10. Let |-| and |-|' be two absolute values on a field K. Prove that the following are equivalent:
 - (i) |-| and |-|' define the same topology on K.
 - (ii) $|x| < 1 \implies |x|' < 1$ for all $x \in K$.
 - (iii) There exists a real number s > 0 such that $|x|^s = |x|'$ for all $x \in K$.

Deduce that the completion of K only depends to the equivalence class of the absolute value.

- 11. Let K be a field with an absolute value |-|. Prove that the following are equivalent:
 - (i) |-| is non-archimedean (i.e. satisfies the strong triangle inequality).
 - (ii) The image of the natural map $\mathbb{Z} \to K$ is a bounded subset of K.
 - (iii) $|x| \le 1 \implies |x+1| \le 1$ for all $x \in K$.

Note that it is not necessary to use that |-| satisfies the triangle inequality for the equivalence (i) \iff (iii). Deduce that any absolute value on a field of positive characteristic is non-archimedean.

- 12. Let $X_1, X_2, ...$ be a sequence of Hausdorff topological rings with continuous homomorphisms $f_n : X_{n+1} \to X_n$ for $n \ge 1$. Let $X = \varprojlim_n X_n$. Show that X is closed inside the product topological ring $\prod_n X_n$.
- 13. Let R be a ring and let $x \in R$. Let S be the x-adic completion of R. Assume that R is x-torsionfree. Show that S is x-adically complete, and x-torsionfree.
- 14. Show that a non-archimedean absolute value on \mathbb{Q} is equivalent to $|-|_p$ for a *unique p*. Show that any archimedean absolute value on \mathbb{Q} is equivalent to the usual absolute value $|x| = \sqrt{x^2}$.
- 15. (Strassman's theorem) Let $f(T) = c_0 + c_1 T + c_2 T^2 + \ldots \in \mathbb{Z}_p[[T]]$ be a formal power series with $c_n \to 0$ as $n \to \infty$. Suppose that for some $N \ge 0$ we have $v_p(c_N) = 0$ and $v_p(c_n) > 0$ for all n > N. Show that $\#\{x \in \mathbb{Z}_p : f(x) = 0\} \le N$.