MATHEMATICAL TRIPOS PART III (2016–17)

Local Fields - Example Sheet 2 of 4

C. Johansson

- $|-|_p$ denotes the p-adic absolute value on \mathbb{Q}_p and v_p denotes the p-adic valuation.
 - 1. Let K/\mathbb{Q} be a finite extension and let $\mathcal{O}_K \subseteq K$ be the subring of algebraic integers. It is a basic fact of algebraic number theory that every nonzero ideal $I \subseteq \mathcal{O}_K$ has a unique factorization

$$I = \prod_{\mathfrak{p}} \mathfrak{p}^{e_{\mathfrak{p}}(I)}$$

where \mathfrak{p} ranges through the maximal ideals of \mathcal{O}_K and the $e_{\mathfrak{p}}(I) \in \mathbb{Z}_{\geq 0}$ are zero for all but finitely many \mathfrak{p} . Fix a maximal ideal \mathfrak{p} . Prove that the function $v_{\mathfrak{p}} : \mathcal{O}_K \to \mathbb{Z} \cup \{\infty\}$ defined by

$$v_{\mathfrak{p}}(x) = e_{\mathfrak{p}}(x\mathcal{O}_K)$$

if $x \neq 0$ and $v_{\mathfrak{p}}(0) = \infty$ defines a discrete valuation on \mathcal{O}_K . If $p \in \mathfrak{p}$, prove that $v_{\mathfrak{p}}|_{\mathbb{Z}}$ is equivalent to v_p . We denote the completion of K with respect to $v_{\mathfrak{p}}$ by $K_{\mathfrak{p}}$.

- 2. Using the previous exercise, or otherwise, find a valued field K and a finite extension L/K such that the absolute value on K has more than one extension to L.
- 3. Let K be a valued field with valuation ring \mathcal{O}_K and let I be a finitely generated ideal. Show that I is principal. Deduce that \mathcal{O}_K is a Noetherian ring if and only if K is a discretely valued field.
- 4. Let K be a complete valued field with valuation v and let $f(x) = a_0 + a_1 x + \cdots + a_{n-1}x^{n-1} + x^n \in K[x]$. Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in a splitting field L of f over K, and let w be the valuation on L extending v. Prove that

$$f_r(x) = \prod_{i:w(\alpha_i)=r} (x - \alpha_i) \in K[x]$$

for any $r \in \mathbb{R}$ (if you find the general case tricky, try the case when L/K is separable first). Deduce that f has at least as many factors in K[x] as there are line segments on its Newton polygon.

- 5. In this exercise you should use the conclusions of Exercise 4, even if you have not completed it. Work over \mathbb{Q}_2 .
 - (i) Consider $f(x) = 1 x/2 x^2/2 + x^3 \in \mathbb{Q}_2[x]$. Draw the Newton polygon of f and show that f has three roots in \mathbb{Q}_2 . Can you prove this using Hensel's Lemma?
 - (ii) Consider $g(x) = x^5 + 2x^2 + 4 \in \mathbb{Q}_2[x]$. Draw the Newton polygon of g and show that g has a factor of degree 2 and another factor of degree 3. Can you prove that both these factors are irreducible?

hcj24@cam.ac.uk

- (iii) Give an example of a polynomial in $\mathbb{Q}_2[x]$ which is reducible and whose Newton polygon has a single line segment.
- 6. Let $p > 2, n \ge 1$ and let $\Phi_{p^n}(x) = x^{p^{n-1}(p-1)} + x^{p^{n-1}(p-2)} + \dots + x^{p^{n-1}} + 1$ be the p^n -th cyclotomic polynomial. It is irreducible over \mathbb{Q}_p (you may assume this). Let $K = \mathbb{Q}_p(\zeta_{p^n})$, where ζ_{p^n} is a primitive p^n -th root of unity, and let w denote the unique extension of v_p to K. Define $f_n(x) = \Phi_{p^n}(x+1)$. By computing the first and last coefficient of $f_n(x)$, prove that

$$w(\zeta_{p^n}^i - 1) = \frac{1}{p^{n-1}(p-1)}$$

for all n and all i coprime to p.

- 7. Compute the Mahler expansions of the polynomials x^3+4x+7 and $x^4+8x^3+6x^2+5$.
- 8. Let K/\mathbb{Q}_p be a finite extension and let $a \in \mathfrak{m}_K$. We can define a function $\mathbb{Z}_p \to K$, denoted by $(1+a)^x$, by the Mahler expansion

$$(1+a)^x := \sum_{n=0}^{\infty} \binom{x}{n} a^n.$$

- (i) When $x \in \mathbb{Z}_{\geq 0}$, prove that the right hand side above is equal to $(1+a)^n$ in the usual sense. Then show that $(1+a)^{x+y} = (1+a)^x (1+a)^y$ and $(1+a)^{xy} = ((1+a)^x)^y$ (make sense of the right hand side!) for all $x, y \in \mathbb{Z}_p$.
- (ii) Consider $K = \mathbb{Q}_p(\zeta_{p^n})$ where ζ_{p^n} is a primitive p^n -th root of unity. Let $\lambda_i = \zeta_{p^n}^i 1$ for any $i = 0, 1, ..., p^n 1$; by Exercise 6 we may define $(1 + \lambda_i)^x$ for any i. Fix $m \in \{0, 1, ..., p^n 1\}$. Prove that

$$x \mapsto \frac{1}{p^n} \sum_{i=0}^{p^n-1} \zeta_{p^n}^{-im} (1+\lambda_i)^x$$

is equal to 1 if $x \in m + p^n \mathbb{Z}_p$, and 0 otherwise.

- (iii) Use this to give a different proof that the Mahler expansion of any continuous function $f : \mathbb{Z}_p \to \mathbb{Q}_p$ tends to zero.
- 9. (Continuity of roots) Let K be a complete valued field and let \overline{K} be an algebraic closure of K with the extended absolute value. Let $f(x) = a_0 + a_1 x + \cdots + x^n$ and $g(x) = b_0 + b_1 x + \cdots + x^n$ be monic polynomials in K[x], and let $\beta_1, \ldots, \beta_n \in \overline{K}$ be the roots of g. If $\alpha \in \overline{K}$ is a root of f, prove that there exists an i such that

$$|\alpha - \beta_i| \le \max_{i=0,\dots,n-1} \left(|a_i - b_i|^{1/n} |\alpha|^{i/n} \right).$$

(*Hint: Consider* $g(\alpha) - f(\alpha) = g(\alpha) = \prod_i (\alpha - \beta_i)$.) Reformulating it somewhat imprecisely, if the coefficients of g are close enough to those of f, then there is a root of g close to α .

10. (Krasner's Lemma) Let K be a complete valued field and let \overline{K} be an algebraic closure of K with the extended absolute value. Let $\alpha \in \overline{K}$ be separable and let $\alpha_2, \ldots, \alpha_n \in \overline{K}$ be the K-conjugates of α . If $\beta \in \overline{K}$ is such that

$$|\alpha - \beta| < |\alpha - \alpha_i|$$

for i = 2, ..., n, show that $K(\alpha) \subseteq K(\beta)$. (*Hint: Let* L *be the Galois closure of* $K(\alpha, \beta)$ over $K(\beta)$, and show that $|\alpha - \sigma(\alpha)| < |\alpha - \alpha_i|$ for all i = 2, ..., n and $\sigma \in \text{Gal}(L/K(\beta))$.)

- 11. Let L/\mathbb{Q}_p be a finite extension. Show, using the two previous exercises or otherwise, that we can find a finite extension K/\mathbb{Q} and a maximal ideal \mathfrak{p} containing p such that $L = K_{\mathfrak{p}}$ (in the notation of Exercise 1).
- 12. If you have never seen it before, prove (or look up) the Baire Category Theorem: If X is a complete metric space and U_i , i = 1, 2, ... is a sequence of open dense subsets in X, then $\bigcap_{i=1}^{\infty} U_i \neq \emptyset$ (in fact it is dense in X). Use it to prove that an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p is not complete with respect to the extended absolute value.
- 13. Consider an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p with the extended absolute value. Let \mathbb{C}_p denote its completion. Prove that \mathbb{C}_p is algebraically closed.
- 14. This exercise is for enthusiasts. Let V be a Banach space over \mathbb{Q}_p , i.e. a complete normed vector space over \mathbb{Q}_p . Let || - || be the norm on V. A collection $e_i, i \in I$, of elements in V is called an *orthonormal basis* for V if any $v \in V$ can be written uniquely as an expansion

$$v = \sum_{i \in I} a_i e_i$$

for $a_i \in \mathbb{Q}_p$ tending to zero, and moreover

$$||v|| = \max_{i \in I} |a_i|_p.$$

By " a_i tending to zero" we mean that for every $\epsilon > 0$, the set $\{i \in I \mid |a_i|_p > \epsilon\}$ is finite.

- (i) Prove that if V has an orthonormal basis, then $||V|| = \{p^n \mid n \in \mathbb{Z}\} \cup \{0\}$, or in short $||V|| = |\mathbb{Q}_p|_p$.
- (ii) Prove that, for any V, we can find a norm || ||' equivalent to || || such that $||V||' = |\mathbb{Q}_p|_p$.
- (iii) Prove the converse to the first part: If $||V|| = |\mathbb{Q}_p|_p$, then V has an orthonormal basis.

Thus, while there is no notion of a Hilbert space over \mathbb{Q}_p , Banach spaces over \mathbb{Q}_p carry features analogous to those of Hilbert spaces over \mathbb{R} or \mathbb{C} .