MATHEMATICAL TRIPOS PART III (2016–17)

Local Fields - Example Sheet 4 of 4

C. Johansson

A local field K has valuation ring \mathcal{O}_K , normalised discrete valuation v_K , uniformiser π_K , and residue field k_K , and $q = \#k_K$ is a power of p. We fix an algebraic closure \overline{K} of K and consider all algebraic extensions of K as subfields of \overline{K} .

1. Let (I, \leq) be a directed system. Let $J \subseteq I$ be a subset such that for all $i \in I$, there exists $j \in J$ with $i \leq j$. Show that (J, \leq) is a directed system. If $(G_i, f_{ik})_{i,k \in I, i \leq k}$ is an inverse system of topological groups indexed by I, then $(G_i, f_{ik})_{i,k \in J, i \leq k}$ is an inverse system indexed by J. Show that there is a natural isomorphism

$$\varprojlim_{i\in I} G_i \xrightarrow{\sim} \varprojlim_{j\in J} G_j$$

- 2. Let M/K be a Galois extension of fields (not necessarily finite).
 - (i) Let I be the directed system of finite Galois subextensions L/K of M/K. Prove that the map

$$\phi : \operatorname{Gal}(M/K) \to \prod_{L \in I} \operatorname{Gal}(L/K);$$

$$\phi(\sigma) = (\sigma|_L)_{L \in I},$$

is injective with image $\varprojlim_{L \in I} \operatorname{Gal}(L/K)$.

- (ii) Show that $\varprojlim_{L \in I} \operatorname{Gal}(L/K)$ is a compact Hausdorff space, when each $\operatorname{Gal}(L/K)$ is given the discrete topology (which is also its Krull topology). You may use the fact that an arbitrary product of compact topological spaces is compact (Tychonoff's Theorem).
- (iii) Show that ϕ is a homeomorphism onto its image, and deduce that $\operatorname{Gal}(M/K)$ is compact and Hausdorff.
- 3. Let M/K be a Galois extension of fields. Prove that the map $L \mapsto \text{Gal}(M/L)$ defines a bijection between the subextensions L/K of M/K and the closed subgroups of Gal(M/K), with inverse $H \mapsto M^H = \{x \in M \mid h(x) = x \ \forall h \in H\}$.
- 4. Consider the directed set $(\mathbb{Z}_{>1}, |)$, i.e. *a* is "less than or equal to" *b* if $a \mid b$.
 - (i) Show that $(\mathbb{Z}/n\mathbb{Z}, f_{m,n})_{n.m \in \mathbb{Z}_{\geq 1}, m \mid n}$ is an inverse system of topological groups, where $\mathbb{Z}/n\mathbb{Z}$ is given the discrete topology and $f_{m,n} : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is the natural map (for $m \mid n$).
 - (ii) Put $\widehat{\mathbb{Z}} = \varprojlim_{n \in \mathbb{Z}_{\geq 1}} \mathbb{Z}/n\mathbb{Z}$. Let q be a prime power and let $\overline{\mathbb{F}}_q$ be an algebraic closure of \mathbb{F}_q . Show that there is an isomorphism $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \cong \widehat{\mathbb{Z}}$ sending $1 \in \widehat{\mathbb{Z}}$ to the q-th power Frobenius map on $\overline{\mathbb{F}}_q$.

- (iii) Show that $\mathbb{Z} \subseteq \widehat{\mathbb{Z}}$ is a non-closed subgroup, and compute its fixed field in $\overline{\mathbb{F}}_q$ under the isomorphism $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \cong \widehat{\mathbb{Z}}$.
- 5. Let K/\mathbb{Q} be a finite extension with ring of algebraic integers \mathcal{O}_K , and let $\mathfrak{p} \subseteq \mathcal{O}_K$ be a maximal ideal containing p. Recall the valuation $v_{\mathfrak{p}}$ on K and the completion $K_{\mathfrak{p}}$ from Question 1, Example Sheet 2. Assume that K/\mathbb{Q} is Galois. Show that $K_{\mathfrak{p}}/\mathbb{Q}_p$ is Galois, and that the homomorphism

$$\operatorname{Gal}(K_{\mathfrak{p}}/\mathbb{Q}_p) \to \operatorname{Gal}(K/\mathbb{Q});$$

$$\sigma \mapsto \sigma|_K,$$

is injective. Show that the image of this map consists of all $\sigma \in \text{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}) = \mathfrak{p}$ (this subgroup is called the *decomposition group* of K/\mathbb{Q} at \mathfrak{p}).

- 6. Let R be a ring and let $F(X, Y) \in R[[X, Y]]$ be a formal group over R.
 - (i) Let $g(X) \in R[[X]]$ and assume that $g(X) \equiv aX$ modulo X^2 , where $a \in R^{\times}$. Prove that there exists a power series $h(X) \in R[[X]]$ such that g(h(X)) = X.
 - (ii) Prove that F(X,0) = X (*Hint: Put* f(X) = F(X,0), and consider f(f(X))).
 - (iii) Show that there exists a power series $i(X) \in R[[X]]$ with $i(X) \equiv -X$ modulo X^2 such that F(X, i(X)) = 0. Compute i(X) for $F = \widehat{\mathbb{G}}_m$.
- 7. Let K be a local field and let L/K and M/L be finite abelian extensions. Show that $N(LM/K) = N(L/K) \cap N(M/K)$ and $N((L \cap M)/K) = N(L/K)N(M/K)$.
- 8. Prove the Existence Theorem: If K is a local field and $H \subseteq K^{\times}$ is an open subgroup of finite index, show that there is a finite abelian extension L/K such that N(L/K) = H. You may use the theorem about the norm groups of Lubin– Tate extensions stated in lectures. Show also that if K has characteristic 0, then any finite index subgroup of K^{\times} is automatically open.
- 9. Redo Questions 9 and 13 from Example Sheet 3 using local class field theory, except for the computation of the *lower* ramification groups in Question 9.
- 10. Let p > 2 and let $\zeta \in \mathbb{Q}_p$ be a (p-1)-th root of unity.
 - (i) Show that the extension K_{ζ}/\mathbb{Q}_p obtained by adjoining a root of the polynomial $X^{p-1} \zeta p$ is Galois, and totally ramified of degree p-1
 - (ii) Show that any totally ramified extension K/\mathbb{Q}_p of degree p-1 is equal to K_{ζ} for some (p-1)-th root of unity ζ .
 - (iii) Find the ζ such that $K_{\zeta} = \mathbb{Q}_p(\zeta_p)$, where ζ_p is a primitive *p*-th root of unity.
- 11. Let K be a local field and let L/K be a finite abelian extension. Let $n \in \mathbb{Z}_{\geq 0}$. Let π be a uniformizer of K and let $L_{n,\pi}$ be the field of π^n -division points for a Lubin–Tate \mathcal{O}_K -module for π . Show that $U_K^{(n)} \subseteq N(L/K)$ if and only if there exists a finite unramified extension M/K such that $L \subseteq L_{n,\pi}M$.

- 12. Let K be a local field, and let π_1, π_2 be uniformizers in K. Let $n \in \mathbb{Z}_{\geq 0}$ and let L_{n,π_i} be the field of π^n -division points of a Lubin-Tate \mathcal{O}_K -module for $\pi_i, i = 1, 2$. Set $L_{\pi_i} = \bigcup_{n=1}^{\infty} L_{n,\pi_i}$ for i = 1, 2. Find a condition on π_1 and π_2 that is equivalent to $L_{n,\pi_1} = L_{n,\pi_2}$. Deduce that $L_{\pi_1} = L_{\pi_2}$ if and only if $\pi_1 = \pi_2$. Show also that we may find a finite unramified extension M/K, depending on n, such that $L_{n,\pi_1}M = L_{n,\pi_2}M$.
- 13. The Hilbert norm residue symbol $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2 \times \mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2 \to \{\pm 1\}$ is defined by

$$(a,b)_p = \begin{cases} 1 & \text{if } ax^2 + by^2 = 1 \text{ for some } x, y \in \mathbb{Q}_p \\ -1 & \text{otherwise.} \end{cases}$$

- (i) Show that if $K = \mathbb{Q}_p(\sqrt{a})$ then $(a, b)_p = 1$ if and only if $b = N_{K/\mathbb{Q}_p}(\beta)$ for some $\beta \in K$. Deduce that $(a, b)_p = (a, -ab)_p$, and that $(\cdot, \cdot)_p$ is bilinear.
- (ii) Find a basis for $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$ as an \mathbb{F}_2 -vector space and compute the matrix of $(\cdot, \cdot)_p$ relative to this basis. Deduce that the Hilbert norm residue symbol is bilinear and non-degenerate.
- 14. Let K be a field and let $f(X) \in K[X]$ be a separable polynomial of degree n, with splitting field L/K. There is a surjective ring homomorphism $\phi : K[X_1, ..., X_n] \rightarrow L$ given by $X_i \mapsto \alpha_i$, where $\alpha_1, \ldots, \alpha_n$ are the roots of f. Let I denote the kernel of ϕ . If $\sigma \in S_n$, the symmetric group on $\{1, \ldots, n\}$, then σ defines an automorphism of $K[X_1, ..., X_n]$ given by

$$(\sigma F)(X_1, ..., X_n) = F(X_{\sigma(1)}, ..., X_{\sigma(n)}).$$

Show that the Galois group $\operatorname{Gal}(f/K) := \operatorname{Gal}(L/K)$ of f can be identified with those $\sigma \in S_n$ such that $\sigma(I) = I$. We will think of Galois group of polynomials as permutation groups on the roots.

Now consider an irreducible polynomial $f(X) \in \mathbb{Q}[X]$, with roots $\alpha_1, ..., \alpha_n$ inside some algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p . Show that $\operatorname{Gal}(f/\mathbb{Q}_p) \subseteq \operatorname{Gal}(f/\mathbb{Q})$ as permutation groups. Now assume that f is monic, and in $\mathbb{Z}[X]$. Let $\overline{f} \in \mathbb{F}_p[X]$ denote the reduction of f modulo p. If \overline{f} is separable (i.e. p does not divide the discriminant of f), show that there is natural bijection between the roots of f in $\overline{\mathbb{Q}}_p$ and the roots of \overline{f} in the residue field of $\overline{\mathbb{Q}}_p$ (which is an algebraic closure of \mathbb{F}_p). Then show that $\operatorname{Gal}(f/\mathbb{Q}_p) = \operatorname{Gal}(\overline{f}/\mathbb{F}_p)$ as permutation groups with respect to this bijection, and conclude that we have $\operatorname{Gal}(\overline{f}/\mathbb{F}_p) \subseteq \operatorname{Gal}(f/\mathbb{Q})$ as permutation groups in a natural way.

How does this relate to Question 5?