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A list of matlab tutorials can be found under http://www.math.chalmers.se/~cohend/
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Task 1: The goal of this task is to simulate a Brownian motion/Wiener process (W (t ))t∈[0,1].

(a) Write a Matlab code to simulate one realisation of a discretised Brownian motion on
[0,1] for different values of ∆t . Consider grid points given by tm = m∆t , where ∆t =
2−4,2−6, and 2−8. Use the definition of a Brownian motion to compute W (0), W (∆t ),
W (2∆t ), etc. Plot your numerical results.
You may use the following

c l e a r a l l
rng(113) % set the seed for the command rand
% discretised BM for dt=2^(-4)
Tend= ... ;dt= ... ;N= ...;

5 W(1)= ...; % BM starts at 0 a.s.
f o r n=...
dW= s q r t(dt)*randn(1,1); % increment/normal rand. var.
W(n+1)= ... ; % iter. procedure using def. of BM

end
10 % plot W against time

f i g u r e(),
p l o t([0:dt:Tend],W,’b’,’LineWidth’,3)
...
% repeat the above for another step size dt

15 ...

(b) With the help of the above part, compute the mean of W (t ) over 200, 2000, 20000
trajectories of W (t ) on [0,1] with ∆t = 2−8. Plot your results. You may use a matrix to
generate all the needed normally distributed random variables as described below

...
dW= s q r t(dt)*randn(M,N+1); % gen. M samples of Wiener increments
...
Wmean=mean(...);

5 ...

(c) Finally, in the same figure, display 5 sample paths of W (t ) and the mean over 50000
trajectories of W (t ) on [0,1] for ∆t = 2−8.

Task 2: The goal of this task is to simulate a stochastic process.

(a) Write a Matlab code to simulate one realisation of the discretised stochastic process
(gBM) X (t ) = X0 exp((µ− 1

2σ
2)t +σW (t )) for tm = m∆t , where µ= 2,σ= 1, X0 = 1 on
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[0,1] with ∆t = 2−4,2−6, and 2−8. Plot your numerical results. Observe that you may
use the previous task to generate the Wiener process W (t ).

...
X(1)=X0; % the process X starts at X0
f o r n=1:N
...

5 % iter. to compute the process X, where W is Wiener proc.
X(n+1)=X0*exp((mu-0.5*sigma^2)*n*dt+sigma*W(n+1));

end
...

(b) With the help of the above part, compute the mean of X (t ) on [0,1] over 200, 2000,
20000 trajectories of X (t ) with ∆t = 2−8. Can you guess (more or less) the value of
E[X (1)]?

(c) Finally, in the same figure, display 5 sample paths of X (t ) on [0,1] together with the
mean over 50000 trajectories of X (t ) for ∆t = 2−8.

Task 3: The main motivation for this task is to write a fast code for the simulation of a path of a
Wiener process/Brownian motion W (t ) for t ∈ [0,1].

To do this, we shall use the MATLAB function CUMSUM. Study this function, understand
and complete the following piece of code. Compare with your result obtained in Task 1.

% Simulation of path of WP/BM
c l e a r a l l
...
t = 0:dt:T; % discrete time grid

5 dW = ... ; % generate Wiener increments
W = [0 cumsum(dW)]; % Brownian path
% plot the Brownian path
...

Task 4: This task illustrates the numerical approximation by Euler–Maruyama’s scheme.

Consider the SDE (for times 0 ≤ t ≤ T )

dX (t ) =λX (t )dt +µX (t )dW (t )

X (0) = X0

with parameters X0 = 1,λ = 2,µ = 1,T = 1. For this particular problem, we know that the
exact solution reads X (t ) = X0 exp

(
(λ− 1

2µ
2)t +µW (t )

)
. Compute a discretised Brownian

motion over [0,1] with a very small discretisation parameter δt = 2−8. This is used to com-
pute our “exact solution” Xtrue, also called a reference solution. Apply Euler–Maruyama’s
method with 3 different time steps ∆t = 24δt ,22δt , and δt . Here, it is important to be on the
same discretised Brownian path as the one used for generating the exact solution. In three
different figures, display one realisation of the numerical solution together with the exact
solution.
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c l o s e a l l , c l e a r a l l
rng(100)
% parameters
lambda=2; mu=1; X0=1;

5 Tend=1; N=2^8; dt=Tend/N;
dW= s q r t(dt)*randn(1,N); % Brownian increments
% discretised Brownian path
W=...
% exact solution

10 Xtrue=X0*exp((lambda-0.5*mu^2)*([dt:dt:Tend])+mu*W);

%% First EM approx.
R=2^4; Dt=R*dt; L=N/R; % L EM steps of size Dt = R*dt
Xem=z e r o s(1,L); % preallocate for efficiency

15 f o r j=1:L
Winc=sum(dW(R*(j-1)+1:R*j)); % Winc for EM on the same BM as above
... ; % iter. for EM scheme with step Dt
Xem(j)= ... ; % store the result of EM

end
20 % first plot on first figure

...
f i g u r e()
p l o t([0:dt:Tend],[X0,Xtrue],’k-’), hold on
p l o t([0:Dt:Tend],[X0,Xem],’r--*’), hold off

25 ...

The expression Winc in the code above is computed as follows

Winc=W ( j∆t )−W (( j −1)∆t ) =W ( j Rδt )−W (( j −1)Rδt ) =
j R∑

k= j R−R+1
dWk ,

with dWk =W (kδt )−W ((k −1)δt ) the original Wiener increments.

Task 5: This task asks you to confirm numerically the weak order of convergence of Euler–Maruyama’s
scheme.

Consider the SDE from the previous exercise with parameters λ= 2,µ= 0.1, X0 = 1,T = TN =
1. Verify numerically that

eWeak
∆t :=

∣∣∣E[XN ]−E[X (tN )]
∣∣∣≤C∆t ,

where, for the exact solution, one has E[X (tN )] = E[X (1)] = eλ·1 (how do you get this?). In
order to approximate expectations, you may use a Monte-Carlo approximation with Ms =
50000 realisations of the numerical solution.

In order to display the results in a loglog plot, one computes (for example) 5 different ap-
proximations with Euler–Maruyama’s method with step sizes ∆t = 2pδt , where δt = 2−10

and p = 1, . . . ,5.
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...
Ms=50000; % number of paths sampled
Xem=z e r o s(5,1); % preallocate arrays containing num. sol.
f o r p=1:5 % take various Euler timesteps

5 Dt=2^(p-10);L=T/Dt; % L Euler steps of size Dt
Xtemp=X0*ones(Ms,1); % initial values
f o r j=1:L
Winc= ... ;
Xtemp= ... ; % Ms EM approximation samples

10 end
Xem(p)= ... ; % mean over Ms samples of EM at time Tend

end
Xerr=abs( ... ); % weak errors
% loglog plots

15 Dtvals=2.^( ... ); % array of time steps
f i g u r e()
...
l o g l o g(Dtvals,Xerr,’ks-’,Dtvals,Dtvals.^1,’r--’,’LineWidth’,2),
...

Task 6: This task asks you to confirm numerically the strong order of convergence of Euler–Maruyama’s
scheme.

Consider the SDE (geometric Brownian motion on 0 ≤ t ≤ T )

dX (t ) =λX (t )dt +µX (t )dW (t )

X (0) = X0

with parameters λ= 2,µ= 1, X0 = 1,T = TN = 1. Verify numerically that

estrong
∆t := E[|XN −X (TN )|] ≤C∆t 1/2,

where X (TN ) denotes the exact solution at time TN = 1 and XN the last step of Euler–
Maruyama’s method. In order to approximate the expectations, you may use Ms = 1000
samples.

In order to display the results in a loglog plot, one computes (for example) 5 different ap-
proximations with Euler–Maruyama’s method with step sizes ∆t = 2pδt , where δt = 2−10

and p = 1, . . . ,5.

...
Xerr=z e r o s(Ms,5); % preallocate array error
f o r s=1:Ms, % sample over discrete BM
...

5 W= ...; % discrete BM
Xtrue= ...; % exact sol.
f o r p=1:5
R=2^(p);Dt=R*dt;L=N/R; % L Euler steps of size Dt=R*dt
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XEM=Xzero;
10 f o r j=1:L

Winc= ...; % Wiener increm.
XEM= ...; % EM scheme

end
Xerr(s,p)= ... ; % error at T=1

15 end
end
% compute strong errors+plots
...

Some of the exercises are inspired by materials from D. Higham, A. Szepessy, .
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