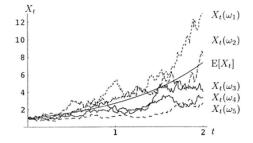
Crash course on numerics for SDEs

David Cohen

Umeå University and Chalmers University of Technology & University of Gothenburg http://www.math.chalmers.se/~cohend/

Support from: School of Mathematics and Statistics at Central South University and STINT Joint China-Sweden Mobility

Chapter 0: Introduction and Motivation



Thanks to Bernt Øksendal

Ordinary differential equations

Ordinary Differential Equations (ODE) often appear in the dynamical description of deterministic systems in physics, chemistry, biology, etc.

Ordinary Differential Equation = An equation that contains some derivatives of an unknown function (here, f and y_0 are given, y is unknown):

$$\begin{cases} \dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} y(t) = f(y(t)) \\ y(0) = y_0. \end{cases}$$

This can also be written in integral form (fundamental theorem of calculus "dy = f(y) dt"):

$$y(t) = y_0 + \int_0^t f(y(s)) \,\mathrm{d}s.$$

Stochastic differential equations

Recall: ODE $\frac{d}{dt}y(t) = f(y(t))$ or dy(t) = f(y(t))dt. What happens if f has some uncertainties or if the force acting on the model is random?

One must consider Stochastic Differential Equation (SDE):

 $\mathrm{d}X_t = f(X_t)\,\mathrm{d}t + g(X_t)\,\mathrm{d}W_t$

or in integral form

$$X_t = X_0 + \int_0^t f(X_s) \,\mathrm{d}s + \int_0^t g(X_s) \,\mathrm{d}W_s.$$

Here, the randomness is described by the term $g(X_t) dW_t$. We thus first need to define what random means and what this W_t is. Then, we should make sense of what it means that X_t is a solution to the SDE. Finally, one needs to find good numerical methods to approximate such problems.

Application in physics

Random harmonic oscillator: A model for a stochastic oscillator is the SDE $(\lambda, b, \sigma, x_0, x_1$ given)

$$\begin{cases} \ddot{X}_t = -\lambda^2 X_t - b\dot{X}_t + \sigma\zeta_t \\ X_0 = x_0 \\ \dot{X}_0 = x_1, \end{cases}$$

where ζ_t is a white noise (formally $\zeta_t = \dot{W}_t$).

Thanks to wikipedia.org

Application in physics

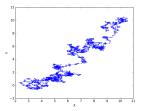
Particle in a gas: Consider a particle of unit mass moving with momentum P_t at time t in a gas.

It is subject to irregular bombardment by the ambient gas.

Newton's second law of motion gives us the SDE

$$\frac{\mathrm{d}P_t}{\mathrm{d}t} = -\lambda P_t + \sigma \zeta_t,$$

where $\lambda > 0$ is a dissipation constant and $\sigma \zeta_t$ a fluctuating force.



Thanks to wikipedia.org

Application in finance

Financial modelling: Price u(t) at time t of a risk-free asset with interest rate r obeys the ODE

```
\frac{\mathrm{d}u}{\mathrm{d}t} = ru.
```

On the stock market, stock prices fluctuate rapidly. We thus have to modify the constant r by a stochastic process $r + \sigma \zeta_t$ with a given parameter σ and a white noise ζ_t . Here, $\sigma \zeta_t$ models the volatility of the market.

This gives us the SDE

$$\frac{\mathrm{d}u_t}{\mathrm{d}t} = (r + \sigma\zeta_t)u_t.$$

Content of the crash course

SDE:
$$\mathrm{d}X_t = f(X_t) \,\mathrm{d}t + g(X_t) \,\mathrm{d}W_t$$
 or
 $X_t = X_0 + \int_0^t f(X_s) \,\mathrm{d}s + \int_0^t g(X_s) \,\mathrm{d}W_s.$

Crash course on numerics for SDEs:

- Background material (stoch. process, stoch. integral, SDE)
- First numerical schemes and convergence types
- Strong convergence of Euler–Maruyama scheme
- Weak convergence of Euler–Maruyama scheme