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Chemical kinetics is being used to model processes inside
the cell.

Different modeling regimes can be used—how do they
compare ?

We will look at:
m Mean exit times for jump versus diffusion.

m Moment accuracy of hybrid discrete/continuous
models.

m Relative noise strengths in hierarchies of gene
regulation models.
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Markov Jump Versus Diffusion

In many applications,including
m chemistry ,
m cell biology
m population dynamics ,
m epidemiology ,
we can model at different levels:
E.Q.
m CME (Jump): what is probability that we have 237
proteins at time t?
m CLE (Diffusion): what is probability that protein
concentration is between 2.7 and 3.1 at time t?
m RRE (mass action ODE): what is protein concentration
at time t?

These modeling regimes ‘converge’ when the population
size increases ...... how do we quantify this?
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Example: S = (), start with 10 molecules
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Example: S — (), start with 100 molecules
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Focus first on
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/ process, /(t)

Discrete states {0,1,2,...,M}, with 0 and M absorbing:

P(Z(t+h) =i+1]Z(t)
P(Z(t+h)=i—1|Z(t)=i) = Dih+o(h),

P(Z(t+h)=i|Z(t)=i) = 1— (B +Dh+o(h).
Here, B = Dg = By = Dy = 0.

Starting at state Z(0) = j, the expected time to be absorbed
into state 0 or M is given by U;, where

i) = Bih+o(h),

[ (Bl + Dl) _Bl T U 1
—D> (B2 +D2) —B> Ui 1
. By_, ; :
Un— 1
—Dm-1  (Bm—1 +Dm—1) M-1
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Numerical Analysis Viewpoint

Linear system can be written, for1 <i <M —1,

Bi + Dj U1 —Uig
2 2

Standard finite differences on the 2 point BVP ODE

(Ui+1 —2U; + Ui—l) T (Bi — Di) =-1

BOIFP ) + (Bx) - D) () = 1.

withu(a) = u(b) =0
Here b —a =M and we have Ax =1

Interesting regime is M — oo
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Diffusion Approximation

SDE:

dy(t) = (B(y(t)) - D(y(1))) dt

+vB(y (1)) dWa(t) — v/D(y(t)) dWa(t)

Let w(x) := E[T (x)] be the expected first time to hit a or b,
given that y(0) = x.

Then w(x) satisfies the same 2 point BVP ODE.
Want to show that this ODE ‘converges’ to the finite
difference scheme.

Focus on specific examples . ..
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Production from a source

0K x B—k and D;=0

Mean hitting times :
Jump process

Diffusion process

1 _e—2X L e—2a _e—2b 2b >
E |:_e—2b+e—2a ( 2 (e —€ X>+b_x)

_e—2x +e—2a e—Za i »
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Convergence: fixa=0and letb — o

With x = ab for fixed « € (0, 1), we have

|Jump — Diffusion| < C g~PMin{2(l-a).a}

where C is independent of b.
Example: k =5,a=0, a =1:

10°

Absolute Difference in Exit Time
5, 5 5, 5 5,

e,

Des Higham Stochastic Models/Gene Regulation

12/33


http://www.mims.manchester.ac.uk/

1% B.=i and D, =0

Mean hitting times :

Jump process
b—1

1 1
c s

Diffusion process
1 /e 2x _g2a b a2l
- X
e—2x - e—Za o X e2I
+{1—m} (Ina—lnx+e /a le

Des Higham Stochastic Models/Gene Regulation 13/33


http://www.mims.manchester.ac.uk/

Convergence

With x = ab for fixed a € (0, 1), we have
|Jump (with a = 0) — lim Diffusion| < Cb~2
a\,0

where C is independent of b.

Proof Uses the expansions

anl NN+ + = +0(n?), asn— oo
—_ = —_ —_—

— S 7 2n J )

X et
/Tdtzlnx+fy+o(1), asx — 0,

— o0

where the Euler-Mascheroni constant ~ = 0.5772..., and
X et ex 1
/ —dt:—(1+—+O(X_2)), asX — oo.
oo L X X
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Absolute Difference in Exit Time
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Degradation

X 20 Bi=0 and D =i
Mean hitting times :

Jump process

Diffusion process
e2x _g2a /1 " b g2l
er - eZa 1 - X e—2|
+[1 - m] (E (Inx —lna—e /a l—dl))
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Convergence

With x = ab for fixed a € (0, 1), we have

—In2

lim lim (Jump — Diffusion) =

a\,0 b—oo
Proof Uses asymptotic expansions for

o0 e—t

Ei(x) :/ Tdt’ x > 0.
X

Note: the actual hitting times grow like In(b), so we have
relative convergence like O(1/Inb).
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Example,c =5, a =1, a
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Discussion

This approach of expanding exact solutions  breaks down
for more complicated scenarios. E.g.
05 xS

involves integrals of the incomplete Gamma function.

Is there a general framework for analysing finite difference
schemes in this non-standard context?
At best, convergence is relative not absolute.

Des Higham Stochastic Models/Gene Regulation 19/33


http://www.mims.manchester.ac.uk/

Technical Issue

Looking at mean hitting times is practically relevant, and
avoids pitfalls that can arise through the SDE breaking down.
E.g. consider the reversible isometry

€1 Xy
Xl S X2

Co X
Gillespie , J. Phys. Chem. 2002

The Chemical Langevin and Fokker—Planck Equations for
the Reversible Isomerization Reaction

SDE:
dY = (—c1Y + ca(K = Y)) dt — /e YAWy + /co(K — V)dW,
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C1 = C, steady state distributions?

(a)

log,q PS(J()I

Des Higham
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Chemical Kinetics (Gillespie 1976)

N chemical species, M types of reaction (e.g. A+B — C)
State vector

Each reaction, 1 < < M, is described by

m a stoichiometric vector v; € RN such that
X(t) — X(t) + vj,

m a propensity function a;(X(t)) such that the prob. of this
reaction taking place over time [t,t + dt) is a;(X(t)) dt

Basel Des Higham Stochastic Models/Gene Regulation 22/33
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Discrete state space, continuous time Markov chain.
Let P(x,t) be the prob. that X(t) =

M
PEL S (@ - m)P(x —1.0) ~ 3 (P(x.)
j=1

Gillespie’s stochastic simulation algorithm gives a way to
compute realisat ions of (t, X(t)).

Takes account of every reaction = expensive .
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CLE

SDE in RN,

z:u,aJ dtJrz:vH/aJ )) dW;(t

EuIer—Maruyama computes apprOX|mate realisations of

(t, Y(1))-

(Switching off the noise gives the RRE.)
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Central Dogma of Cell Biology

DNA
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l,llvfnrmahonf DNA duplicates
SR MERATRLRARLRAPGLRAT e
SRV VORIV ERS
DNA |MBFI!VIa“Dn

¥
M Transcription
RIN4 synthesis

nucleus

| W
Infarmation
cytoplasm
nuclear envelope

Translation
Protein synthesis

Protein
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Gene Transcription Model

Raser & O’Shea, Science , 2004:

D* X D* + M

and

M - M+P

M 5 ¢

P 2 ¢
Hybrid approach (e.g. Paszek, Bull. Math. Biol. , 2007):
treat the D; and D} as discrete and M and P as continuous:
switching ODE

Des Higham
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Alternative Hybrid Model

Let r(t) denote the number of active genes at time t.
Then r(t) takes values in {0,1,2,3,..., m} driven by a
continuous time Markov chain.

Using the CLE framework for the remaining reactions we
get a switching SDE

] - [ 2]

P koM —1pP
dWwW;
+ \/k,— —\/’er 0 0 dW2
0 o VKM — /7P | | dWs
dW,
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Means, Variances and Correlations

There is a generalized version of Ito’s Lemma for switching
SDEs (Mao and Yuang, 2006).

Using this:

New Result E[r], E[M], E[P], E[Mr], E[Pr], E[MP], E[r?],
E[M?] and E[P?] for the hybrid model match those for the full
CME.
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“Two Switch” Model

Ur Up
3 MRNA —————» Protein

ldR ldp
0
|

We can write this as a first order network, and obtain ODEs
for first and second moments.

AND
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :
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greater than for no switch , yet
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :

noise strength for one or two switches is always
greater than for no switch , yet

two switches may be more or less noisy than one

These steady state results

Hybrid switch plus diffusion model correctly reproduces
first and second moments.

Des Higham Stochastic Models/Gene Regulation 30/33


http://www.mims.manchester.ac.uk/

Autoregulation

0 » mRNA » Protein
Cs kp

Cp TP

Consider the case where the protein linearly enhances its
own production rate.
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Autoregulation: Summary of Results

First and second moments (and correlations) of mMRNA
and protein increase monotonically — with feedback
strength, a.
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Autoregulation: Summary of Results

First and second moments (and correlations) of mMRNA
and protein increase monotonically — with feedback

strength, a.

Not true for variance or noise strength .
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Autoregulation: Summary of Results

First and second moments (and correlations) of mMRNA
and protein increase monotonically — with feedback

strength, a.

Not true for variance or noise strength .

At steady state (stable for o < (cpyp)/(Cgrip)) :

Des Higham Stochastic Models/Gene Regulation

32/33


http://www.mims.manchester.ac.uk/

Autoregulation: Summary of Results

First and second moments (and correlations) of mMRNA
and protein increase monotonically — with feedback
strength, a.

Not true for variance or noise strength .

At steady state (stable for o < (cpyp)/(Cgrip)) :
variance and noise strength increase monotonically with «
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Hybrid switch plus diffusion model correctly reproduces
first and second moments.
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What's new?
Rigorous results on mean hitting times and first/second
moments for simple models.

m CLE and CME don’t match well
m CLE formulation can break down

m ODE + switch underestimates the variance

m Diffusion + switch gets it right

m Extra switching or autoregulation increases the
noise strength

What's Next?
m Spatial effects (subdiffusion), delays, cell growth
m Other types of regulation
m Multiscale simulation algorithms
m Inference
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