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Motivation

Chemical kinetics is being used to model processes inside
the cell.

Different modeling regimes can be used–how do they
compare ?

We will look at:

Mean exit times for jump versus diffusion.

Moment accuracy of hybrid discrete/continuous
models.

Relative noise strengths in hierarchies of gene
regulation models.
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Markov Jump Versus Diffusion

In many applications,including
chemistry ,
cell biology ,
population dynamics ,
epidemiology ,

we can model at different levels:
E.g.

CME (Jump): what is probability that we have 237
proteins at time t?
CLE (Diffusion): what is probability that protein
concentration is between 2.7 and 3.1 at time t?
RRE (mass action ODE): what is protein concentration
at time t?

These modeling regimes ‘converge’ when the population
size increases . . . . . . how do we quantify this?
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Example: S c=1→ ∅, start with 10 molecules
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Example: S c=1→ ∅, start with 100 molecules
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Focus first on mean hitting time

b

a

x

T (x) := inf (t : Z(t) = a or Z(t) = b, given Z(0) = x)
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Focus first on mean hitting time
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Markov jump /birth & death process, Z(t)

Discrete states {0, 1, 2, . . . , M}, with 0 and M absorbing:

P (Z(t + h) = i + 1 | Z(t) = i) = Bih + o(h),

P (Z(t + h) = i − 1 | Z(t) = i) = Dih + o(h),

P (Z(t + h) = i | Z(t) = i) = 1− (Bi + Di)h + o(h).

Here, B0 = D0 = BM = DM = 0.
Starting at state Z(0) = j , the expected time to be absorbed
into state 0 or M is given by Uj , where
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Numerical Analysis Viewpoint

Linear system can be written, for 1 ≤ i ≤ M − 1,

Bi + Di

2
(Ui+1 − 2Ui + Ui−1) + (Bi − Di)

Ui+1 − Ui−1

2
= −1

Standard finite differences on the 2 point BVP ODE

B(x) + D(x)

2
u′′(x) + (B(x)−D(x)) u′(x) = −1,

with u(a) = u(b) = 0

Here b − a = M and we have ∆x = 1

Interesting regime is M →∞
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Diffusion Approximation

SDE:

dy(t) = (B(y(t))− D(y(t))) dt

+
√

B(y(t)) dW1(t)−
√

D(y(t)) dW2(t)

Let w(x) := E[T (x)] be the expected first time to hit a or b,
given that y(0) = x .

Then w(x) satisfies the same 2 point BVP ODE.

Want to show that this ODE ‘converges’ to the finite
difference scheme.

Focus on specific examples . . .
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Production from a source

∅ k→ X Bi = k and Di = 0

Mean hitting times :
Jump process

b − x
k

Diffusion process

1
k

[−e−2x + e−2a

−e−2b + e−2a

(−e−2b

2

(

e2b − e2x
)

+ b − x
)

+

(

1− −e−2x + e−2a

−e−2b + e−2a

) (

a− x +
e−2a

2

(

e2x − e2a
)

)]
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Convergence: fix a = 0 and let b →∞
With x = αb for fixed α ∈ (0, 1), we have

|Jump− Diffusion| ≤ C e−b min{2(1−α),α}

where C is independent of b.
Example : k = 5, a = 0, α = 1
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Production

∅ c X→ X Bi = i and Di = 0

Mean hitting times :
Jump process

1
c

b−1
∑

s=x

1
s

Diffusion process

1
c

(

e−2x − e−2a

e−2b − e−2a

(

−e−2b
∫ b

x

e2l

l
dl + ln b − ln x

)

+

[

1− e−2x − e−2a
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](

ln a− ln x + e−2a
∫ x

a
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l
dl

))
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Convergence

With x = αb for fixed α ∈ (0, 1), we have

|Jump (with a = 0)− lim
a↘0

Diffusion| ≤ Cb−2

where C is independent of b.

Proof Uses the expansions
n

∑

s=1

1
s

= ln n + γ +
1

2n
+ O(n−2), as n→∞,

∫ x

−∞

et

t
dt = ln x + γ + o(1), as x → 0,

where the Euler-Mascheroni constant γ = 0.5772 . . ., and
∫ x

−∞

et

t
dt =

ex

x

(

1 +
1
x

+ O(x−2)

)

, as x →∞.
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Example, c = 5, a = 10−3, α =1
2
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Degradation

X c X→ ∅ Bi = 0 and Di = i

Mean hitting times :
Jump process

1
c

x
∑

s=a+1

1
s

Diffusion process
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Convergence

With x = αb for fixed α ∈ (0, 1), we have

lim
a↘0

lim
b→∞

(Jump − Diffusion) =
− ln 2

c

Proof Uses asymptotic expansions for

E1(x) =

∫ ∞

x

e−t

t
dt , x > 0.

Note : the actual hitting times grow like ln(b), so we have
relative convergence like O(1/ ln b).
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Example, c = 5, α =1
2, a = 10−2, 10−4, 10−8
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= 0.1386 . . .
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Discussion

This approach of expanding exact solutions breaks down
for more complicated scenarios. E.g.

∅ k→ X c X→ ∅

involves integrals of the incomplete Gamma function.

Is there a general framework for analysing finite difference
schemes in this non-standard context?
At best, convergence is relative not absolute.
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Technical Issue

Looking at mean hitting times is practically relevant, and
avoids pitfalls that can arise through the SDE breaking down.
E.g. consider the reversible isometry

X1
c1 X1



c2 X2

X2

Gillespie , J. Phys. Chem. 2002
The Chemical Langevin and Fokker–Planck Equations for
the Reversible Isomerization Reaction

SDE:

dY = (−c1Y + c2(K − Y)) dt−
√

c1YdW1 +
√

c2(K − Y)dW2
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c1 = c2 steady state distributions?
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Chemical Kinetics (Gillespie 1976)

N chemical species, M types of reaction (e.g. A + B → C)
State vector

X(t) =











X1(t)
X2(t)

...
XN(t)











, X(0) = X0

Each reaction, 1 ≤ j ≤ M, is described by

a stoichiometric vector ν j ∈ R
N such that

X(t) 7→ X(t) + ν j ,

a propensity function aj(X(t)) such that the prob. of this
reaction taking place over time [t , t + dt) is aj(X(t)) dt
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CME

Discrete state space, continuous time Markov chain.

Let P(x, t) be the prob. that X(t) = x.

dP(x, t)
dt

=

M
∑

j=1

(aj(x − ν j)P(x − ν j , t)− aj(x)P(x, t))

Gillespie’s stochastic simulation algorithm gives a way to
compute realisat ions of (t , X(t)).

Takes account of every reaction⇒ expensive .
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CLE

SDE in R
N .

dY(t) =
M

∑

j=1

ν jaj(Y(t))dt +
M

∑

j=1

ν j

√

aj(Y(t)) dWj(t)

Euler–Maruyama computes approximate realisations of
(t , Y(t)).

(Switching off the noise gives the RRE.)
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Central Dogma of Cell Biology
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Gene Transcription Model

Raser & O’Shea , Science , 2004:

Di
ka→ D?

i

Di
kb← D?

i

D?

i
kr→ D?

i + M











1 ≤ i ≤ m

and

M
kp→ M + P

M
γr→ ∅

P
γp→ ∅

Hybrid approach (e.g. Paszek , Bull. Math. Biol. , 2007):
treat the Di and D?

i as discrete and M and P as continuous:
switching ODE
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Alternative Hybrid Model

Let r(t) denote the number of active genes at time t .
Then r(t) takes values in {0, 1, 2, 3, . . . , m} driven by a
continuous time Markov chain.
Using the CLE framework for the remaining reactions we
get a switching SDE :

d
[

M
P

]

=

[

kr r −γrM
kpM −γpP

]

dt

+

[ √
kr r −

√
γrM 0 0

0 0
√

kpM −
√

γpP

]









dW1

dW2

dW3

dW4









Basel Des Higham Stochastic Models/Gene Regulation 27 / 33

http://www.mims.manchester.ac.uk/


Means, Variances and Correlations

There is a generalized version of Ito’s Lemma for switching
SDEs (Mao and Yuang , 2006).

Using this:

New Result E[r], E[M], E[P], E[Mr], E[Pr], E[MP], E[r2],
E[M2] and E[P2] for the hybrid model match those for the full
CME.
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“Two Switch” Model

uA uBdA dB

uR

dR

uP

dP

∅∅
Active

Inactive

Bound

Unbound

AND mRNA Protein

We can write this as a first order network, and obtain ODEs
for first and second moments.
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :

noise strength for one or two switches is always
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :

noise strength for one or two switches is always
greater than for no switch , yet

two switches may be more or less noisy than one .
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :

noise strength for one or two switches is always
greater than for no switch , yet

two switches may be more or less noisy than one .

These steady state results do not reflect the transient
behaviour .
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“Two Switch” Model: Summary of Results

Variance can either increase or decrease when we add one
or two switches, but

at steady state :

noise strength for one or two switches is always
greater than for no switch , yet

two switches may be more or less noisy than one .

These steady state results do not reflect the transient
behaviour .

Hybrid switch plus diffusion model correctly reproduces
first and second moments.
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Autoregulation

mRNA Protein

α

∅∅

∅
cB

cD

kP

γP

Consider the case where the protein linearly enhances its
own production rate.
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Autoregulation: Summary of Results

First and second moments (and correlations) of mRNA
and protein increase monotonically with feedback
strength, α.
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Autoregulation: Summary of Results

First and second moments (and correlations) of mRNA
and protein increase monotonically with feedback
strength, α.

Not true for variance or noise strength .
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Autoregulation: Summary of Results

First and second moments (and correlations) of mRNA
and protein increase monotonically with feedback
strength, α.

Not true for variance or noise strength .

At steady state (stable for α < (cDγP)/(cBκP)) :
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Autoregulation: Summary of Results

First and second moments (and correlations) of mRNA
and protein increase monotonically with feedback
strength, α.

Not true for variance or noise strength .

At steady state (stable for α < (cDγP)/(cBκP)) :
variance and noise strength increase monotonically with α
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Autoregulation: Summary of Results
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Summary

What’s new?
Rigorous results on mean hitting times and first/second
moments for simple models.

CLE and CME mean hitting times don’t match well
CLE formulation can break down
ODE + switch underestimates the variance
Diffusion + switch gets it right
Extra switching or autoregulation increases the
noise strength

What’s Next?
Spatial effects (subdiffusion), delays, cell growth
Other types of regulation
Multiscale simulation algorithms
Inference
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