Multi-Level Monte Carlo

Des Higham

Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk

Outline

- Weak versus strong convergence
- Financial options
- Complexity of Monte Carlo

■ Multi-level Monte Carlo (Mike Giles, Report NA-06/03, Oxford Un. Comp. Lab., 2006)

- New strong convergence results for path-dependent options-joint work with Mike Giles and Xuerong Mao

Weak versus Strong

SDE:

$$
d \mathbf{S}(t)=a(\mathbf{S}(t)) d t+b(\mathbf{S}(t)) d \mathbf{W}(t)
$$

$\mathrm{S}(0)$ given and $0 \leq t \leq T$

Euler-Maruyama

$$
\begin{gathered}
\mathbf{S}_{n+1}=\mathbf{S}_{n}+a\left(\mathbf{S}_{n}\right) h+b\left(\mathbf{S}_{n}\right) \Delta \mathbf{W}_{n} \\
\Delta \mathrm{~W}_{n}:=\mathrm{W}\left(t_{n+1}\right)-\mathrm{W}\left(t_{n}\right), \quad t_{n}=n h, \quad h=T / K
\end{gathered}
$$

Weak versus Strong

Weak Convergence $\left|\mathbb{E}\left[\mathrm{S}\left(t_{n}\right)\right]-\mathbb{E}\left[\mathbf{S}_{n}\right]\right| \leq C h$

Strong Convergence

$$
\mathbb{E}\left[\sup _{0 \leq n \leq K}\left|\mathbf{S}\left(t_{n}\right)-\mathrm{S}_{n}\right|\right] \leq C h^{\frac{1}{2}}
$$

Strong convergence + Markov inequality \Rightarrow

$$
\mathbb{P}\left(\left|\mathbf{S}\left(t_{n}\right)-\mathbf{S}_{n}\right| \geq h^{\alpha}\right) \leq C h^{\frac{1}{2}-\alpha}
$$

Continuous Time/Higher Moments

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}|\mathbf{S}(t)-\mathbf{S}(t)|^{m}\right] \leq C_{m, \delta} h^{\frac{m}{2}-\delta}
$$

Weak versus Strong

Which is more relevant, weak or strong?

Conventional wisdom :
Weak convergence is usually enough. Most problems require expected value type information.
Strong convergence covers cases where we want to visualize paths or generate time series (e.g. to test a filtering algorithm or a parameter fitting algorithm).

Financial Options

Now $\mathrm{S}(t)$ represents the asset price

Option Payoffs :
European call: $\max (\mathrm{S}(T)-E, 0)$
Digital: $1_{\mathrm{S}(T)>E}$
Lookback: $\mathbf{S}(T)-\min _{0 \leq t \leq T} \mathbf{S}(t)$
Up and out: $\max (\mathrm{S}(T)-E, 0) \times \mathbf{1}_{\left(\sup _{0 \leq t \leq T} \mathrm{~S}(t)\right) \leq B}$
Task: compute \mathbb{E} [Payoff]

Monte Carlo for SDEs

Approximate $\mathbb{E}[\mathrm{S}(T)]$ by applying $\mathrm{E}-\mathrm{M}$ to get samples.
Let $\mu=\frac{1}{N} \sum_{i=1}^{N} S_{K}^{[i]}$
Then

$$
\begin{aligned}
\mathbb{E}[\mathbf{S}(T)]-\mu & =\mathbb{E}\left[\mathbf{S}(T)-\mathbf{S}_{K}+\mathbf{S}_{K}\right]-\mu \\
& =\mathbb{E}\left[\mathbf{S}(T)-\mathbf{S}_{K}\right]+\mathbb{E}\left[\mathbf{S}_{K}\right]-\mu
\end{aligned}
$$

Confidence interval width is $O(h)+O(1 / \sqrt{N})$
For confidence interval of $O(\epsilon)$, choose $h=1 / \sqrt{N}=\epsilon$

Computational cost is $N \times 1 / h$
Hence, computational complexity is $O\left(\epsilon^{-3}\right)$

Monte Carlo for SDEs

Extrapolated E-M (Talay and Tubaro): same cost of $N \times 1 / h$ gives confidence interval width $O\left(h^{2}\right)+O(1 / \sqrt{N})$

Hence, choose $h^{2}=1 / \sqrt{N}=\epsilon$ to get computational complexity of $O\left(\epsilon^{-2.5}\right)$

The Multi-level Monte Carlo algorithm will achieve computational complexity of

$$
O\left(\epsilon^{-2} \log (\epsilon)^{2}\right)
$$

using E-M, and giving good results in practice
Key idea: Use a range of h values many paths at large h, few paths at small h

Multi-level Monte Carlo

Consider payoff $f(\mathbf{S}(T))$, where f is globally Lipschitz. ϵ is required accuracy (conf. int.)
Timesteps $h_{l}=M^{-l} T, \quad l=0,1,2, \ldots, L$
M is fixed and $L=\frac{\log \epsilon^{-1}}{\log M}$, so that $h_{L}=O(\epsilon)$
$\widehat{\mathbf{P}}_{l}$ denotes E-M approx. to $f(\mathbf{S}(T))$ using h_{l}. Clearly

$$
\mathbb{E}\left[\widehat{\mathbf{P}}_{L}\right]=\mathbb{E}\left[\widehat{\mathbf{P}}_{0}\right]+\sum_{l=1}^{L} \mathbb{E}\left[\widehat{\mathbf{P}}_{l}-\widehat{\mathbf{P}}_{l-1}\right]
$$

\widehat{Y}_{0} estimates $\mathbb{E}\left[\widehat{\mathbf{P}}_{0}\right]$ using N_{0} paths, and
\widehat{Y}_{l} estimates $\mathbb{E}\left[\widehat{\mathbf{P}}_{l}-\widehat{\mathbf{P}}_{l-1}\right]$ using N_{l} paths:

$$
\widehat{Y}_{l}=\frac{1}{N_{l}} \sum_{i=1}^{N_{l}}\left(\widehat{P}_{l}^{[i]}-\widehat{P}_{l-1}^{[i]}\right)
$$

Multi-level Monte Carlo ($M=2$)

Multi-level Monte Carlo

Strong convergence of E-M + glob. Lip. f give

$$
\operatorname{var}\left[\widehat{\mathrm{P}}_{l}-f(\mathrm{~S}(T))\right] \leq \mathbb{E}\left[\left(\widehat{\mathrm{P}}_{l}-f(\mathrm{~S}(T))\right)^{2}\right]=O\left(h_{l}\right)
$$

and
$\operatorname{var}\left[\widehat{\mathbf{P}}_{l}-\widehat{\mathbf{P}}_{l-1}\right]$
$\leq\left(\sqrt{\operatorname{var}\left[\widehat{\mathbf{P}}_{l}-f(\mathbf{S}(T))\right]}+\sqrt{\operatorname{var}\left[\widehat{\mathbf{P}}_{l-1}-f(\mathbf{S}(T))\right]}\right)^{2}=O\left(h_{l}\right)$
So $\widehat{Y}_{l}=\frac{1}{N_{l}} \sum_{i=1}^{N_{l}}\left(\widehat{P}_{l}^{[i]}-\widehat{P}_{l-1}^{[i]}\right)$ has variance of $O\left(h_{l} / N_{l}\right)$

Recap: $\mathbb{E}\left[\widehat{\mathbf{P}}_{L}\right]=\mathbb{E}\left[\widehat{\mathbf{P}}_{0}\right]+\sum_{l=1}^{L} \mathbb{E}\left[\widehat{\mathbf{P}}_{l}-\widehat{\mathbf{P}}_{l-1}\right]$
Estimator for RHS is $\widehat{Y}:=\widehat{Y}_{0}+\sum_{l=1}^{L} \widehat{Y}_{l}$
For $l>1, \widehat{Y}_{l}=\frac{1}{N_{l}} \sum_{i=1}^{N_{l}}\left(\widehat{P}_{l}^{[i]}-\widehat{P}_{l-1}^{[i]}\right)$ and $\operatorname{var}\left[\widehat{Y}_{l}\right]=O\left(h_{l} / N_{l}\right)$
$\Rightarrow \operatorname{var}[\widehat{Y}]=\operatorname{var}\left[\widehat{Y}_{0}\right]+\sum_{l=1}^{L} O\left(h_{l} / N_{l}\right)$
Take $N_{l}=O\left(\epsilon^{-2} L h_{l}\right)$, to give var $[\widehat{Y}]=O\left(\epsilon^{2}\right)$
Because $h_{L}=O(\epsilon)$, the bias $\mathbb{E}\left[\widehat{\mathbf{P}}_{L}-f(\mathbf{S}(T))\right]=O(\epsilon)$
Computational complexity is

$$
\sum_{l=0}^{L} N_{l} h_{l}^{-1}=\sum_{l=0}^{L} \epsilon^{-2} L h_{l} h_{l}^{-1}=L^{2} \epsilon^{-2}
$$

Since $L=\frac{\log \epsilon^{-1}}{\log M}$, this gives $O\left(\epsilon^{-2}(\log \epsilon)^{2}\right)$

Remarks

- Giles also gives an algorithm for adaptively choosing N_{l} and L

■ Analysis uses weak and strong convergence of E-M

- Analysis was for payoff of the form $f(\mathrm{~S}(T))$, where f is globally Lipschitz

European with geom. Brownian motion

Lookback with geom. Brownian motion

Digital with geom. Brownian motion

European with Heston stoch. vol. model

Multi-level Monte Carlo

Giles (2006) analyses payoff $f(\mathbf{S}(T))$, where f is glob. Lip.

Wish to analyse path-dependent options, e.g.
Digital: $\mathbf{1}_{\mathrm{S}(T)>E}$
Lookback: $\mathbf{S}(T)-\min _{0 \leq t \leq T} \mathbf{S}(t)$
Up and out: $\max (\mathrm{S}(t)-E, 0) \times \mathbf{1}_{\left(\sup _{0 \leq t \leq T} \mathrm{~S}(t)\right) \leq B}$
Assume SDE coeffs are glob. Lip. (up and out fits well!)

New Analysis

Extending Giles (2006) reduces to getting

$$
\mathbb{E}\left[(\mathrm{P}-\widehat{\mathrm{P}})^{2}\right] \leq O\left(h^{\beta}\right)
$$

where
P is true payoff,
$\widehat{\mathrm{P}}$ is Euler-Maruyama payoff
We know $\beta=1$ for a European call
Numerical tests suggest $\beta=1$ for lookback but $\beta=\frac{1}{2}$ for digital \& up and out $\left(\Rightarrow\right.$ complexity $O\left(\epsilon^{2.5}\right)$)

$\boldsymbol{L o o k b a c k} \beta=1$?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{S}(T)-\min _{0 \leq t \leq T} \mathrm{~S}(t) \\
& \widehat{\mathrm{P}}=\mathrm{S}(T)-\min _{0 \leq t \leq T} \mathbf{S}(t)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[(\mathbf{P}-\widehat{\mathbf{P}})^{2}\right] \leq & 2 \mathbb{E}\left[(\mathbf{S}(T)-\mathbf{S}(T))^{2}\right] \\
& +2 \mathbb{E}\left[\left(\min _{0 \leq t \leq T} \mathbf{S}(t)-\min _{0 \leq t \leq T} \mathbf{S}(t)\right)^{2}\right] \\
\leq & O(h)+2 \mathbb{E}\left[\max _{0 \leq t \leq T}(\mathbf{S}(t)-\mathbf{S}(t))^{2}\right] \\
= & O\left(h^{1-\delta}\right)
\end{aligned}
$$

Confirms $\beta=1-\delta$

Digital Option $\beta=\frac{1}{2}$?

$\mathrm{P}=\mathbf{1}_{\mathrm{S}(T)>E}$
$\widehat{\mathbf{P}}=1_{\mathrm{S}_{K}>E}$
Given any $0<\epsilon<\frac{1}{2}$, choose m such that

$$
\frac{1}{2 m+1}<\epsilon
$$

and let

$$
\widehat{\beta}:=\frac{1}{2}-\frac{1}{2 m+1}>\frac{1}{2}-\epsilon
$$

Now,

$$
\begin{aligned}
\mathbb{E}\left[(\mathbf{P}-\widehat{\mathbf{P}})^{2}\right]= & \mathbb{P}\left(\{\mathrm{S}(T)>E\} \cap\left\{\mathrm{S}_{K} \leq E\right\}\right) \\
& +\mathbb{P}\left(\{\mathrm{S}(T) \leq E\} \cap\left\{\mathrm{S}_{K}>E\right\}\right)
\end{aligned}
$$

Digital Option $\beta=\frac{1}{2}$?

$\mathbb{P}\left(\{\mathrm{S}(T)>E\} \cap\left\{\mathbf{S}_{K} \leq E\right\}\right)=$

$$
\begin{aligned}
& \mathbb{P}\left(\left\{E+h^{\widehat{\beta}} \geq \mathrm{S}(T)>E\right\} \cap\left\{\mathbf{S}_{K} \leq E\right\}\right) \\
& +\mathbb{P}\left(\left\{\mathrm{S}(T)>E+h^{\widehat{\beta}}\right\} \cap\left\{\mathbf{S}_{K} \leq E\right\}\right) \\
& \leq \mathbb{P}\left(\left\{E+h^{\widehat{\beta}} \geq \mathrm{S}(T)>E\right\}\right) \\
& +\mathbb{P}\left(\left\{\mathrm{S}(T)-\mathbf{S}_{K}>h^{\widehat{\beta}}\right\}\right) \\
& \leq O\left(h^{\widehat{\beta}}\right)+\mathbb{E}\left[\frac{\left|\mathbf{S}(T)-\mathbf{S}_{K}\right|^{m}}{h^{m \widehat{\beta}}}\right] \\
& \leq O\left(h^{\widehat{\beta}}\right)+\frac{C_{m} h^{m / 2}}{h^{m \widehat{\beta}}} \\
& =O\left(h^{\widehat{\beta}}\right)+O\left(h^{m /(2 m+1)}\right) \\
& =O\left(h^{\widehat{\beta}}\right)
\end{aligned}
$$

Digital Option $\beta=\frac{1}{2}$?

Similarly, ...

$$
\mathbb{P}\left(\{\mathbf{S}(T) \leq E\} \cap\left\{\mathbf{S}_{K}>E\right\}\right)=O\left(h^{\widehat{\beta}}\right)
$$

giving

$$
\mathbb{E}\left[(\mathrm{P}-\widehat{\mathrm{P}})^{2}\right]=O\left(h^{\widehat{\beta}}\right)=O\left(h^{\frac{1}{2}-\epsilon}\right)
$$

Shows $\beta=\frac{1}{2}-\epsilon$

More complicated arguments also give
$\beta=\frac{1}{2}-\epsilon$ for up/down-and-out/in calls/puts

Summary

- Giles (2006) Multi-level Monte Carlo method reduces Euler-Maruyama complexity from $O\left(\epsilon^{-3}\right)$ to $O\left(\epsilon^{-2} \log (\epsilon)^{2}\right)$ for glob. Lip. Payoff $f(\mathbf{S}(T))$
■ Practical algorithm gives good results
- Analysis and algorithm exploit both weak and strong convergence properties

New analysis extends results to the cases of
■ Lookback options

- Digital options
- Barrier options

