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tionThese notes a

ompany my le
tures on the numeri
al simulation of sto
hasti
 dif-ferential equations. I have produ
ed this handout be
ause some of the details aremessy to write down, and hen
e not all of this may get written on the bla
kboard.We will prove that Euler{Maruyama gives strong 
onvergen
e with order atleast 12 . The proof is based on that of Theorem 9.6.2 of KP. [Our proof is spe-
ialised to E{M, and we spell out the key steps more slowly.℄2 Strong Convergen
e ProofWe need the following Lemmas:Lemma 2.1 (Trivial) For any a; b; 
; d 2 R(a + b+ 
+ d)2 � 4(a2 + b2 + 
2 + d2):Proof This follows from (x + y)2 = x2 + 2xy + y2 � 2(x2 + y2).Lemma 2.2 (Cau
hy-S
hwartz)E "�Z t0 S(r)dr�2# � t Z t0 E �S(r)2� dr;for suitable sto
hasti
 pro
esses S(r).Proof Cau
hy-S
hwartz on a deterministi
 integral gives�Z t0 h(r)dr�2 � Z t0 12dr Z t0 h(r)2dr = t Z t0 h(r)2dr:For a sto
hasti
 h(r), take expe
ted values and sneak E inside the integral.1



Lemma 2.3 (Itô Isometry)E "�Z t0 S(r)dW (r)�2# = E �Z t0 S(r)2dr� = Z t0 E �S(r)2� dr;for suitable sto
hasti
 pro
esses S(r).Proof This is the Itô Isometry. See, for example, BZ page 182|185, or KPpage 85.Lemma 2.4 (Lyapunov) For suitable random variables XE [jXj℄ �pE [X2℄:Proof This is a 
onsequen
e of Jensen's inequality (KP, page 16), and also aspe
ial 
ase of Lyapunov's inequality (KP, page 17).Lemma 2.5 (Gronwall) If �(t) is integrable and0 � �(t) � A+B Z t0 �(r)dr; 0 � t � T;for some 
onstants A;B > 0, then�(t) � AeBt; 0 � t � T:Proof This is Gronwall's Lemma. (See, for example, Numeri
al Solution ofOrdinary Di�erential Equations, by L. F. Shampine, Chapman & Hall, 1994.)Notation for 
onvergen
e theoremRe
all that we have the (s
alar, autonomous) SDEdX(t) = f(X(t))dt+ g(X(t))dW (t); (1)for 0 � t � T , with X(0) = X0 given. Applying Euler{Maruyama givesXn+1 = Xn + f(Xn)�t + g(Xn)�Wn;where �Wn :=W (tn+1)�W (tn).We will let X(t) denote a pie
ewise 
onstant extension of fXng, so thatX(t) = Xn; for tn � t < tn+1:2



Also, given a point s 2 [0; T ℄, we let ns denote the integer su
h that s 2[tns ; tns+1). (In other words, X(s) = Xns .)We will assume that the fun
tions f and g in (1) satisfy a global Lips
hitz
ondition; that is, there is a 
onstant K su
h thatjf(x)� f(y)j � Kjx� yj and jg(x)� g(y)j � Kjx� yj; (2)for all x; y 2 R.We also assume that the SDE satis�es other 
onditions (su
h as those inTheorem 4.5.3 of KP) to guarantee that a unique solution exists with boundedse
ond moment.Theorem 2.1 Under appropriate assumptions about the SDE, in
luding the globalLips
hitz 
ondition (2), Euler{Maruyama gives strong 
onvergen
e of order atleast 12 .Proof We haveX(s)�X(s) = Xns �X(s)= Xns � �X0 + Z s0 f(X(r))dr + Z s0 g(X(r))dW (r)�= ns�1Xi=0 (Xi+1 �Xi)� Z s0 f(X(r))dr� Z s0 g(X(r))dW (r)= ns�1Xi=0 f(Xi)�t+ ns�1Xi=0 g(Xi)�Wi � Z s0 f(X(r))dr� Z s0 g(X(r))dW (r)= Z tns0 f(X(r))dr + Z tns0 g(X(r))dW (r)� Z s0 f(X(r))dr� Z s0 g(X(r))dW (r)= Z tns0 f(X(r))� f(X(r))dr + Z tns0 g(X(r))� g(X(r))dW (r)� Z stns f(X(r))dr� Z stns g(X(r))dW (r): (3)Squaring, taking expe
ted values and using Lemma 2.1, it follows thatE h�X(s)�X(s)�2i � 4f E "�Z tns0 f(X(r))� f(X(r))dr�2#+ E "�Z tns0 g(X(r))� g(X(r))dW (r)�2#+ E "�Z stns f(X(r))dr�2#3



+ E "�Z stns g(X(r))dW (r)�2# g: (4)We will now bound the four terms on the right-hand side of (4). We introdu
ethe notation Z(t) := sup0�s�t E h�X(s)�X(s)�2i :For the �rst term, using Lemma 2.2 (Cau
hy-S
hwartz) and the Lips
hitz
ondition (2), we haveE "�Z tns0 f(X(r))� f(X(r))dr�2# � K2T Z s0 E h�X(r))�X(r)�2i dr� K2T Z s0 Z(r)dr: (5)For the se
ond term in (4), using Lemma 2.3 (Itô Isometry) and the Lips
hitz
ondition (2), we haveE "�Z tns0 g(X(r))� g(X(r))dW (r)�2# � K2 Z s0 E h�X(r)�X(r)�2i dr� K2 Z s0 Z(r)dr: (6)Lemmas 2.2 and 2.3 and the Lips
hitz 
ondition (2) also allow us to boundthe third and fourth terms:E "�Z stns f(X(r))dr�2#+ E "�Z stns g(X(r))dW (r)�2# � (�t+ 1)K2 Z stns E �X(r)2� dr� (�t+ 1)K2KM�t; (7)where the 
onstant KM is an upper bound for the se
ond moment of X(r).Inserting the bounds (5), (6) and (7) into (4) we �nd thatZ(t) � 4K2(T + 1) Z t0 Z(r)dr + 4K2KM(1 + �t)�t:So, from Lemma 2.5 (Gronwall),Z(t) � 4K2KMe4K2(T+1)T (1 + �t)�t:Hen
e, there is a 
onstant C for whi
hZ(t) � C�t;4



for suÆ
iently small �t.We have thus shown thatE h�X(t)�X(t)�2i � C�t; for all 0 � t � T:In parti
ular, we haveE �(Xn �X(n�t))2� � C�t; for all 0 � n�t � T:Lemma 2.4 (Lyapunov) then givesE [jXn �X(n�t)j℄ �qE �(Xn �X(n�t))2� � pC�t;whi
h establishes the strong order result.Remarks:1. Further analysis shows that E{M has strong order exa
tly equal to 12 ingeneral (as indi
ated by our numeri
al experiments).2. Strong order 12 implies weak order of at least 12 . In fa
t, E{M has weakorder equal to 1 in general, as we observed in our numeri
al experiments.(This 
an be proved via PDE theory.)3. In the deterministi
 
ase, g � 0, the right-hand side of (7) be
omes O(�t2)and following the proof above leads to the 
orre
t 
lassi
al deterministi
order of 1 for Euler's method.
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