Numerical Simulation

of
Stochastic Differential Equations

Lecture Notes on a Strong Convergence Proof

Desmond J. Higham

Department of Mathematics
University of Strathclyde

Glasgow, G1 1XH, UK

Email: djh@maths.strath.ac.uk
August 2000

1 Introduction

These notes accompany my lectures on the numerical simulation of stochastic dif-
ferential equations. I have produced this handout because some of the details are
messy to write down, and hence not all of this may get written on the blackboard.

We will prove that Euler Maruyama gives strong convergence with order at
least % The proof is based on that of Theorem 9.6.2 of KP. [Our proof is spe-
cialised to E-M, and we spell out the key steps more slowly.]

2 Strong Convergence Proof

We need the following Lemmas:
Lemma 2.1 (Trivial) For any a,b,c,d € R
(a+b+c+d)? <4(a®+b"+c+d°).
Proof  This follows from (z + y)? = 2* + 22y + y* < 2(z* +y*). &

Lemma 2.2 (Cauchy-Schwartz)

(/0 t S(r)dr)

for suitable stochastic processes S(r).
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E < t/ot]E [S(r)?] dr,

Proof Cauchy-Schwartz on a deterministic integral gives

(/Oth(r)dr>2 < /OtIer/Oth(r)er :t/oth(r)er_

For a stochastic h(r), take expected values and sneak E inside the integral.
|



Lemma 2.3 (Ité6 Isometry)

</Uts(r)dw(r)>2 =E ['/OtS(r)er] = '/UtE[S(r)Q] dr.

for suitable stochastic processes S(r).

Proof This is the Ito Isometry. See, for example, BZ page 182 185, or KP
page 85. 1

Lemma 2.4 (Lyapunov) For suitable random variables X

E[[X]] < VE[X?].

Proof This is a consequence of Jensen’s inequality (KP, page 16), and also a
special case of Lyapunov’s inequality (KP, page 17). ]

Lemma 2.5 (Gronwall) If a(t) is integrable and
t
0§a(t)§A+B/a(r)dr, 0<t<T,
0

for some constants A, B > 0, then
aft) < AeP', 0<t<T.

Proof This is Gronwall’'s Lemma. (See, for example, Numerical Solution of
Ordinary Differential Equations, by L. F. Shampine, Chapman & Hall, 1994.)
|

Notation for convergence theorem
Recall that we have the (scalar, autonomous) SDE

X () = f(X(t))dt + g(X () dW (2), (1)
for 0 <t < T, with X(0) = X, given. Applying Euler Maruyama gives
Xn+1 — Xn + f(Xn)At + q(X’n>AWTIJ

where AW, 1= W (t,11) — W(ts).
We will le t X (t) denote a piecewise constant extension of {X,}, so that

X(t) =X, fort,<t<t,.



Also, given a point s € [0,7], we let ng; denote the integer such that s €
[tn.,tn.+1)- (In other words, X(s) = X,,,.)

We will assume that the functions f and ¢ in (1) satisfy a global Lipschitz
condition; that is, there is a constant K such that

@) = fly)l < Kl —y| and |g(x) —g(y)| < K|z —yl, (2)

for all z,y € R.

We also assume that the SDE satisfies other conditions (such as those in
Theorem 4.5.3 of KP) to guarantee that a unique solution exists with bounded
second moment.

Theorem 2.1 Under appropriate assumptions about the SDE, including the global
Lipschitz condition (2), Euler—-Maruyama gives strong convergence of order at
least %

Proof We have

X(s)—X(s) = X, —

_ _ <X0+/ F(X dr—i—/sq(X(r))dW(r))

t"s s

Squaring, taking expected values and using Lemma 2.1, it follows that

. [(7(8) a X(S))Q] <4{ E | (/Ut" fFX(r) — f(X(r))dT> 2]

+ ]E:</Ut"5g(
+ E:(/;f(X(r))dr>2]
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>

) g(X(r))dW(m) ]




+ E

(/ g(X(r))dW(r>)2] ) (W

E]

We will now bound the four terms on the right-hand side of (4). We introduce
the notation
Z(t) := sup E [(7(5) — X(s))Q] :
0<s<t
For the first term, using Lemma 2.2 (Cauchy-Schwartz) and the Lipschitz
condition (2), we have

(/ "R ) - f(X(T))dT>2]

E

IN

KT /USE [(Y(r)) - X(r))ﬂ dr

IN

KT /05 Z(r)dr. (5)

For the second term in (4), using Lemma 2.3 (It6 Isometry) and the Lipschitz
condition (2), we have

E

(/Ofn g(X(r)) —.G(X(r))dW(r)>2] < K? /OSIE {(Y(T) _X(,n)ﬂ dr
< KQ/OSZ(T)dr. (6)

Lemmas 2.2 and 2.3 and the Lipschitz condition (2) also allow us to bound
the third and fourth terms:

( / f(X(T))dT>2

where the constant K, is an upper bound for the second moment of X(r).
Inserting the bounds (5), (6) and (7) into (4) we find that

E +E

(o) = e s

E] E]

< (At+1)K?KyAt, (7)

4
Z(t) <AK*(T +1) / Z(r)dr + 4K Ky (1 + At)At.
0
So, from Lemma 2.5 (Gronwall),
Z(t) < 4K K e 0T (1 4 At)At.
Hence, there is a constant C' for which
Z(t) < CAt,
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for sufficiently small At.
We have thus shown that

E [(Y(t) - X(t))Q} <CAt, foral 0 <t<T.
In particular, we have
E[(X, — X(nAt))?] <CAt, forall 0 < nAt <T.

Lemma 2.4 (Lyapunov) then gives

E[|X, - X(nAt)]] < \/E[(X, - X(nA1)*] < VOAL

which establishes the strong order result. 1
Remarks:
1. Further analysis shows that E M has strong order exactly equal to % in

general (as indicated by our numerical experiments).

2. Strong order % implies weak order of at least % In fact, E M has weak

order equal to 1 in general, as we observed in our numerical experiments.
(This can be proved via PDE theory.)

3. In the deterministic case, g = 0, the right-hand side of (7) becomes O(At?)
and following the proof above leads to the correct classical deterministic
order of 1 for Euler’s method.



