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Computer practicals (in MatLab) 1 —Mean-square approximation of SDEs

Tasks

1. Using the in-built function randn() for generating random numbers with standard normal distribution
in MatLab, simulate trajectories of the Wiener process. Plot the trajectories and zoom-in to visualise
the fractal nature of the Wiener process.

2. Consider the linear SDE
dS = rSdt+ σSdw, S(0) = S0, (1)

where r and σ are some positive constants. This is an SDE for GBM. Apply the Euler scheme and
Milstein scheme to (1) and realise the corresponding algorithms in MatLab. Solve (1) exactly. Run
MatLab simulations of (1) using the exact formula for S(tk) and the two methods along the same
Wiener paths and compute the corresponding errors |S(tk)−Xk| . Look experimentally at the a.s.
convergence of the Euler and Milstein methods.

3. Continue the previous exercise and experimentally study the mean square errors of the Euler and
Milstein methods. Use the Monte Carlo technique to evaluate the errors, i.e.√

E |S(tk)− Sk|2 ≈

√√√√ 1

M

M∑
m=1

∣∣∣S(m)(tN )− S(m)N

∣∣∣2,
where S(m)(tN ) and S(m)N are realisations of the exact solution to (1) and of one of the two numerical
methods, respectively, along mth independent Wiener path. To observe the expected mean-square
order, M should be suffi ciently large to make the Monte Carlo error negligible.

4. The system of SDEs in the sense of Stratonovich (Kubo oscillator)

dX1 = −aX2dt− σX2 ◦ dw(t) , X1(0) = x1, (2)

dX2 = aX1dt+ σX1 ◦ dw(t) , X2(0) = x2,

is often used for testing numerical methods. Here a and σ are constants and w(t) is a one-dimensional
standard Wiener process. The phase flow of this system preserves symplectic structure. Moreover, the
quantity H(x1, x2) =

(
x1
)2

+
(
x2
)2
is conservative for this system, i.e.,

H(X1(t), X2(t)) = H(x1, x2) for t ≥ 0.

This means that a phase trajectory of (2) belongs to the circle with center at the origin and of radius√
H(x1, x2).

Consider two methods of order 1/2 for (2): the explicit Euler scheme
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and the symplectic partitioned Runge-Kutta method2 :
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Plot trajectories produces by these methods in the phase space over relatively long simulation time.

Observe that despite both methods being of the same order of accuracy, (4) is much more accurate in
long time simulations than (3). The symplectic partitioned Runge-Kutta method (4) is an example of
stochastic geometric integrators2.
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