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Computer practicals 2 —Weak approximation of SDEs and the Monte Carlo technique

Tasks

1. Consider the linear SDE
dS = rSdt+ σSdw, S(0) = S0, (1)

where r ≥ 0 is a risk-free interest rate and σ > 0 is volatility. This is an SDE for GBM written
under the risk neutral measure. Consider a European call option and assume that the price process is
described by GBM. The price of the call with maturity T and strike K at time t = 0 is equal to

u(0, S0) = e−rTE(S(T )−K)+ (2)
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where2 (x)+ = max(x, 0) and Φ(x) is the standard normal distribution function. Apply the three
methods: the mean-square Euler, the weak Euler and 2nd-order weak method from the lecture notes
to the price the call. Realise these methods accompanying them by the Monte Carlo technique and
study their errors. By taking a large number of Monte Carlo runs, show that the Euler methods are
of first weak and confirm the order of the 2nd order weak scheme.

2. By solving (1) explicitly, find the exact expression of S(T ). Apply the Monte Carlo technique to
u(0, S0) = e−rTE(K − S(T ))+ with exact S(T ) and experimentally study convergence of the Monte
Carlo technique.

3. For physical pendulum with linear friction and additive noise3 , Langevin equations can be written as

dP i = f i(Q) dt− νP i dt+
√

2ν/β dwi(t), (3)

dQi = P i dt, i = 1, 2,

where ν > 0 is a damping parameter, β is an inverse temperature, w1(t) and w2(t) are independent
standard Wiener processes,
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between the temperature and average kinetic energy holds.
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Apply two second-order weak schemes to (3): the Heun method and the second-order weak quasi-
symplectic method4 has the form

P0 = p, Q0 = q, (6)
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where ξlk are i.i.d. random variables with the law

P (ξ = 0) = 2/3, P (ξ = ±
√

3) = 1/6.

Using these two methods, compute the mean-square displacement of the particle:

D := E(Q1(t)−Q1(0))2 + E(Q2(t)−Q2(0))2.

Use (5) to control the accuracy of simulation. Compare the two method in the case of small ν, e.g.
ν = 0.0004, β = 5, λ = 4. The outcomes can be compared with the results in5 . This experiment needs
a bit of time to run and hence will be not considered in the class.

Remark 1 In all exercises do not forget to report the Monte Carlo error: please remember that reporting
outcomes of Monte Carlo simulation without providing the corresponding statistical errors essentially has no
value.

4See [G.N. Milstein, M.V. Tretyakov. Quasi-symplectic methods for Langevin-type equations. IMA J. Numer. Anal., 23
(2003), 593—626] and [G.N. Milstein, M.V. Tretyakov. Stochastic Numerics for Mathematical Physics. Springer, 2004].

5 [G.N. Milstein, M.V. Tretyakov. Computing ergodic limits for Langevin equations. Phys. D 229 (2007), 81—95].
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