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1 PREFACE

1 Preface

These lecture notes give a brief introduction to the main ideas of numerical integration of stochastic
differential equations (SDEs) together with a basic background for SDEs. In preparation of the notes a
number of sources were used, mainly [44, 15, 49, 50, 54, 46]. The list of references has both sources used
for preparing the course and for further reading.
The prerequisites include good background in Calculus/Mathematical Analysis and basic knowledge

of Probability. Previous study of numerical integration of (deterministic) ODEs is helpful.
The notes should be viewed as the material accompanying the lectures —some of the material included

in the lecture notes will be skipped on lectures, while some places in the notes will be covered in more
depth on lectures. The last 1.5-2 lectures will use separate slides and will cover more advanced material,
mainly related to geometric integration of SDEs.
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2 PRELIMINARIES: REVISION OF PROBABILITY

2 Preliminaries: revision of Probability

This section contains a brief summary of some basics from the Probability theory.

Definition 2.1 Outcomes of an experiment ω are called elementary events or sample points and
their collection Ω is called the space of elementary events or the sample space.

Definition 2.2 Events are all subsets A ⊂ Ω, for which under the condition of the experiment, one can
conclude that either ‘the outcome ω ∈ A’or ‘the outcome ω /∈ A’.

Definition 2.3 Let Ω be a non-empty set and F be a collection of subsets of Ω. We say that F is a
σ-algebra provided that
1. Ω ∈ F ;
2. if An ∈ F , n = 1, 2, . . ., then ∪An ∈ F , ∩An ∈ F ;
3. A ∈ F ⇒ A ∈ F .

Definition 2.4 The space Ω together with a σ-algebra F of its subsets is a measurable space (Ω,F).

Definition 2.5 Let (Ω,F) be a measurable space. A probability measure P = P (A) is a function that
assigns a number in [0, 1] to every set A ∈ F and satisfies the following axioms:

1. P (Ω) = 1;

2. (countable additivity) whenever A1, A2, . . . is a sequence of pairwise disjoint sets in F , then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An).

P (A) is called the probability of an event A.

We can now formulate Kolmogorov’s universally accepted axiomatic system.

Definition 2.6 An ordered triple (Ω,F , P ), where

1. Ω is a set of points ω,

2. F is a σ-algebra of subsets of Ω and

3. P is a probability measure on F ,
is called a probabilistic model or a probability space. Here, Ω is the sample space or space of
elementary events, the sets A in F are events and P (A) is the probability of the event A.

In what follows we will always assume that we are given a suffi ciently rich probability space (Ω,F , P ).

2.1 Random variables

We now remind you about the definition of a random variable, its characteristics and properties.

We first need to recall what the Borel σ-algebra is and consider the measurable space (R,B(R)).
Let A be the system of subsets of the real line R consisting of finite unions of disjoint intervals of the

form (a, b] together with the empty set ∅:

A ∈ A if A =

n⋃
i=1

(ai, bi], n <∞.
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2.1 Random variables 2 PRELIMINARIES: REVISION OF PROBABILITY

Denote by B(R) the smallest σ-algebra σ(A) containing A. It is called the Borel σ-algebra of subsets
of the real line and its sets are called Borel sets. We have

(a, b) =

∞⋃
n=1

(a, b− 1

n
], a < b;

[a, b] =

∞⋂
n=1

(a− 1

n
, b], a < b; {a} =

∞⋂
n=1

(a− 1

n
, a].

Then the Borel σ-algebra contains not only intervals of the form (a, b] but also points (singletons) {a}
and all sets of the following forms

(a, b), [a, b], [a, b), (−∞, b), (−∞, b], (a,∞). (2.1)

We also note that we could construct the Borel σ-algebra B(R) by starting with any of the six kinds of
intervals from (2.1) instead of (a, b].

Definition 2.7 A real-valued random variable ξ = ξ(ω) is a real-valued function on Ω that is F-
measurable that means we require

{ω : ξ(ω) ∈ B} ∈ F (2.2)

for every B ∈ B(R).

Note the importance of the condition (2.2): if a probability measure P is defined on (Ω,F), (2.2) then
makes sense to speak of the probability of the event {ξ ∈ B} since we know how to assign probabilities
to events from F .

Definition 2.8 Let a random variable ξ be defined on (Ω,F) and consider a probability space (Ω,F , P ).
A probability measure Pξ on (R,B(R)) defined as

Pξ(B) = P{ω : ξ(ω) ∈ B}, B ∈ B(R),

is called the probability distribution of ξ on (R,B(R)).
The function

Fξ(x) = P{ω : ξ(ω) ≤ x}, x ∈ R,

is called the distribution function of ξ.

Example 2.1 (Bernoulli distribution). Consider a random variable ξ that takes values from X = {a, b},
a, b ∈ R, and

p1 = P ({ω : ξ = a}) = p, p2 = P ({ω : ξ = b}) = 1− p,

where p ∈ [0, 1]. We call such ξ a Bernoulli random variable.

In the next definition we introduce a classification of random variables.

Definition 2.9 A random variable ξ is called

• discrete if it takes values in a countable set X = {x1, x2, . . .};

• continuous if its distribution Fξ is continuous for x ∈ R;

• absolutely continuous if there is a non-negative function ρ = ρξ(x), called its density, such that

Fξ(x) =

∫ x

−∞
ρξ(z)dz, x ∈ R.
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2.2 Expectations 2 PRELIMINARIES: REVISION OF PROBABILITY

Example 2.2 The widely accepted (although simplistic) model for stock prices is that they at a fixed time
T are log-normally distributed. Let ξ be a normally distributed (Gaussian) random variable with mean µ
and variance σ2: ξ ∼ N (µ, σ2), i.e. ξ is a continuous random variable with the probability density

p(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 .

The log-normal assumption means that the log of the stock price ST during a time period T changes by ξ:

lnST = lnS0 + ξ (2.3)

or
ST = S0 exp(ξ).

It is said that ST has a log-normal distribution. Gaussian and log-normal random variables are examples
of absolute continuous random variables.

Definition 2.10 We call random variables η1, η2, . . . , ηn independent if any of the following holds:

1. For any n and any x1, x2, . . . , xn: the joint distribution function

Fη1,...,ηn(x1, . . . , xn) = P (η1 ≤ x1, . . . , ηn ≤ xn)

=

n∏
k=1

P (ηk ≤ xk) =

n∏
k=1

Fηk(xk);

2. In the case of absolutely continuous random variables defining the joint density

ρη1,...,ηn
(x1, . . . , xn) :=

∂nFη1,...,ηn(x1, . . . , xn)

∂x1, . . . ∂xn
,

we get

ρη1,...,ηn
(x1, . . . , xn) =

n∏
k=1

ρηk(xk).

2.2 Expectations

In the discrete case, when the space Ω is discrete, expectation can be defined as

Eξ(ω) :=

M∑
i=1

ξ(ωi)P (ωi) (2.4)

and also for discrete random variables it can be computed as

Eξ =

L∑
i=1

xiP{ξ(ω) = xi}. (2.5)

In the absolute continuous case we can define the expectation of ξ via the Riemann integral as

Eξ :=

∫ ∞
−∞

xρξ(x)dx

or more generally

Eg(ξ) :=

∫ ∞
−∞

g(x)ρξ(x)dx, (2.6)
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2.2 Expectations 2 PRELIMINARIES: REVISION OF PROBABILITY

where ρξ is the density of ξ and g(x) is a ‘good’function.

A generic definition of expectation is based on the Lebesgue integral, which we introduce below (see
also [49, 9, 50]). But we start with a reminder about the Riemann integral. Suppose f(x) is a continuous
function on a closed interval [a, b]. Let us partition this interval: a = x0 < x1 < · · · < xn = b and denote
the length of the longest subinterval in this partition by ∆, i.e. ∆ = maxi=0,...,n−1(xi+1 − xi). For each
subinterval [xi, xi+1], we set mi = minx∈[xi,xi+1] f(x) and Mi = maxx∈[xi,xi+1] f(x). The lower Riemann
sum is

F
¯ n

=

n∑
i=1

mi(xi+1 − xi)

and the upper Riemann sum is

F̄n =

n∑
i=1

Mi(xi+1 − xi).

As ∆ goes to zero, both Riemann sums converge to the same limit, which we call the Riemann integral
and denote as

∫ b
a
f(x)dx. Unfortunately, we cannot use this construction for defining expectations because

random variables are functions of ω ∈ Ω, which is often not a subset of R unlike the case of function f(x)
with x ∈ [a, b]. The sample space Ω is often an abstract space and there is no natural way to partition it
as we did with the interval [a, b]. But we can put ‘things upside down’: instead of partitioning the domain
of definition, partition the range of the function!

Figure 2.1: Riemann vs Lebesgue [Source: [50][Chapter 1] ].

Suppose 0 ≤ ξ(ω) <∞ for all ω ∈ Ω. Create a partition of the positive semiline: 0 = y0 < y1 < y2 <
· · · with ∆ = maxi=0,1,2...,(yi+1 − yi). For each subinterval [yi, yi+1), we define the event

Ai = {ω ∈ Ω : ξ(ω) ∈ [yi, yi+1)}.

Then we can define the lower (and analogously the upper) Lebesgue sum as1

F
¯ n

=

n∑
i=1

yiP (Ai).

As ∆ goes to zero, this Lebesgue sum goes to a limit, which we call the Lebesgue integral and denote
as
∫

Ω
ξ(ω)dP (ω). Note that the limit can be infinite as we have not put any conditions on ξ(ω). Figure 2.1

gives visual comparison of the definitions of Riemann and Lebesgue integrals.
1The requirement for random variables to be F -measurable is used here.
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2.2 Expectations 2 PRELIMINARIES: REVISION OF PROBABILITY

Further, we need to consider when the assumption 0 ≤ ξ(ω) < ∞ is violated. If the set of ω on
which this condition is violated has zero probability, then the above definition does not change. If
P{ω ∈ Ω : ξ(ω) ≥ 0} = 1 but P{ω ∈ Ω : ξ(ω) =∞} > 0, then we define that

∫
Ω
ξ(ω)dP (ω) =∞.

Ok, we defined the Lebesgue integral for positive functions. Now let us extend its definition. If ξ(ω)
takes both positive and negative values, we define its positive and negative parts as

ξ+(ω) = max{ξ(ω), 0} and ξ−(ω) = max{−ξ(ω), 0},

which are both nonnegative random variables and ξ(ω) = ξ+(ω)−ξ−(ω) and |ξ(ω)| = ξ+(ω)+ξ−(ω). For
both ξ+(ω) and ξ−(ω), the above definition of the Lebesgue integral works and provided these integrals
are finite, we naturally define∫

Ω

ξ(ω)dP (ω) =

∫
Ω

ξ+(ω)dP (ω)−
∫

Ω

ξ−(ω)dP (ω).

If both
∫

Ω
ξ+(ω)dP (ω) and

∫
Ω
ξ−(ω)dP (ω) are finite, then

∫
Ω
ξ(ω)dP (ω) is finite and we say that ξ(ω) is

integrable. If
∫

Ω
ξ+(ω)dP (ω) = ∞ and

∫
Ω
ξ−(ω)dP (ω) is finite, then we define

∫
Ω
ξ(ω)dP (ω) = ∞.

If
∫

Ω
ξ−(ω)dP (ω) = ∞ and

∫
Ω
ξ+(ω)dP (ω) is finite, then we define

∫
Ω
ξ(ω)dP (ω) = −∞. If both∫

Ω
ξ+(ω)dP (ω) and

∫
Ω
ξ−(ω)dP (ω) are infinite then

∫
Ω
ξ(ω)dP (ω) is not defined.

Definition 2.11 Expectation E(·) of a random variable ξ(ω) on (Ω,F , P ) is defined as

Eξ(ω) =

∫
Ω

ξ(ω)dP (ω). (2.7)

We say that a random variable ξ(ω) is integrable if E|ξ(ω)| <∞.
The idea behind this definition is that we average values of ξ(ω) over the sample space Ω with

appropriate weightings given by the probability P (ω).

Example 2.3 If ξ(ω) takes only finite (or countable) number of values {x1, . . . , xn} then

Eξ(ω) =

∫
Ω

ξ(ω)dP (ω) =

n∑
i=1

xiP{ξ = xi}, (2.8)

which is obviously a very familiar formula to you! And in particular, if Ω is finite (or countable) then
(cf. (2.4) and (2.5)):

Eξ(ω) =

n∑
i=1

xiP{ξ = xi} =

M∑
ωi∈Ω

ξ(ωi)P (ωi).

Let us recall properties of expectations.

Properties of expectations2

Let ξ and η be integrable random variables and a and b be some real numbers. The following properties
hold:

1. Ea = a;

2. E(aξ + bη) = aEξ + bEη (linearity);

3. If ξ ≤ η, then Eξ ≤ Eη (comparison);

4. If ϕ is a convex function on R, then ϕ(Eξ) ≤ Eϕ(ξ) (Jensen′s inequality).

2See their proofs in, e.g., [49].
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2.3 Independence and conditional expectations2 PRELIMINARIES: REVISION OF PROBABILITY

Also, recall the definition of variance

V arξ = Eξ2 − (Eξ)
2

= E (ξ − Eξ)2
.

The abstract nature of Definition 2.11 is useful for the unifying theory and for establishing properties
of expectations. But computing Lebesgue integrals (2.7) over an abstract space Ω is too complex. In
practice, instead we, as a rule, rely on distributions and densities of random variables of our interest and
this way we switch from integrals over Ω to integrals over R. To this end, we use the probability measure
Pξ on (R,B(R)) induced by the random variable ξ from Definition 2.8. From your previous study of
Probability, you know that most of the ‘interesting’random variables have a density ρξ(x) = ρ(x), i.e. a
nonnegative Borel-measurable function ρ(x), x ∈ R, such that (cf. Definition 2.9):

Pξ(B) =

∫
B

ρ(x)dx for any B ∈ B(R).

The following proposition links integrals over Ω and over R (see its proof e.g. in [50, 49]).

Proposition 2.1 Let ξ(ω) be a random variable on the probability space (Ω,F , P ) and f(x) be a Borel-
measurable function on R. Then

E|f(ξ)| =
∫
R

|f(x)|dPξ(x).

If E|f(ξ)| <∞ then

Ef(ξ) =

∫
R

f(x)dPξ(x).

If in addition ξ(ω) has a density ρ(x) then

Ef(ξ) =

∫ ∞
−∞

f(x)ρ(x)dx. (2.9)

The relationship (2.9) obviously coincides with (2.6), which is the usual way how we compute expec-
tations of absolute continuous random variables.
We note that probability of an event is the expectation of the indicator function of this event, e.g. for

an event A ∈ F :
P (A) =E(IA(ω)).

Remark 2.1 For a random variable ξ with Eξ2 < ∞, the expectation m = Eξ is the unique constant
which gives the best estimate of ξ in the mean-square sense, i.e. m attains the least mean-square error
E(ξ −m)2 and hence is the best mean-square estimate among constants. In this context variance can be
interpreted as the mean-square error of estimation of a random variable by its mean.

2.3 Independence and conditional expectations

Earlier, in Definition 2.10, we recalled the meaning of independence of random variables. Let us introduce
a couple of related notions.
Let a random variable ξ(ω) be defined on (Ω,F , P ). The sets {ω : ξ(ω) ∈ B} ∈ F , B ∈ B(R), form a

σ-algebra generated by ξ and denoted by σ(ξ) or Fξ.

Definition 2.12 Let (Ω,F , P ) be a probability space and G1,G2, . . . ,Gn be sub-σ-algebras of F . We say
that the σ-algebras G1,G2, . . . ,Gn are independent if for all Ai ∈ Gi, i = 1, . . . , n :

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An).

We say that a random variable ξ defined on (Ω,F , P ) is independent of a sub-σ-algebra G of F if a
σ-algebra σ(ξ) generated by ξ and G are independent.
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2.3 Independence and conditional expectations2 PRELIMINARIES: REVISION OF PROBABILITY

We will also need a more complicated notion: conditional expectation.

Definition 2.13 Let ξ be an integrable random variable defined on (Ω,F , P ) and G be a sub-σ-algebra
of F . The conditional expectation of ξ given G, denoted as E(ξ|G), is a random variable such that (i)
E(ξ|G) is G-measurable and (ii) E(ξ|G) satisfies the partial averaging∫

A

E(ξ|G)(ω)dP (ω) =

∫
A

ξ(ω)dP (ω) for all A ∈ G.

It is always useful to have not only formal but also an intuitive understanding of definitions. In the
case of Definition 2.13 the informal prospective is as follows. The sub-σ-algebra G plays here the role of a
‘partial world’: we are able to observe whether an event from G happened or not but we not see anything
beyond G. The property (i) corresponds to the interpretation that E(ξ|G) is the best estimate for ξ given
information G, i.e. this random variable E(ξ|G) is determined by the information from G. The partial
averaging means that the conditional expectation E(ξ|G) and the random variable ξ give the same value
when averaged over those parts of Ω that are sets in G. We can say that the conditional expectation
E(ξ|G) is the expectation of a random variable ξ taken over events of those parts of Ω which are not in
G.

If ξ and η are integrable random variables defined on (Ω,F , P ), then the conditional expectation
E(ξ|η) is defined as

E(ξ|η) = E(ξ|σ(η)), (2.10)

where σ(η) is the minimal σ-algebra generated by η (i.e., by events {ω ∈ Ω : η(ω) ∈ B} for B ∈ B(R)).
The following proposition takes place.

Proposition 2.2 Let ξ and η be integrable random variables defined on (Ω,F , P ) and ξ be σ(η)-measurable.
Then there exists a deterministic function g(x) such that

ξ = g(η).

Example 2.4 Consider the conditional expectation E(ξ|η) given by (2.10). By Definition 2.13, E(ξ|η)
is σ(η)-measurable random variable. Then by Proposition 2.2 there is a function g(x) such that

E(ξ|η) = g(η). (2.11)

It can be proved (see, e.g., [49, 58, 50]) that conditional expectations have the following properties.
Assume that random variables ξ and η defined on (Ω,F , P ) are integrable and a, b ∈ R are some constants.
Let G be a sub-σ-algebra of F . Then

1. Eξ = E(E(ξ|G));

2. If F0 = {∅,Ω} is the trivial algebra, then E(ξ|F0) = Eξ.

3. If G2 is a sub-σ-algebra of sub-σ-algebra G1 ⊂ F (i.e., G2 ⊂ G1 ⊂ F), then E(E(ξ|G1)|G2) = E(ξ|G2)
(iterated conditioning or tower property);

4. E(ξ|F) = ξ.

5. If ξ and G are independent, then E(ξ|G) = Eξ (independence);

6. The conditional expectation E(ξ|G) can be interpreted as a prediction of ξ given the information
G;

7. If ξ is G-measurable, then E(ξη|G) = ξE(η|G) (taking out what is known);

8. E(aξ + bη|G) = aE(ξ|G) + bE(η|G) (linearity);
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2.4 Two limit theorems 2 PRELIMINARIES: REVISION OF PROBABILITY

9. E(a|G) = a;

10. If ξ ≤ η, E(ξ|G) ≤ E(η|G) (comparison);

11. If ϕ is a convex function on R, then ϕ(E(ξ|G)) ≤ E(ϕ(ξ)|G) (conditional Jensen ′s inequality);

12. |E(ξ|G)| ≤ E(|ξ| |G).

Further facts about conditional expectations are also useful.

Proposition 2.3 Let X1, . . . , Xn and Y1, . . . , Ym be integrable random variables defined on (Ω,F , P ).
Let G be a sub-σ-algebra of F and X1, . . . , Xn be G-measurable and Y1, . . . , Ym be independent of G. For
a ‘good’function f(x1, . . . , xn, y1, . . . , ym), define a function

g(x1, . . . , xn) = Ef(x1, . . . , xn, Y1, . . . , Ym).

Then
E(f(X1, . . . , Xn, Y1, . . . , Ym)|G) = g(X1, . . . , Xn).

We note that conditional probability of an event is the conditional expectation of the indicator function
of this event, e.g. for an event A ∈ F and σ-algebra G ⊂ F :

P (A|G) =E(IA(ω)|G). (2.12)

We can use properties of conditional expectations to compute them. The other possible way to
compute them is to move from integration over an abstract space Ω in Definition 2.13 to integration over
R as we did in the case of usual expectations in the previous section. Suppose two random variables ξ
and η have a joint density ρξη(x, y) (see Definition 2.10) then one can introduce the conditional density

ρξ(x|η = y) =
ρξη(x, y)

ρη(y)

and

E[f(ξ, η)|η = y] =

∫ ∞
−∞

f(x, y)ρξ(x|η = y)dx. (2.13)

Note that E[f(ξ, η)|η = y] is deterministic while E[f(ξ, η)|η] is random.

Remark 2.2 The conditional expectation E(ξ|η) is the mean-square optimal estimate of ξ obtained via
observations of η.

In future we will also need the following notion.

Definition 2.14 Consider a probability space (Ω,F , P ). Let Ω̃ ∈ F and P (Ω\Ω̃) = 0. If a property holds
for all ω ∈ Ω̃, we say that it holds almost everywhere (a.e.) or that it holds with probability 1 or almost
surely (a.s.).

2.4 Two limit theorems

Let us recall two limit theorems (Kolmogorov’s law of large numbers and Central Limit theorem), which
are needed for justifying the Monte Carlo technique in Section 8).

Theorem 2.1 (Kolmogorov’s strong law of large numbers (SLLN)) Let ξ1, ξ2, . . . be a sequence
of independent random numbers sampled from the same distribution, which has mean µ. Introduce the
arithmetic average of the sequence up to the nth term:

Sn =
1

n

n∑
i=1

ξi.

Then Sn → µ as n → ∞ with probability 1, i.e. the arithmetical average of outcomes tends towards the
expectation with certainty.
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3 BROWNIAN MOTION (WIENER PROCESS)

You can find the proof of SLLN in, e.g. [49].

Theorem 2.2 (Central Limit Theorem (CLT)) Let η1, η2, . . . be a sequence of independent identi-
cally distributed (i.i.d.) random variables under the probability measure P with finite mean m and finite
non-zero variance ν2 and let

θn := η1 + · · ·+ ηn.

Then

θ̂n :=
θn − nm√

nν2
(2.14)

converges in distribution to an N (0, 1) random variable as n→∞, i.e. for any −∞ ≤ a < b ≤ ∞

P (a < θ̂n < b)→ Φ(b)− Φ(a), (2.15)

where Φ(x) is the normal distribution function given by

Φ(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz.

In a concise way, we can say that the distribution of θ̂n tends to the normal distribution with zero
mean and unit variance when n goes to infinity. You can find the proof of CLT in, e.g. [49, 58]. We
denote convergence in distribution as

θ̂n =⇒ θ̂

and here the random variable θ̂ ∼ N (0, 1).

3 Brownian Motion (Wiener Process)

In 1827 Scottish botanist Robert Brown reported that he observed an irregular motion of pollen grains
in water [5]3 . Albert Einstein gave a mathematical explanation of this phenomenon [8]. A rigorous
mathematical construction of the random process known as Brownian motion or Wiener process was
done by Nobert Wiener [57]. The work was motivated by Physics. At the same time, as early as 1900,
Bachilier [1] proposed Brownian motion as a model for stock price behaviour.

Consider random variables on a probability space (Ω,F , P ). In market models, physical and biological
models and any other dynamic models, we usually deal with families of random variables depending on
a parameter (e.g., Sn stock price at t = tn has n as a parameter).

Definition 3.1 Random function ζt(ω) is a family of random variables, depending on the parameter
t ∈ T. When the set T is a subset of a real line R and the parameter t is interpreted as time, we say that
ζt(ω) is a random (stochastic) process (instead of a random function).

If T consists of integers, one often says that ζt(ω) is a random sequence or a discrete-time stochastic
process. If we fix the elementary event in ζt(ω) we obtain the non-random function ζt(·) which is called
the trajectory or realisation of the random process. Note that if we fix t then we obtain a random
variable.

3You can read a paper by Brian J. Ford on Brown’s experiment [10] and see its recreation at the website
http://www.sciences.demon.co.uk/wbbrowna.htm.

@ M. Tretyakov, University of Nottingham, 2016 12 Mini-course on numerical methods for SDEs



3.1 Properties of the Wiener process 3 BROWNIAN MOTION (WIENER PROCESS)

Example 3.1 The stochastic process ηn, n = 0, . . . , N, is a symmetric random walk under the measure
P if η0 = 0 and ηn =

∑n
i=1 ζi, where the ζi can take only the values {−1, 1} and are i.i.d. random

variables under the measure P with
P (ζi = ±1) =

1

2
.

This process is often motivated as a model of the gains from repeated plays of a fair game. For example,
suppose we play a game in which each play is equivalent to tossing a fair coin. If it comes up heads I pay
you £ 1, otherwise you pay me £ 1. For each n, the ηn is equal to my net gain after n plays. It is easy to
compute (please do these calculations yourself) that

EP ηn = 0 and V arP ηn = n.

The random variables
∆ηn := ηn − ηn−1, n = 1, 2, . . . ,

are called increments of the random walk. We see that ∆ηn = ζn and thus the increments ∆ηn are
independent under P. We say that this process is a process with independent increments.

Definition 3.2 Standard Wiener process W (t), t ≥ 0, is a random process such that

1. W (0) = 0;

2. For any 0 ≤ t0 < t1 < · · · < tn, the increments W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)
are independent;

3. The random variable W (t) −W (s), s < t, has the normal distribution with zero mean, E(W (t) −
W (s)) = 0, and variance V ar(W (t)−W (s)) = t− s, i.e. the distribution function of this random
variable is such that

P (a < W (t)−W (s) < b) =
1√

2π(t− s)

∫ b

a

exp

(
− z2

2(t− s)

)
dz;

4. The trajectories of W (t) are continuous.

There are different proofs for the existence of this mathematical object4 . We will not consider them.

3.1 Properties of the Wiener process

From the second property in Definition 3.2 we see that, like the simple random walk, the Wiener process
is a process with independent increments. Consequently, the joint density of Wiener increments has the
form

ρ(x1, . . . , xn) =

n∏
k=1

1√
2π(tk − tk−1)

exp

(
− x2

k

2(tk − tk−1)

)

=
1

(2π)
n
2

∏n
k=1

√
tk − tk−1

exp

{
−

n∑
k=1

x2
k

2(tk − tk−1)

}
.

The Wiener process also has the following properties.

1. EW (t) = 0, E[W (t)]2 = t;

2. Trajectories of W (t) are not differentiable (almost everywhere);

4See, e.g., Section 1.5 in [23].

@ M. Tretyakov, University of Nottingham, 2016 13 Mini-course on numerical methods for SDEs



3.1 Properties of the Wiener process 3 BROWNIAN MOTION (WIENER PROCESS)

3. Quadratic variation. Let t0 < · · · < tN = T be an arbitrary discretization on an interval [t0, T ] into
N parts and h := maxk(tk+1 − tk). Introduce the quadratic variation of the Wiener process:

ϑh :=

N−1∑
k=0

[W (tk+1)−W (tk)]2.

Then
E(ϑh − (T − t0))2 → 0 as h→ 0. (3.1)

The limit we have in (3.1) is called mean-square convergence and we say that ϑh converges to T − t0
in the mean-square sense.

Example 3.2 We prove the second equality in Property 1:

E[W (t)]2 = E[W (t)−W (0)]2 = t− 0 = t.

Exercise 3.1 Prove the first equality in Property 1.

Heuristic argument for justification of Property 2:
Define

ηh(t) :=
W (t+ h)−W (t)

h
.

Obviously, ηh(t) ∼ N (0, 1/h). Hence ηh(t) cannot have a limit as h → 0 in any probabilistic sense.
Note that although the Wiener process is continuous everywhere, it is (with probability 1) differentiable
nowhere.

Example 3.3 (Hint for the proof of the property about quadratic variation). First, show that

Eϑh = T − t0 and V ar (ϑh) = 2

N−1∑
k=0

(tk+1 − tk)2. (3.2)

Then

E(ϑh − (T − t0))2 = E(ϑh − Eϑh)2 = V ar (ϑh)

= 2

N−1∑
k=0

(tk+1 − tk)2 → 0 as h→ 0.

Exercise 3.2 Derive (3.2) and thus complete the above proof.

Remark 3.1 Let us pay attention that the quadratic variation property of the Wiener process is rather
unusual. For a smooth function, quadratic variation (i.e. sum of squares of increments) tends to zero as
h → 0 (Exercise. Check that this is right). For functions changing by some finite jumps, such a sum
tends to the sum of squares of jumps on the interval [t0, T ] and the limit does not depend on t0, T in a
continuous manner (Exercise. Check that this is right).

Remark 3.2 The convergence of the quadratic variation in the mean-square sense (3.1) (also called
L2-convergence) does not imply that for almost all trajectories of the Wiener process the limit

lim
h→0

N−1∑
k=0

[W (tk+1)−W (tk)]2

exists. The mean-square convergence implies that there is a subsequence of partitions of the interval [t0, T ]
along which the convergence to T − t0 is almost sure (i.e. for almost all trajectories or, in other words,
the convergence takes place for all trajectories except for a set of them having probability zero on which
the assertion might be not true). See further details in, e.g., [27, 56, 59].
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3.2 Filtration 3 BROWNIAN MOTION (WIENER PROCESS)

Corollary to Property 3. For almost all trajectories of the Wiener process W (t) the (first-order)
variation

∑N−1
k=0 |W (tk+1)−W (tk)| is unbounded on any interval.

Proof. Let us consider a subsequence of partitions of the interval [t0, T ] for which limh→0

∑N−1
k=0 [W (tk+1)−

W (tk)]2 equals T − t0 almost surely (see Remark 3.2). We have

N−1∑
k=0

[W (tk+1)−W (tk)]2 ≤ max
k
|W (tk+1)−W (tk)| ×

N−1∑
k=0

|W (tk+1)−W (tk)|. (3.3)

Due to the continuity of W (t), maxk |W (tk+1) −W (tk)| → 0 as h → 0. The quadratic variation in the
left-hand side of (3.3) goes to the finite T − t0 as h → 0 (see Property 3 of the Wiener process and
Remark 3.2). Then the variation

∑N−1
k=0 |W (tk+1)−W (tk)| → ∞ as h→ 0 which proves the corollary.

The consequence of this result is absolutely astonishing. Variation basically gives you the length of
the trajectory, therefore, a trajectory of the Wiener process has infinite length on any finite time interval!

Some other properties.

4. A trajectory of the Wiener process will eventually take any (whatever large or small) value.

5. At every scale a trajectory of the Wiener process looks the same. It is a fractal5 .

A typical trajectory of the Wiener process is plotted in Fig. 3.1.

Exercise 3.3 Using the in-built function randn() for generating random numbers with standard normal
distribution in MatLab, simulate trajectories of the Wiener process. Plot the trajectories and zoom-in to
visualise the fractal nature of the Wiener process.

Thus we see that the Wiener process has rather unusual properties from the point of view of standard
Analysis. Between 1940 and 1950, Calculus based on the Wiener process arose. This Calculus we
often now call Ito Calculus and the theory of stochastic differential equations. This theory was created
independently by K. Ito (Japan) and I.I. Gichman (USSR) during the Second World War. They continued
the study undertaken by S.N. Bernstein (USSR) and N. Wiener (USA).

3.2 Filtration

As usual, we assume that we have a probability space (Ω,F , P ) which is suffi ciently rich for our experi-
ment.

Definition 3.3 Filtration {Ft}t≥0 is a set of σ-algebras Ft such that Fs ⊆ Ft for s < t and Ft ⊆ F
for all t.

A natural filtration {FXt }t≥0 associated with a stochastic process X(t) encodes the information gener-
ated by this process on the interval [0, t].We say that an event A ∈ FXt if, having observed the trajectory
X(s) for s ∈ [0, t], we can answer the question of whether or not A has occurred. Obviously, more than
one process can be associated with the same filtration.

Example 3.4 The natural filtration Ft of the Wiener process W (t) is a σ-algebra generated by all W (s),
0 ≤ s ≤ t. The increments W (t′) −W (t), t′ > t, are independent of Ft. Not that the random variable
W (t′) with t′ > t is not independent of Ft (explain why).

Definition 3.4 We say that a stochastic process X(t) is adapted to the filtration {Ft}t≥0 if X(t) is
measurable with respect to Ft for all t ≥ 0.

5A geometric pattern that is repeated at even smaller scales to produce irregular shapes and surfaces that cannot be
represented by classical Geometry.
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3.2 Filtration 3 BROWNIAN MOTION (WIENER PROCESS)

Figure 3.1: A typical trajectory of the Wiener process.

Example 3.5 The process Y (t) := max0≤s≤tW (s) is adapted to the filtration {FWt }t≥0 generated by the
Wiener process W (t), whereas the process Z(t) := W 2(t+ 1)−W 2(t) is not adapted to {FWt }t≥0.

Example 3.6 Let W (t) be a standard Wiener process with the natural filtration Ft. The stochastic
process defined by

S(t) = S0e
µt+σW (t), t ≥ 0, (3.4)

is called geometric Brownian motion (GBM). Here S0 > 0, µ, and σ > 0 are some constants.
Obviously, Ft is the natural filtration for S(t) as well. Geometric Brownian motion is the basic reference
model for stock prices in continuous time. In particular, it is the model underlying the Black—Scholes—
Merton pricing theory.

Exercise 3.4 Continuing Exercise 3.3, plot trajectories of GBM in MatLab.

Definition 3.5 The quadruple (Ω,F , {Ft}t≥0, P ) is called a filtered probability space.

Definition 3.6 Let X(t) and Y (t), t ∈ [t0, T ], be two real-valued stochastic processes defined on a prob-
ability space (Ω,F , P ). We say that they are independent if the events {(X(t1), . . . , X(tn)) ∈ A}
and {(Y (s1), . . . , Y (sm)) ∈ B} are independent for all n, m, all times (t1, . . . , tn) ∈ [t0, T ]n and (s1,
. . . , sm) ∈ [t0, T ]m and all sets A ∈ B(Rn) and B ∈ B(Rm).

Example 3.7 In future we will often consider a number of independent standard Wiener processes.
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3.3 Markov processes 4 SIMPLISTIC INTRODUCTION TO ITO CALCULUS

3.3 Markov processes

Most of stochastic models used in Financial Mathematics, in molecular dynamics and other applications
are Markovian, i.e. their solution is a Markov process. In this section we introduce this important notion.
On the physical level of rigour, one can define the Markov property of a stochastic process ζ(t) is that

the future behaviour of ζ(t) after time t depends only on its value at the time t and does not depend on
its history before the time t. In other words, a Markov process has no memory: the future depends on
the past through the present. The models (random walks, Wiener process, GBM) are Markovian. Now
the mathematical definition6 .

Definition 3.7 Let ζ(t) be a stochastic process defined on a filtered probability space (Ω,F , {Ft}, P ). The
process ζ(t) satisfies the Markov property if, for any bounded Borel-measurable function f and for any
time moments s and t with s ≤ t, the following relationship holds:

E(f(ζ(t))|Fs) = E(f(ζ(t))|ζ(s)). (3.5)

It follows from this definition (see also Example 2.4) that if ζ(t) is Markovian, then for every bounded
Borel-measurable function f(x) there is another function g(x) (depending on s and f) such that

E(f(ζ(t))|Fs) = g(ζ(s)).

Instead of f(x) and g(x), we can write f(t, x) and f(s, x) and thus

E(f(t, ζ(t))|Fs) = f(s, ζ(s)). (3.6)

Example 3.8 Let us prove that a standard Wiener processW (t) defined on (Ω,F , {Ft}, P ) is Markovian.
Take an arbitrary bounded Borel-measurable function f(x) and form a function h(x, y) := f(x+ y). Then
f(x) = h(x− y, y) and we can write for any time moments s and t with s ≤ t :

E(f(W (t))|Fs) = E(h(W (t)−W (s),W (s))|Fs).

Since W (s) is Fs-measurable and W (t)−W (s) is independent of Fs, we get by Proposition 2.3:

E(h(W (t)−W (s),W (s))|Fs) = g(W (s))

for some function g(x), which proves that W (t) is Markovian.

If ζ(t) is a Markov process then we have for A ∈ R :

P (ζ(t) ∈ A|Fs)
(2.12)

= E(Iζ(t)∈A(ω)|Fs) (3.7)
(3.5)
= E(Iζ(t)∈A(ω)|ζ(s))

(2.12)
= P (ζ(t) ∈ A|ζ(s)) := P (s, ζ(s); t, A) a.s.,

where P (s, x; t, y) is called the Markov transition function.

4 Simplistic Introduction to Ito Calculus

Let us start with a simple example. Consider a bank account, for which we use the model

B(t) = B0e
rt, (4.1)

where r ≥ 0 is a constant interest rate. Equivalently, we can say that B(t) is the solution of the following
initial value problem for the ordinary differential equation (ODE):

Ḃ = rB, B(0) = B0, (4.2)

6A more traditional definition of the Markov property is via transition probabilities. If it is defined via transition
probabilities then the definition below is a property.
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or
dB = rBdt, B(0) = B0,

or in the integral form

B(t) = B0 +

∫ t

0

rB(s)ds.

In real life interest rates are not constant and (4.2) can be generalised by substituting the constant r with
a short rate depending on time r(t) and possibly on randomness r(t) = r(t, ω) and some other variables:

Ḃ = r(t)B, B(0) = B0. (4.3)

Now let us try to answer the question: what kind of differential equation can we write for geometric
Brownian motion

S(t) = S0e
µt+σW (t)? (4.4)

Take a ‘nice’ (smooth) function g(t, x) of two independent (‘dummy’) variables. Due to the Taylor
theorem, we have

g(t+ ∆t, x+ ∆x)− g(t, x) =
∂g

∂t
∆t+

∂g

∂x
∆x+

1

2

∂2g

∂x2
(∆x)2 + · · ·. (4.5)

If in (4.5) we substitute a smooth function x(t) instead of the dummy variable x and∆x = x(t+∆t)−x(t),
the last term of the right-hand side of (4.5) is of order7 O((∆t)2) and the omitted terms in (4.5) are of
order O((∆t)2) or higher. Then, as ∆t→ 0, we get the differential8

dg =
∂g

∂t
dt+

∂g

∂x
dx

or
dg

dt
(t, x(t)) =

∂g

∂t
+
∂g

∂x

dx

dt
,

which is just the chain rule.
Let

g(t, x) = S0e
µt+σx. (4.6)

Then we can write S(t) = g(t,W (t)) and obtain

g(t+ ∆t,W (t+ ∆t))− g(t,W (t)) (4.7)

=
∂g

∂t
∆t+

∂g

∂x
(W (t+ ∆t)−W (t)) +

1

2

∂2g

∂x2
(W (t+ ∆t)−W (t))2 + · · ·.

We know (see Definition 3.2) that

E[W (t+ ∆t)−W (t)]2 = ∆t.

Hence, the last term on the right-hand side of (4.7) is, in fact, of order ∆t and we cannot ignore it, i.e.
we cannot ignore the term containing the second derivative as we did above in the case of a smooth x(t).
Taking this into account and assuming that we can do the transition in (4.7) as ∆t→ 0 rigorously, the
differential equation governing St = g(t,Wt) will take the form

dS =
∂g

∂t
(t,W (t))dt+

∂g

∂x
(t,W (t))dW (t) +

1

2

∂2g

∂x2
(t,W (t))dt. (4.8)

7Please check.
8The differential of a function is the principal (linear) part in the increment of a function.
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Due to (4.6), we have

∂g

∂t
= S0µe

µt+σx = µg,
∂g

∂x
= S0σe

µt+σx = σg,
∂2g

∂x2
= σ2g.

Thus, we heuristically get the stochastic differential equation (SDE) for geometric Brownian motion:

dS = (µ+
σ2

2
)Sdt+ σSdW (t), S(0) = S0, (4.9)

or
dS

dt
= (µ+

σ2

2
)S + σSẆ (t), S(0) = S0. (4.10)

However, we still have a major problem here: how to interpret dW (t) given that W (t) is a ‘bad’function
(it is not differentiable, its variation is unbounded). Due to this, (4.9) actually has no sense in the form it
is written9 . It is just a formal writing of a mathematical object. There are at least two ways to interpret
it. One is simple but less productive, the other is more productive but less simple.

The first way
Consider an ODE:

ẋ = g(t, x), x(0) = x0,

and forget that you know what derivative is and what the definition of this object is based on the notion
of derivatives for the moment. Then we can view this ODE as a limiting object of the (well-defined)
difference equation (the Euler method10):

xk+1 = xk + δg(tk, xk)

with a discretization step δ = T/N of the time interval [0, T ] with 0 = t0 < t1 < · · · < tN = T. If the
limit of xk exists when δ → 0, we can say that the ODE is such an object for which solution x(t) is the
obtained limit.
We can do something similar with the stochastic differential equation (4.9) —we can view it as a limit

of one or another discrete scheme, e.g., of the (weak) Euler method:

Sk+1 = Sk + (µ+
σ2

2
)Skδ + σSk

√
δξk+1, (4.11)

where ξk are i.i.d. with P (ξk = ±1) = 1/2 or we can take ξk as i.i.d. Gaussian random variables with
zero mean and unit variance (this may ensure a stronger convergence). The scheme (4.11) converges in
some sense to a continuous process S(t) which can be viewed as a solution of (4.9). This approach can
be justified rigorously (it was first considered by S.N. Bernstein in the 1930s [3]).

The second way
This is more complicated. It is based on Stochastic Calculus. Due to this, a rigorous sense may be given
to (4.9) if we re-write it in the integral form:

S(t) = S0 +

∫ t

0

(µ+
σ2

2
)S(s)ds+

∫ t

0

σS(s)dW (s). (4.12)

Then, the equation (4.9) is used as the symbolic writing of (4.12). The first integral in (4.12) is just
a usual Riemann integral because S(s) is continuous. However, the second integral requires a rigorous
mathematical interpretation. It is the so-called Ito stochastic integral. It was introduced by K. Ito
[22].

9More precisely, it is so if we look at it from the position of standard Analysis. The modern theory of white noise (see,
e.g., [20] and references therein) gives a rigorous interpretation to (4.10).
10See, e.g., [6].
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4.1 Ito Integral and SDEs

To complete the definition of (4.12), we need to give the meaning to an expression such that
∫ T

0
h(t)dW (t),

where h(t) = h(t, ω) is Ft-measurable function for all t > 0.

Example 4.1 How to give the meaning to the integrals
∫ T

0
W (t)dW (t) or

∫ T
0
S(t)dW (t)?

Assume for a moment that W (t) is differentiable. Then, obviously

dW (t) = Ẇ (t)dt, W (0) = 0,

and for ‘good’functions h ∫ T

0

h(t)dW (t) =

∫ T

0

h(t)Ẇ (t)dt,

where the integral on the right would be a well-defined Riemann integral. However, W (t) is not differen-
tiable as we know. If variation of W (t) would be bounded, this integral can be interpreted as the Stieltjes
(Riemann—Stieltjes) integral11 . However, variation of W (t) is unbounded. So, we need to do something
else.
Let h(t) be a continuous stochastic process adapted to Ft such that∫ T

0

E[h(t)]2dt <∞.

Then the Ito stochastic integral is defined as the mean-square limit:∫ T

0

h(t)dW (t) := l.i.m.
h→0

N−1∑
i=0

h(ti)× (W (ti+1)−W (ti)), (4.13)

where 0 = t0 < t1 < · · · < tN = T is a discretization of the time interval [0, T ], δ := maxi(ti+1 − ti) and
l.i.m. means the limit in the mean-square sense, i.e.

E

[∫ T

0

h(t)dW (t)−
N−1∑
i=0

h(ti)× (W (ti+1)−W (ti))

]2

→ 0 as δ → 0. (4.14)

Remark 4.1 Ito integral exists for any continuous, bounded (and some unbounded) h(t) (see a proof in,
e.g., [56, 27, 30, 59]).

Remark 4.2 It is essential that h(ti) in (4.13) must always be evaluated at the left point, in contrast to
the Riemann—Stieltjes integral (see Footnote 11) which does not depend on the point t ∈ [ti, ti+1] at which
h is evaluated. If we allow h(t) to be evaluated at a different point in (4.13), the limit will be different
and we will get another type of stochastic integral (see also Exercise 4.2 and Remark 4.4). This is again
unusual from the point of view of standard Analysis and is a consequence of, in particular, unbounded
variation of the Wiener process.

Exercise 4.1 Using the definition of the Ito integral show that∫ T

0

W (t)dW (t) =
W 2(T )

2
− T

2
.

This is not what one would predict from the classical integration theory. The extra term −T/2 arises due
to the fact that the quadratic variation of the Wiener process is not zero.
11The Riemann—Stieltjes integral of a continuous function g(t) with respect to a function f(x) of bounded variation on

[0, T ] is defined as ∫ T

0
g(t)df(t) := lim

h→0

N−1∑
i=0

g(s∗i )× (f(ti+1)− f(ti)),

where s∗i is an arbitrary point in the interval [ti, ti+1].
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Exercise 4.2 Compute l.i.m.h→0

∑N−1
i=0 W (ti+1)(W (ti+1) −W (ti)) and compare with the answer from

Exercise 4.1 (also compare with Remarks 4.2 and 4.4).

Properties of Ito integral

1. E
∫ T

0

h(t)dW (t) = 0;

2. E

[∫ T

0

h(t)dW (t)

]2

=

∫ T

0

E[h(t)]2dt.

Proofs of these properties can be found, e.g., in [30, 59].

Exercise 4.3 Let W (t) be a standard Wiener process. Compute

E

∫ t

0

W 2(s)dW (s) and E

∫ t

0

W 2(s)ds.

Remark 4.3 If h(t) does have a continuous first derivative (note that the integrands in Example 4.1 are
not differentiable), then, e.g.,

l.i.m.
h→0

N−1∑
i=0

h(ti)× (W (ti+1)−W (ti)) (4.15)

= l.i.m.
h→0

N−1∑
i=0

h(ti+1)× (W (ti+1)−W (ti))

or, more precisely, the definition of the stochastic integral in this case does not depend on the point
t ∈ [ti, ti+1] at which h is evaluated (cf. Footnote 11). Further, one can show that for differentiable h(t):∫ T

0

h(t)dW (t) = h(T )dW (T )−
∫ T

0

W (t)h′(t)dt. (4.16)

Exercise 4.4 (i) Show that (4.15) is true. (ii) Show that (4.16) is true.

Based on the definition of the Ito integral, we can now properly define SDE. Assume that a(t, x) and
b(t, x) have some good analytical properties. The solution of the stochastic differential equation

dX = b(t,X)dt+ σ(t,X)dW (t), X(t0) = x, (4.17)

is a stochastic process X(t) such that for every t the random variable X(t) is measurable with respect to
Ft and X(t) satisfies the integral equation

X(t) = x+

∫ t

t0

b(s,Xt0,x(s))ds+

∫ t

t0

σ(s,Xt0,x(s))dW (s), (4.18)

where the first integral is a Riemann integral and the second one —an Ito integral. A proof of the existence
and uniqueness of solutions of SDEs under some assumptions on the functions b(t, x) and σ(t, x) can be
found in, e.g., [27, 56, 18, 30, 59]. The notation Xt0,x(s) means that X(t0) = x.
We can analogously introduce multidimensional Ito SDEs:

dX = b(t,X)dt+

q∑
r=1

σr(t,X)dWr(t), X(t0) = x, (4.19)
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where b(t, x) and σr(t, x), r = 1, . . . , q, are ‘good’d-dimensional vector-functions and Wr(t), r = 1, . . . , q,
are independent standard Wiener processes on the filtered probability space (Ω,F , P, {Ft}) , and it is
again understood in the integral form

Xt0,x(t) = x+

∫ t

t0

b(s,Xt0,x(s))ds+

q∑
r=1

∫ t

t0

σr(s,Xt0,x(s))dWr(s), (4.20)

where the first integral is a (component-wise) Riemann integral and the integrals in the last term are
(component-wise) Ito integrals.

Property. The solution Xt0,x(t) of the SDE (4.19) is a Markovian process.

A proof of this property can be found e.g. in [56, 60].

Remark 4.4 (Ito vs Stratonovich). We discussed already (see Exercises 4.1 and 4.2 and Remark 4.2)
that a definition of stochastic integral depends on the points at which the integrand is evaluated in the
approximate sum. In applications we normally use two interpretations of stochastic integrals and, conse-
quently, of SDEs. They are Ito and Stratonovich interpretations:
Ito:

T∫
0

b(t,X(t))dW (t) = l.i.m.
δ→0

N−1∑
i=0

b(ti, X(ti))× (W (ti+1)−W (ti)),

Stratonovich:

T∫
0

b(t,X(t)) ◦ dW (t) = l.i.m.
δ→0

N−1∑
i=0

b

(
ti,
X(ti) +X(ti+1)

2

)
(W (ti+1)−W (ti)).

In Financial Mathematics one uses the Ito interpretation. Stratonovich interpretation is often used in
applications from physics and also within stochastic geometry.

Exercise 4.5 Using the definition of Stratonovich integral, compute
T∫
0

W (t) ◦ dW (t).

The relationship between Ito and Stratonovich SDEs. Consider the Ito SDEs (4.19). It can
be re-written as the SDE in the sense of Stratonovich as

dX =

(
b(t,X)− 1

2

q∑
r=1

∂σr
∂x

(t,X)σr(t,X)

)
dt+

q∑
r=1

σr(t,X) ◦ dWr(t) . (4.21)

Here ∂σr/∂x is the matrix with entry ∂σir/∂x
j at the intersection of the i-th row and j-th column.

Obviously, if we are given an SDE in the sense of Stratonovich, we can re-write it in the Ito sense. Note
that in the case of SDEs with additive noise (i.e., σr(t, x) = σr(t, ), r = 1, . . . , q) Ito and Stratonovich
interpretations coincide.

4.2 Examples of SDEs

The first set of examples are from Financial Engineering:

• Geometric Brownian motion (see e.g. [4, 24, 50, 54]):

dS = µSdt+ σSdW. (4.22)

• Orstein-Uhlenbeck process/Vasicek model (see e.g. [4, 24, 50]):

dr = a [b− r] dt+ σdWQ, r(0) = r0. (4.23)
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• Cox-Ingersoll-Ross (CIR) model (see e.g. [4, 24, 50]):

dr = a [b− r] dt+ σ
√
rdWQ, r(0) = r0 > 0, (4.24)

• Heston stochastic volatility model [19]:

dS = µSdt+
√
vSdW1(t), (4.25)

dv = κ(θ − v)dt+ σ
√
v
(
ρdW1(t) +

√
1− ρ2dW2(t)

)
.

• SABR stochastic volatility model [17]:

dF = σ(t)F β
(
ρdW1(t) +

√
1− ρ2dW2(t)

)
,

dσ = ασdW1(t).

• LIBOR market model: the LIBOR rates L(t, Ti−1), 1 ≤ i ≤ n, 0 ≤ t ≤ Ti−1 ∧ Tk satisfy the SDEs
(see e.g. [4, 50]):

dL(t, Ti−1) = L(t, Ti−1)σ>(t, Ti−1)


−
k−1∑
l=i

δL(t,Tl)
δL(t,Tl)+1σ(t, Tl)dt+ dWTk

j (t), i < k,

dWTk(t), i = k,
i−1∑
l=k

δL(t,Tl)
δL(t,Tl)+1σ(t, Tl)dt+ dWTk(t), i > k.

. (4.26)

The second set of examples are from molecular dynamics:

• Langevin equations (see e.g. [26, 25]):

dR =
P

m
dt, R(0) = r, (4.27)

dP = ∇U(R)dt− γPdt+

√
2mγ

β
dw(t), P(0) = p, j = 1, . . . , n.

• Stochastic gradient system:

dR = −∇U(R)dt+

√
2

β
dw(t), R(0) = r. (4.28)

SDEs are also used in Bayesian statistics, population dynamics, chemical reactions, engineering ap-
plications, economics and so on.

4.3 Ito Formula

In this section we consider the Ito formula which is one of the most important results in Stochastic
Calculus. We give here its heuristic justification. Its rigorous proof can be found in, e.g., [27, 56, 30, 59].
First, we recall (see also the beginning of Section 4) that if g(t, x), x ∈ R, is a smooth deterministic

function and X(t) is a solution of the ODE

dX = b(t,X(t))dt,

then the differential of g(t,X(t)) is found as

dg(t,X(t)) =

[
∂g

∂t
(t,X(t)) + b(t,X(t))

∂g

∂x
(t,X(t))

]
dt. (4.29)
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Consider the (one-dimensional) SDE

dX = b(t,X)dt+ σ(t,X)dW (t), X(t0) = x. (4.30)

Let us find a formula for g(t,X(t)) with X(t) from (4.30) analogous to (4.29).
Following the Taylor theorem, we formally have (see also (4.5) and (4.7)):

dg(t,X(t)) =
∂g

∂t
(t,X)dt+

∂g

∂x
(t,X)dX (4.31)

+
1

2

∂2g

∂x2
(t,X)× (dX)2 + · · ·

=
∂g

∂t
(t,X)dt+

∂g

∂x
(t,X) b(t,X)dt+

∂g

∂x
(t,X) σ(t,X)dW (t)

+
1

2

∂2g

∂x2
(t,X) σ2(t,X) (dW )2 + · · · ,

where the omitted terms contain factors of the form (dW )3, (dW )2dt, (dt)2, (dt)2dW, etc. Mean-square
orders of smallness of all these terms are higher than dt. We already know that E[dW (t)]2 = dt and that
the last term in (4.31) cannot be omitted: it becomes, after integration,

1

2

∫ t

t0

∂2g

∂x2
(s,X) σ2(s,X)ds.

Finally, integrating (4.31), we obtain (we assume here that we can do the transition rigorously):

g(t,X(t))− g(t0, x) =

∫ t

t0

[
∂g

∂t
(s,X(s)) + b(s,X(s))

∂g

∂x
(s,X(s)) (4.32)

+
σ2(s,X(s))

2

∂2g

∂x2
(s,X(s))

]
ds

+

∫ t

t0

σ(s,X(s))
∂g

∂x
(s,X(s)) dW (s)

or in the form of differentials

dg(t,X(t)) =

[
∂g

∂t
(t,X(t)) + b(t,X(t))

∂g

∂x
(t,X(t)) (4.33)

+
σ2(t,X(t))

2

∂2g

∂x2
(t,X(t))

]
dt

+ σ(t,X(t))
∂g

∂x
(t,X(t)) dW (t),

which is the Ito formula. It is also known as the formula of the change of variables in the stochastic
integral.

Example 4.2 Let g(x) = x2 and S(t) be a solution of (4.12). Find the SDE for ξ(t) := g(S(t)) and then
compute ES2(t).

Answer. Applying the Ito formula, we obtain

dg(S(t)) =

[
(µ+

σ2

2
)S(t)

∂g

∂x
(S(t)) +

σ2

2
S2(t)

∂2g

∂x2
(S(t))

]
dt

+ σS(t)
∂g

∂x
(S(t)) dW (t)

= 2
[
µ+ σ2

]
S2(t)dt+ 2σS2(t) dW (t),

@ M. Tretyakov, University of Nottingham, 2016 24 Mini-course on numerical methods for SDEs



4.3 Ito Formula 4 SIMPLISTIC INTRODUCTION TO ITO CALCULUS

i.e.
dξ = 2

[
µ+ σ2

]
ξdt+ 2σξdW (t), ξ(0) = S2(0).

Formally taking expectations from the left and right hand sides of the above equation and taking into
account that the expectation of the Ito integral is zero, we obtain

dEξ = 2
[
µ+ σ2

]
Eξdt, Eξ(0) = S2(0).

Hence
Eξ(t) = ξ(0) exp(2

[
µ+ σ2

]
t),

i.e.
ES2(t) = S2(0) exp(2

[
µ+ σ2

]
t).

Exercise 4.6 Let S(t) be from (4.22). Find an SDE for lnS(t) and then solve (4.22).

Exercise 4.7 Solve (4.23) using the integrating factor method.

Exercise 4.8 Using the Ito formula, show that∫ t

0

sdW (s) = tW (t)−
∫ t

0

W (s)ds

(here W (s) is a standard Wiener process).

Exercise 4.9 Let gn(x) = xn, where n is a positive integer, and let W (t) be a standard Wiener process.
Using the Ito formula, derive the equation for ξ(n)(t) := gn(W (t)) and compute EW 2n(t).

Let us now introduce the multidimensional Ito formula. Introduce the two operators associated with
the SDEs (4.19):

Lu(t, x) : =
∂

∂t
u(t, x) +

1

2

q∑
r=1

d∑
i,j=1

σirσ
j
r

∂2

∂xi∂xj
u(t, x) +

d∑
i=1

bi
∂

∂xi
u(t, x), (4.34)

Λru(t, x) : =

d∑
i=1

σir
∂

∂xi
u(t, x).

Let f(t, x) be a smooth ‘good’function. Then we can write the multidimensional Ito (change of variables)
formula in the form:

df(t,X(t)) = Lf(t,X(t))dt+

q∑
r=1

Λrf(t,X(t))dWr(t) (4.35)

or in the integral form

f(t,Xt0,x(t)) = f(t0, x) +

∫ t

t0

Lf(s,X)ds+

q∑
r=1

∫ t

t0

Λrf(s,X(s))dWr(s). (4.36)

A justification (not proof!) of the multidimensional Ito formula can be found in [50] and a proof in [56].

Let u(t, x) be a (classical) solution of the Cauchy (initial-value) problem for the linear parabolic partial
differential equation (PDE) associated with the SDE (4.19):

Lu = 0, t < T, x ∈ Rd, (4.37)

u(T, x) = f(x), x ∈ Rd. (4.38)

Note that the equation (4.37) is written with negative direction of time and (4.38) is actually the terminal
condition. This PDE associated with the SDEs (4.19) is usually called the backward Kolmogorov equation.
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Example 4.3 (Feynman-Kac formula) Let us apply the Ito formula to u(t,Xt0,x(t)), where u(t, x) is
the solution of (4.37)-(4.38) and X(t) is the solution of (4.19). We obtain

u(t,Xt0,x(t)) = u(t0, x) +

∫ t

t0

Lu(s,X)ds+

q∑
r=1

∫ t

t0

Λru(s,X(s))dWr(s). (4.39)

Taking expectation of the left and right hand sides of (4.39), using properties of Ito integrals and (4.37),
we get

u(t0, x) = Eu(t,Xt0,x(t)).

Then using (4.38), we arrive at

u(t0, x) = Eu(T,Xt0,x(T )) = Ef(Xt0,x(T )).

Thus, we have obtained the probabilistic representation of the solution to the problem (4.37)-(4.38) (the
famous Feynman-Kac formula):

u(t0, x) = Ef(Xt0,x(T )), (4.40)

where Xt0,x(t), t ≥ t0, is the solution of (4.19).

Exercise 4.10 Consider the Cauchy problem

Lu+ c(t, x)u = 0, t < T, x ∈ Rd, (4.41)

u(T, x) = f(x), x ∈ Rd. (4.42)

Using the Ito formula, show that its solution has the following probabilistic representation

u(t0, x) = E [f(Xt0,x(T ))Yt0,x,1(T )] , (4.43)

where Xt0,x(t), t ≥ t0, is the solution of (4.19) and the scalar Yt0,x,y(t), t ≥ t0, satisfies the equation

dY = c(t,X)Y dt, Y (t0) = y. (4.44)

Remark 4.5 We can analogously derive probabilistic representations for boundary value problems (Dirich-
let and with some extra effort - Neumann) and also for linear elliptic PDEs [11, 56] (and also [44]).

Example 4.4 Since Xt0,x(t) is a Markovian process, we have for t0 ≤ t ≤ T :

E(f(Xt0,x(T ))|Ft) = E(f(Xt0,x(T ))|Xt0,x(t)) = E(f(Xt,Xt0,x(t)(T ))|Xt0,x(t)) = u(t,Xt0,x(t)).

Thus
E(f(Xt0,x(T ))|Ft) = u(t,Xt0,x(t)), (4.45)

where X(t) is the solution of (4.19) and u(t, x) is the solution of (4.37)-(4.38).

Exercise 4.11 Consider the Cauchy problem for partial differential equation

∂u

∂t
+

1

2

∂2u

∂x2
− cu = 0, t ∈ [0, 1), x ∈ R,

u(1, x) = x, x ∈ R,

where c is some constant. Using a probabilistic representation for this problem, find the solution u(t, x).
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5 Stochastic numerics —initial thoughts

In this section we have preliminary discussion about numerical methods for SDEs. One can consider
this topic as a generalisation of numerical schemes for (deterministic) ordinary differential equations. Of
course, the SDE case is more complicated. Dependence of X(t) = X(t;ω) on ω (“randomness”) raises
the question how to measure closeness between the exact solution and its approximation. As we will see,
this can be done in various ways and the answer on this question largely depends on the question what
you would like to compute. Another problem we face here in comparison with deterministic ODEs is that
trajectories X(t) are not differentiable. In the deterministic numerical analysis we rely on smoothness
of ODEs solution to prove a convergence order of a numerical scheme. Consequently, the deterministic
numerical analysis results are no longer applicable here though many ideas from it are certainly very
useful for the stochastic case.

Before we proceed to the stochastic case, you might wish to do a ‘deterministic’exercise.

Exercise 5.1 Consider the ODE
ẋ = b(t, x), x(t0) = x0.

The simplest numerical method for solving ODEs is the Euler method:

xk+1 = xk + b(tk, xk)h , (5.1)

where h > 0 is a discretization time step of an interval [t0, T ] and h = (T − t0)/N . Show that this method
has second order of accuracy on a single step, i.e. that

|x1 − x(t+ h)| ≤ Kh2,

for some constant K > 0 independent of h.

Note that the global error of the Euler method (5.1) is of first order:

|xk − x(tk)| ≤ Kh, k = 1, . . . , N,

for some constant K > 0 independent of h.

Consider the system of Ito SDEs:

dX = b(t,X)dt+

q∑
r=1

σr(t,X)dWr(t), X(t0) = x. (5.2)

The simplest approximate method for solving (5.2) is Euler’s method :

Xk+1 = Xk +

q∑
r=1

σrk∆kwr(h) + bkh , (5.3)

where ∆kwr(h) = wr(tk+1) − wr(tk), and the index k at σr and b indicates that these functions are
evaluated at the point (tk, Xk). We see that (5.3) is a natural generalisation of the Euler method (5.1)
for ODEs to the stochastic case.
Under some conditions on the functions b(t, x) and σr(t, x) G. Marujama [34] showed the mean-square

convergence of this method, while I.I. Gichman and A.V. Skorokhod [12] proved that the order of accuracy
of Euler’s method is 1/2, i.e.,

(E(X(tk)−Xk)2)1/2 ≤ Ch1/2 , (5.4)

where C is a constant not depending on k and h.
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In order to realise the Euler method on a computer, we observe that (i) increments ∆kwr(h) of Wiener
process are independent; (ii) ∆kwr(h) are Gaussian random variables ∼ N (0, h); (iii) Gaussian random
variables have the following scaling property:

∆kwr(h) =
√
hξrk, (5.5)

where ξrk ∼ N (0, 1).

Exercise 5.2 Show that (5.5) is true.

Then we can re-write the Euler scheme as the following algorithm:

X0 = x, (5.6)

Xk+1 = Xk +
√
h

q∑
r=1

σrkξrk + bkh ,

where ξrk are i.i.d random variables ∼ N (0, 1).

6 Mean-square approximation

In this section we consider stronger type of convergence of numerical schemes for SDEs, namely mean-
square convergence and a.s. convergence.
Let (X(t),Ft), t0 ≤ t ≤ T, be a solution of the system (5.2) with E|X(t0)|2 < ∞. The one-step

approximation X̄t,x(t+h), t0 ≤ t < t+h ≤ T, depends on x, t, h, and {w1(θ)−w1(t), . . . , wq(θ)−wq(t), t ≤
θ ≤ t+ h} and is defined as follows:

X̄t,x(t+ h) = x+A(t, x, h;wi(θ)− wi(t), i = 1, . . . , q, t ≤ θ ≤ t+ h). (6.1)

Using the one-step approximation, we recurrently construct the approximations (X̄k,Ftk), k =
0, . . . , N, tk+1 − tk = hk+1, TN = T :

X̄0 = X0 = X(t0), X̄k+1 = X̄tk,X̄k(tk+1) (6.2)

= X̄k +A(tk, X̄k, hk+1;wi(θ)− wi(tk), i = 1, . . . , q, tk ≤ θ ≤ tk+1).

We will use the following notation. An approximation of X(tk) will be denoted by X̄(tk), X̄k, or
simply by Xk. By X̄tk,X(ti), ti ≥ tk, we denote an approximation of the solution at step i such that
X̄k = X. Clearly,

X̄k+1 = X̄tk,X̄k(tk+1) = X̄t0,X̄0
(tk+1).

Everywhere below we put X̄0 = X(t0). For simplicity, we assume that tk+1 − tk = h = (T − t0)/N .

Definition 6.1 If for a method for (5.2) we have the error estimate

(E(X(tk)−Xk)2)1/2 ≤ Chp , (6.3)

then we say that the mean-square order of accuracy of the method is p.

The Euler method (5.3) is an example of mean-square methods. In the case of general SDEs (5.2) it
converges with mean-square p = 1/2 as we previously already mentioned.
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6.1 Fundamental theorem on mean-square convergence

In the deterministic numerical analysis, if the local order of ODE one-step approximation is equal to p+1
then the corresponding numerical method has the global order p (see e.g. [6]). In this section we look at
a similar result in the case of mean-square approximations of SDEs.
Assume that the functions b(t, x) and σr(t, x) are defined and continuous for t ∈ [t0, T ], x ∈ Rd, and

satisfy the following globally Lipschitz condition: for all t ∈ [t0, T ], x ∈ Rd, y ∈ Rd there is an inequality

|b(t, x)− b(t, y)|+
q∑
r=1

|σr(t, x)− σr(t, y)| ≤ K|x− y| . (6.4)

Here and below we denote by |x| the Euclidean norm of the vector x and by xᵀy or by (x, y) the scalar
(inner) product of two vectors x and y.
The following theorem was proved in [39] (see also [40] and [44, Chapter 1]).

Theorem 6.1 Suppose the one-step approximation X̄t,x(t+ h) has order of accuracy p1 for expectation
of the deviation and order of accuracy p2 for the mean-square deviation; more precisely, for arbitrary
t0 ≤ t ≤ T − h, x ∈ Rd the following inequalities hold:

|E(Xt,x(t+ h)− X̄t,x(t+ h))| ≤ K(1 + |x|2)1/2hp1 , (6.5)[
E|Xt,x(t+ h)− X̄t,x(t+ h)|2

]1/2 ≤ K(1 + |x|2)1/2hp2 . (6.6)

Also let
p2 ≥

1

2
, p1 ≥ p2 +

1

2
. (6.7)

Then for any N and k = 0, 1, . . . , N the following inequality holds:[
E|Xt0,X0

(tk)− X̄t0,X0
(tk)|2

]1/2 ≤ K(1 + E|X0|2)1/2hp2−1/2 , (6.8)

i.e., the order of accuracy of the method constructed using the one-step approximation X̄t,x(t + h) is
p = p2 − 1/2.

We note that all the constants K mentioned above, as well as the ones that will appear in the sequel,
depend on the system (5.2) and the approximation (6.1) only and do not depend on X0 and N.

Remark 6.1 Often the notion of strong order of accuracy is used (see, e.g., [29]): if for some method

E |X(tk)−Xk| ≤ Khp,

where K is a positive constant independent of k and h, then we say that the strong order of accuracy of
the method is equal to p. Clearly, if the mean-square order of a method is p, then the method has the same
strong order.

Let us prove the fundamental theorem.

Lemma 6.1 There is a representation

Xt,x(t+ h)−Xt,y(t+ h) = x− y + Z (6.9)

for which
E|Xt,x(t+ h)−Xt,y(t+ h)|2 ≤ |x− y|2(1 +Kh) , (6.10)

EZ2 ≤ K|x− y|2h . (6.11)
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Proof. Ito’s formula implies that for 0 ≤ θ ≤ h :

E|Xt,x(t+ θ)−Xt,y(t+ θ)|2 = |x− y|2

+2E

∫ t+θ

t

(Xt,x(s)−Xt,y(s))ᵀ(a(s,Xt,x(s))− a(s,Xt,y(s)))ds

+E

∫ t+θ

t

q∑
r=1

|σr(s,Xt,x(s))− σr(s,Xt,y(s))|2ds.

It follows from here and (6.4) that

E|Xt,x(t+ θ)−Xt,y(t+ θ)|2 ≤ |x− y|2 +K

∫ t+θ

t

E|Xt,x(s)−Xt,y(s)|2ds. (6.12)

In turn, this implies

E|Xt,x(t+ θ)−Xt,y(t+ θ)|2 ≤ |x− y|2 × eKh , 0 ≤ θ ≤ h, (6.13)

from which (6.10) follows. Further, noting that

Z =

∫ t+h

t

q∑
r=1

(σr(s,Xt,x(s))− σr(s,Xt,y(s)))dwr(s)

+

∫ t+h

t

(a(s,Xt,x(s))− a(s,Xt,y(s)))ds ,

and using (6.13), it is not diffi cult to obtain (6.11). �

Remark 6.2 Below we will use a conditional version of the inequalities (6.5), (6.6), (6.10), (6.11). In
these conditional versions the deterministic variables x, y are replaced by Ft-measurable random variables
X, Y. For example, the conditional version of (6.5) reads:

|E(Xt,X(t+ h)− X̄t,X(t+ h)|Ft)| ≤ K(1 + |X|2)1/2hp1 . (6.14)

We will also use simple consequences of these inequalities. For example, (6.14) implies

E|E(Xt,X(t+ h)− X̄t,X(t+ h)|Ft)|2 ≤ K(1 + E|X|2)h2p1 . (6.15)

The proof of these conditional versions rests on an assertion of the following kind: if ζ is F̃-measurable,
F̃ ⊂ F , f(x, ω) does not depend on F̃ , ω ∈ Ω, and Ef(x, ω) = φ(x), then E(f(ζ, ω)|F̃) = φ(ζ) (see
[12]). In the case under consideration the increments of the Wiener processes w1(θ)−w1(t), . . . , wq(θ)−
wq(t), t ≤ θ ≤ t+ h, do not depend on Ft (see, e.g. [12]), and neither does X̄t,x(t+ h), which is formed
so that it depends on x, t, h, and the mentioned increments only.

Lemma 6.2 For all natural N and all k = 0, . . . , N the following inequality holds:

E|X̄k|2 ≤ K(1 + E|X0|2). (6.16)

Proof. Suppose that E|X̄k|2 <∞. Then using the conditional version of (6.6), we obtain

E|Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|2 ≤ K(1 + E|X̄k|2)h2p2 . (6.17)

It is well known [12] that if an Ft-measurable random variable X has bounded second moment, then
the solution Xt,X(t + θ) also has bounded second moment. Therefore, E|Xtk,X̄k(tk+1)|2 < ∞. This and
(6.17) imply that E|X̄k+1|2 <∞ (recall that X̄tk,X̄k(tk+1) = X̄k+1). Since E|X̄0|2 <∞, we have proved
the existence of all E|X̄k|2 <∞, k = 0, . . . , N.
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Consider the equation

E|X̄k+1|2 = E|X̄k|2 + E|Xtk,X̄k(tk+1)− X̄k|2 (6.18)

+ E|Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|2 + 2EX̄ᵀ
k (Xtk,X̄k(tk+1)− X̄k)

+ 2EX̄ᵀ
k (X̄tk,X̄k(tk+1)−Xtk,X̄k(tk+1))

+ 2E(Xtk,X̄k(tk+1)− X̄k)ᵀ(X̄tk,X̄k(tk+1)−Xtk,X̄k(tk+1)) .

We have (see [12])
E|Xtk,X̄k(tk+1)− X̄k|2 ≤ K(1 + E|X̄k|2)h . (6.19)

Further, we obtain from (6.17) and (6.19):

2|E(Xtk,X̄k(tk+1)− X̄k)ᵀ(X̄tk,X̄k(tk+1)−Xtk,X̄k(tk+1)) | (6.20)

≤ 2(E|Xtk,X̄k(tk+1)− X̄k|2)1/2(E|Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|2)1/2

≤ K(1 + E|X̄k|2)h p2+1/2 .

It is not diffi cult to prove the inequality

E|E(Xtk,X̄k(tk+1)− X̄k|Ftk)|2 ≤ K(1 + E|X̄k|2)h2 . (6.21)

Therefore

2|EX̄ᵀ
k (Xtk,X̄k(tk+1)− X̄k)| = 2|EX̄ᵀ

kE(Xtk,X̄k(tk+1)− X̄k|Ftk)| (6.22)

≤ 2(E|X̄k|2)1/2(E|E(Xtk,X̄k(tk+1)− X̄k|Ftk)|2)1/2 ≤ K(1 + E|X̄k|2)h .

Similarly, but referring to (6.15) instead of (6.21), we obtain

2|EX̄ᵀ
k (X̄tk,X̄k(tk+1)−Xtk,X̄k(tk+1))| ≤ K(1 + E|X̄k|2)hp1 . (6.23)

Applying the inequalities (6.19), (6.17), (6.22), (6.23), and (6.20) to the equality (6.18) and recalling that
p1 ≥ 1, p2 ≥ 1/2, we arrive at the inequality (taking, without loss of generality, h ≤ 1) :

E|X̄k+1|2 ≤ E|X̄k|2 +K(1 + E|X̄k|2)h = (1 +Kh)E|X̄k|2 +Kh . (6.24)

Hence, using the well-known result (a variant of Gronwall’s lemma) which, for the sake of reference, is
stated as Lemma 6.3 below, we obtain (6.16). �

Lemma 6.3 Suppose that for arbitrary N and k = 0, . . . , N we have

uk+1 ≤ (1 +Ah)uk +Bhp , (6.25)

where h = T/N, A ≥ 0, B ≥ 0, p ≥ 1, uk ≥ 0, k = 0, . . . , N. Then

uk ≤ eATu0 +
B

A
(eAT − 1)hp−1 (6.26)

(where for A = 0 we put (eAT − 1)/A equal to zero).

Let us proceed to the proof of Theorem 6.1 itself. We have

Xt0,X0(tk+1)− X̄t0,X0(tk+1) = Xtk,X(tk)(tk+1)− X̄tk,X̄k(tk+1) (6.27)

= (Xtk,X(tk)(tk+1)−Xtk,X̄k(tk+1)) + (Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)) .
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The first difference in the right-hand side of (6.27) is the error of the solution arising due to the error in
the initial data at time tk, accumulated at the k-th step. The second difference is the one-step error at
the (k + 1)-step. Taking the square of both sides of the equation, we obtain

E|Xt0,X0(tk+1)− X̄t0,X0(tk+1)|2 (6.28)

= EE(|Xtk,X(tk)(tk+1)−Xtk,X̄k(tk+1)|2|Ftk)

+EE(|Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|2|Ftk)

+2EE((Xtk,X(tk)(tk+1)−Xtk,X̄k(tk+1))ᵀ(Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1))|Ftk) .

By the conditional version of Lemma 6.1, we get

EE(|Xtk,X(tk)(tk+1)−Xtk,X̄k(tk+1)|2|Ftk) (6.29)

≤ E|X(tk)− X̄k|2 × (1 +Kh) .

By the conditional version of (6.6) and Lemma 6.2, we have

EE(|Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|2|Ftk) (6.30)

≤ K(1 + E|X̄k|2)h2p2 ≤ K(1 + E|X0|2)h2p2 .

The difference Xtk,X(tk)(tk+1)−Xtk,X̄k(tk+1) in the last summand in (6.28) can be treated using Lemma
6.1:

Xtk,X(tk)(tk+1)−Xtk,X̄k(tk+1) := X(tk)− X̄k + Z .

Then we obtain two terms each of which can be estimated individually. Using (6.15) and Lemma 6.2, we
get

|EE((X(tk)− X̄k)ᵀ(Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1))|Ftk)| (6.31)

= |E((X(tk)− X̄k)ᵀE(Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|Ftk))|
≤ (E|X(tk)− X̄k|2)1/2K(1 + E|X0|2)1/2hp1 .

Finally, using Lemma 6.2 and the inequality (6.6), we obtain

|E(Zᵀ(Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)))| (6.32)

≤ (EE(|Z|2|Ftk))1/2(EE(|Xtk,X̄k(tk+1)− X̄tk,X̄k(tk+1)|2|Ftk))1/2

≤ K(E|X(tk)− X̄k|2)1/2(1 + E|X0|2)1/2hp2+1/2 .

Introduce the notation ε2
k := E|X(tk)−X̄k|2 . The relations (6.28) —(6.32) and the condition p1 ≥ p2+1/2

then lead to the inequality (we take h < 1) :

ε2
k+1 ≤ ε2

k(1 +Kh) +K(1 + E|X0|2)1/2εkh
p2+1/2 +K(1 + E|X0|2)h2p2 .

Using the elementary relation

(1 + E|X0|2)1/2εkh
p2+1/2 ≤ ε2

kh

2
+

1 + E|X0|2
2

h2p2 ,

we get
ε2
k+1 ≤ ε2

k(1 +Kh) +K(1 + E|X0|2)h2p2 .

The inequality (6.8) follows from this, taking into account Lemma 6.3 and the fact that ε2
0 = 0. This

proves Theorem 6.1. �
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6.2 Discussion

The rule:

“if, in a single step, the mean-square error has order hp2 (i.e., inequality (6.6) holds), then it has
order hp2−1/2 on the whole interval”

is not true without the additional condition p1 ≥ p2 + 1/2. A simple example in which this can be seen
is given by the method

X̄k+1 = X̄k + σ(tk, X̄k)∆kw(h) (6.33)

for the scalar version of system (5.2). It is easy to see that here p2 = 1 while the method diverges for
a 6= 0.

Exercise 6.1 Show that p2 for (6.33) is indeed equal to 1.

The rule:

“if, in a single step, the mean-square deviation has order hp2 , then it has order hp2−1 on the whole
interval”

is true, but a bit rough. Following this rule, we cannot prove the convergence of the Euler method, in
which p2 = 1. Moreover, a more effi cient rule for the mean-square deviation cannot be found if we are
guided only by the mean-square characteristic of the one-step approximation. The rule following from
Theorem 6.1 is based on properties of both the mean and the mean-square deviation of the one-step
approximation. In particular, for Euler’s method p1 = 2, p2 = 1 (see the next subsection), and so it
follows from Theorem 6.1 that Euler’s method has order of accuracy 1/2.
Properties of the mean are used at a single place in the proof of the theorem (and at a “delicate”

place indeed), more precisely, when deriving the inequality (6.31).

Let us consider an example which warn against a noncritical use of “suffi ciently natural”methods
motivated by deterministic ODE methods (see further examples in [44, Chapter 1] and [40]).

Example 6.1 We consider the linear Stratonovich SDE

dX = aXdt+ σX ◦ dw, 0 ≤ t ≤ T , (6.34)

and the implicit method (trapezium method) for it:

Xk+1 = Xk + a
Xk +Xk+1

2
h+ σ

Xk +Xk+1

2
∆kw(h) . (6.35)

So,

Xk+1 = Xk +Xk
ah+ σ∆kw(h)

1− ah/2− σ∆kw(h)/2
. (6.36)

Since the mathematical expectation of the right-hand side does not exist, it is clear that the approximation
(6.35) cannot converge in mean-square to the solution of (6.34).

Exercise 6.2 Explain why expectation of the right-hand side of (6.36) does not exist.

Fully explicit numerical methods for (5.2) were proposed in [42] (see also [44, Chapter 1]). To resolved
the problem illustrated in the above counterexample, truncated random variables instead of Gaussian
random variables are used in [42].
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6.3 The explicit Euler method

For the system (5.2) we consider the one-step approximation (6.1) of the form

X̄t,x(t+ h) = x+ b(t, x)h+

q∑
r=1

σr(t, x)∆twr(h) , (6.37)

where ∆twr(h) = wr(t+ h)− wr(t).
As we already know, by (6.2), this approximation generates the Euler method :

X0 = X(t0) , Xk+1 = Xk + bkh+

q∑
r=1

σrk∆kwr(h) , (6.38)

where bk, σrk are the values of the coeffi cients b and σr at the point (tk, Xk), and ∆kwr(h) = wr(tk +
h)− wr(tk).
For (6.37) we can find p1 and p2 satisfying the estimates (6.5) and (6.6). To this end we term-wise

subtract (6.38) from the SDE solution

Xt,x(t+ h) = x+

∫ t+h

t

b(s,Xt,x(s))ds+

q∑
r=1

∫ t+h

t

σr(s,Xt,x(s))dwr(s) . (6.39)

We obtain

Xt,x(t+ h)− X̄t,x(t+ h) =

∫ t+h

t

(b(s,Xt,x(s))− b(t, x))ds (6.40)

+

q∑
r=1

∫ t+h

t

(σr(s,Xt,x(s))− σr(t, x))dwr(s) .

Calculation of the expectation leads to

E(Xt,x(t+ h)− X̄t,x(t+ h)) = E

∫ t+h

t

(b(s,Xt,x(s))− b(t, x))ds . (6.41)

Taking the square of both sides of (6.40) and then evaluating expectation, we obtain

E|Xt,x(t+ h)− X̄t,x(t+ h)|2 ≤ 2E|
∫ t+h

t

(b(s,Xt,x(s))− b(t, x))ds|2 (6.42)

+2

q∑
r=1

∫ t+h

t

E|σr(s,Xt,x(s))− σr(t, x)|2ds .

We assume that, in addition to (6.4), the functions b(t, x) and σr(t, x) have partial derivatives with
respect to t that grow at most as linear functions of x as |x| → ∞. Then a and σr satisfy an inequality
of the form

|b(s,Xt,x(s))− b(t, x)| ≤ |b(s,Xt,x(s))− b(s, x)|+ |b(s, x)− b(t, x)| (6.43)

≤ K|Xt,x(s)− x|+K(1 + |x|2)1/2(s− t) .

By the Bunyakovsky—Schwarz inequality we have

|
∫ t+h

t

(b(s,Xt,x(s))− b(t, x))ds|2 ≤ h
∫ t+h

t

|b(s,Xt,x(s))− b(t, x)|2ds ,

and due to (6.43) and (6.19) the first term of the right-hand side of (6.42) is bounded by K(1 + |x|2)h3.
Using the inequality (6.43) for σr and (6.19), we see that the second term of the right-hand side of (6.42)
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is bounded by K(1 + |x|2)h2. Thus p2 = 1. Note that this value of p2 is determined by the second term
at the right-hand side of (6.42).
To find p1, we turn to (6.41). We assume in addition that the derivatives ∂ai/∂xj and ∂2ai/∂xj∂xk, i, j, k =

1, . . . , d, are uniformly bounded. We write

b(s,Xt,x(s))− b(t, x) (6.44)

= b(t,Xt,x(s))− b(t, x)− (b(t,Xt,x(s))− b(s,Xt,x(s)))

=
∂b

∂x
(t, x)(Xt,x(s)− x) + ρ1 + ρ2 ,

where ∂b/∂x is the d×d-matrix with entries ∂bi/∂xj at the intersection of the i-th row and j-th column,
and

|ρ1| ≤ K|Xt,x(s)− x|2 , |ρ2| ≤ K(1 + |Xt,x(s)|2 )1/2(s− t) . (6.45)

It follows from

E(Xt,x(s)− x) = E

∫ s

t

b(θ,Xt,x(θ))dθ (6.46)

and (6.4) for y = 0 that for all t0 ≤ θ ≤ T

|b(θ,Xt,x(θ))| ≤ |b(θ, 0)|+ |b(θ,Xt,x(θ))− b(θ, 0)| ≤ K(1 + |Xt,x(θ)|) .

Then it is not diffi cult to obtain the estimate

|
∫ t+h

t

E(Xt,x(s)− x)ds| ≤ K(1 + |x|2)1/2h2 .

This and (6.41), (6.44), (6.45) imply (6.5) with p1 = 2.
By Theorem 6.1, under the given assumptions regarding the coeffi cients a and σr, Euler’s method is

a method of order p = p2 − 1/2 = 1/2.

Now we consider Euler’s method for the system with additive noise:

dX = b(t,X)dt+

q∑
r=1

σr(t)dwr(t) . (6.47)

Exercise 6.3 Show that in the case of (6.47) the second term at the right-hand side of (6.42) can be
bounded by K(1 + |x|2)h3. Then confirm that p2 = 3/2 and that Theorem 6.1 implies that the order of
Euler’s method for systems with additive noise is 1.

6.4 The Milstein method

It is interesting to note that in the case of general SDEs (4.13) there is no known (applicably useful!)
scheme of higher order than 1/2. In particular cases (we have already mentioned the additive noise case) it
is possible to have constructive numerical schemes with mean-square order higher than 1/2. For instance,
a method of first order (the Milstein method proposed in [36]) has the form

Xk+1 = Xk +

q∑
r=1

σrk∆kwr(h) + bkh+

q∑
i=1

q∑
r=1

(Λiσr)k

∫ tk+1

tk

(wi(θ)− wi(tk))dwr(θ) . (6.48)

Note that in the case of additive noise (i.e., σr(t, x) = σr(t), r = 1, . . . , q) the Milstein and Euler methods
coincide.
In the general case we face with the diffi culty of simulating the Ito integral in (6.48). But for a single

noise (q = 1), the integral in (6.48) can be expressed in terms of ∆kw and the formula takes the following
constructive form, e.g. in the scalar case (d = 1):

Xk+1 = Xk + σk∆kw + bkh+
1

2
(σ
∂σ

∂x
)k∆2

kw −
1

2
(σ
∂σ

∂x
)kh . (6.49)
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Exercise 6.4 Show that in the scalar case (6.48) becomes (6.49).

Exercise 6.5 Using the fundamental theorem, prove that the Milstein method is of mean-square order 1.

6.5 3/2 mean-square method SDEs with additive noise

For SDEs with additive noise (i.e., σr(t, x) = σr(t), r = 1, . . . , q), there are constructive (i.e. they
can be realised without need of simulating complicated random variables arising due to iterative Ito
integrals like in the Milstein method) methods of mean-square order 3/2. For example, the Taylor-type
3/2 mean-square method has the form [40, 44, 29]:

Xk+1 = Xk +

q∑
r=1

σrk∆kwr(h) + akh+

q∑
r=1

(Λra)k

∫ tk+1

tk

(wr(θ)− wr(tk))dθ (6.50)

+

q∑
r=1

σ′rk

∫ tk+1

tk

(θ − tk)dwr(θ) + (La)k
h2

2
.

Exercise 6.6 Using the fundamental theorem, prove that the method for SDEs with additive noise is of
mean-square order 3/2.

The method (6.50) can be re-written in the following form ready for implementation

Xk+1 = Xk +

q∑
r=1

σr(tk)ξrkh
1/2 + a(tk, Xk)h (6.51)

+

q∑
r=1

Λra(tk, Xk)(
1

2
ξrk +

1√
12
ηrk)h3/2

+

q∑
r=1

dσr
dt

(tk)(
1

2
ξrk −

1√
12
ηrk)h3/2 + La(tk, Xk)

h2

2
,

where ξrk, ηrk are i.i.d. N (0, 1) random variables.

Exercise 6.7 Explain how (6.51) follows from (6.50).

Remark 6.3 Many other mean-square (explicit and implicit) schemes can be found in [29, 44], including
methods for special classes of SDEs (e.g. with additive noise, coloured, noise, small noise, etc.).

6.6 Nonglobally Lipschitz conditions

Among the conditions of Theorem 6.1, globally Lipschitz conditions (6.4) are most restrictive. SDEs with
nonglobally Lipschitz conditions, for which there exist unique extendable solutions, make up a very broad
and important class in applications.

Example 6.2 Consider the SDE (see [52, 32] and also [44]):

dX = −X3dt+ dw(t) . (6.52)

Let us start, for instance, at X(0) = X0 = 1/h (we can do so without loss of generality since we always
reach a similar position with a positive probability). Hence

X1 = X0 −X3
0h+ ∆0w(h) =

1

h
− 1

h2
+ ∆0w(h)

@ M. Tretyakov, University of Nottingham, 2016 36 Mini-course on numerical methods for SDEs



6.7 Almost sure convergence 6 MEAN-SQUARE APPROXIMATION

with a large probability is a negative number which can be approximately considered as ≈ −1/h2. Then

X2 = − 1

h2
+

1

h5
+ ∆1w(h) ≈ 1

h5
, X3 ≈ −

1

h14
,

and so on. In numerical experiments one can observe that the explicit Euler method leads to computer
overflows. Indeed, numerical experiments show that a typical trajectory of the explicit Euler method for
(6.52) blows up at times t between 2.5 and 800 for the time step h = 0.36, X0 = 0. A decrease of the time
step improves the situation, e.g., for h = 0.25 a typical trajectory blows up at times from 33 to 8× 104.

The above example demonstrates that the explicit Euler scheme can be divergent for SDEs with
nonglobally Lipschitz conditions. It was shown (see e.g. [21, 55] and references therein) that many
implicit schemes and also some special explicit schemes are convergent for interesting cases of SDEs with
nonglobally Lipschitz conditions.

Exercise 6.8 Consider the SDE in the Stratonovich sense:

dX = (1−X5) dt+X2 ◦ dw, X(0) = 0. (6.53)

In Ito’s sense, the drift of the equation becomes b(t, x) = 1− x5 + x3. Apply to this equation the explicit
Euler method (6.38), the drift-implicit Euler method [40, 44, 29]

Xk+1 = Xk + b(tk, Xk+1)h+

q∑
r=1

σr(tk, Xk)∆kwr(h) (6.54)

and the explicit balanced method from [55]

Xk+1 = Xk +
b(tk, Xk)h+

∑m
r=1 σr(tk, Xk)∆kwr(h)

1 + h|b(tk, Xk)|+
∑m
r=1 |σr(tk, Xk)∆kwr(h)| . (6.55)

Implement in MatLab all these three methods (note that (6.54) requires to use a nonlinear solver at every
step, e.g. Newton’s method can be used). Compare qualitative behaviour of the three methods by doing
numerical experiments. The outcomes can be compared with the results in [55].

6.7 Almost sure convergence

As one can see from the definition (6.3), mean-square methods guarantee closeness of the exact trajectory
and its approximation in the mean-square sense (L2-norm). Mean-square methods are useful for direct
simulation of stochastic trajectories, when one needs to look at qualitative behaviour of the model.
We can also consider a stronger type of convergence and require that for almost every trajectory W (·)

and any ε > 0 the method converges almost surely with order γ, i.e.

|X(tk)−Xk| ≤ C(ω)hγ a.s., (6.56)

where C is an a.s. bounded random variable independent of k and h.
For instance, we can prove that the following estimate holds for the Euler scheme (6.37) (see e.g. [13]

and also [55]): for some p ≥ 1: [
E|X(tk)−Xk|2p

]1/(2p) ≤ Kh1/2. (6.57)

Denote R := |X(tk)−Xk|. The estimate (6.57) and Markov’s inequality imply

P (R > hγ) ≤ ER2p

h2pγ
≤ C(x)hp(1−2γ).

Then for any γ = 1/2− ε there is a suffi ciently large p ≥ 1 such that (recall that h = T/N)

∞∑
N=1

P

(
R >

T γ

Nγ

)
≤ C(x)T p(1−2γ)

∞∑
N=1

1

Np(1−2γ)
<∞.
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Hence, due to the Borel-Cantelli lemma12 , the random variable κ := suph>0 h
−γ |R| is a.s. finite which

implies
|X(tk)−Xk| ≤ C(ω)h1/2−ε a.s., (6.58)

where C is an a.s. finite random variable independent of h. Note that C(ω) depends on ε.

Exercise 6.9 Consider the linear SDE

dS = rSdt+ σSdw, S(0) = S0, (6.59)

where r and σ are some positive constants. This is an SDE for GBM (see Section 4). Apply the Euler
scheme and Milstein scheme to (6.59) and realise the corresponding algorithms in MatLab. Solve (6.59)
exactly. Run MatLab simulations of (6.59) using the exact formula for S(tk) and the two methods along
the same Wiener paths and compute the corresponding errors |S(tk)−Xk| . Study experimentally the a.s.
convergence of the Euler and Milstein methods.

Exercise 6.10 Continue the previous exercise and experimentally study the mean square errors of the
Euler and Milstein methods. Use the Monte Carlo technique (see Section 8) to evaluate the errors, i.e.

√
E |S(tk)− Sk|2 ≈

√√√√ 1

M

M∑
m=1

∣∣∣S(m)(tN )− S(m)
N

∣∣∣2,
where S(m)(tN ) and S(m)

N are realisations of the exact solution to (6.59) and of one of the two numerical
methods along mth independent Wiener path. To observe the expected mean-square order, M should be
suffi ciently large to make the Monte Carlo error negligible. Read further about the Monte Carlo technique
in Section 8, in particular about the need to report the Monte Carlo error.

7 Approximation in the weak-sense

Weak (or more precisely, weak-sense) methods are suffi cient for evaluation of averages and are often
simpler than mean-square ones. This type of convergence is of interest for solving linear PDEs (discussed
in Section 8.2) and it is in most cases suffi cient for applicable problems, e.g. in financial engineering and
molecular dynamics. The first paper on weak approximation of SDEs is by Milstein [37].
As before, we consider the system

dX = b(t,X)dt+

q∑
r=1

σr(t,X)dwr(t) , (7.1)

where X, b, and σ are vectors of dimension d with components Xi, bi, σir. We assume that the functions
b(t, x) and σr(t, x) are suffi ciently smooth with respect to the variables t, x and satisfy a global Lipschitz
condition with respect to x: for all t ∈ [t0, T ], x ∈ Rd, y ∈ Rd the following inequality holds:

|b(t, x)− b(t, y)|+
q∑
r=1

|σr(t, x)− σr(t, y)| ≤ K|x− y| . (7.2)

Here and below |x| denotes the Euclidean norm of the vector x, and we denote by xᵀy or by (x, y) the
scalar (inner) product of two vectors x and y.

Definition 7.1 If an approximation X̄ is such that

|Ef(X̄(T ))− Ef(X(T ))| ≤ Khp (7.3)

for f from a class of functions with polynomial growth at infinity, then we say that the weak order of
accuracy of the approximation X̄ (the method X̄) is p. The constant K depends on the coeffi cients of
(7.1), on the function f and on T.
12See it e.g. in [49].
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It can be proved (see, e.g. [44, Chapter 2]), for example, that the weak order of accuracy of Euler’s
method (5.3) is 1. Note that numerical integration in the mean-square sense with some order of accuracy
guarantees an approximation in the weak sense with the same order of accuracy, since if (E|X̄(t) −
X(t)|2)1/2 = O(hp) then for every function f satisfying a Lipschitz condition we have E(f(X̄(T )) −
f(X(T ))) = O(hp). Moreover, an increase in the order of accuracy in the mean-square sense does not, in
general, imply an increase of the weak order of accuracy. For example, the Milstein method (6.48) has
first weak order of accuracy as Euler’s method does. At the same time, a crude method like

Xk+1 = Xk + bkh+
√
h

q∑
r=1

σrkηrk , (7.4)

where ηrk, r = 1, . . . , q, k = 0, . . . , N − 1, are independent random variables taking the values +1 and
−1 with probabilities 1/2, also has first order of accuracy in the sense of weak approximation. We usually
call (7.4) as the weak Euler scheme.
The main interest in weak approximations lies in the hope to obtain simpler methods and, in par-

ticular, methods not requiring modeling of complicated random variables. We recall that, e.g., the
mean-square Milstein method (6.48), which is of the first order only, requires to solve the diffi cult prob-

lem of modeling complicated random variables of the type
∫ h

0

wi(θ)dwj(θ). These problems of modeling

complicated random variables can be avoided by integrating in the weak sense, which gives an impetus
for the development of methods for constructing weak approximations. In addition we note that while
in the deterministic theory the one-dimensional case differs but little from the multi-dimensional one, for
the numerical integration of stochastic differential equations the multi-dimensional case, especially when
several noises are involved, is essentially more complicated than the one-dimensional case.

7.1 The general convergence theorem

Along with the system (7.1), we consider the approximation

X̄t,x(t+ h) = x+A(t, x, h; ξ) , (7.5)

where ξ is a random variable (in general, a vector) having moments of a suffi ciently high order, and A is a
vector function of dimension d. Partition the interval [t0, T ] into N equal parts with step h = (T − t0)/N :
t0 < t1 < · · · < tN = T, tk+1 − tk = h. According to (7.5), we construct the sequence

X̄0 = X0 = X(t0), X̄k+1 = X̄k +A(t, X̄k, h; ξk), k = 0, . . . , N − 1, (7.6)

where ξ0 is independent of X̄0, while ξk for k > 0 is independent of X̄0, . . . , X̄k, ξ0, . . . , ξk−1. As before,
we write ∆ = X − x = Xt,x(t+ h)− x, ∆̄ = X̄ − x = X̄t,x(t+ h)− x. Let X(t) = Xt0,X0

(t) be a solution
of (7.1) and X̄t0,X0

(tk) = X̄k.
Following [37], one usually consider the following class of functions within the weak-sense approxima-

tion context.

Definition 7.2 We say that a function f(x) belongs to the class F, written as f ∈ F, if we can find
constants K > 0, κ > 0 such that for all x ∈ Rd the following inequality holds:

|f(x)| ≤ K(1 + |x|κ) . (7.7)

If a function f(s, x) depends not only on x ∈ Rd but also on a parameter s ∈ S, then we say that f(s, x)
belongs to F (with respect to the variable x) if an inequality of the type (7.7) holds uniformly in s ∈ S.

The following theorem was proved in [38] (see also [40, 44]).
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Theorem 7.1 Assume that
(a) the coeffi cients of equation (7.1) are continuous, satisfy the Lipschitz condition (7.2) and together

with their partial derivatives with respect to x of order up to 2p+ 2, inclusively, belong to F;
(b) the method (7.5) is such that

|E(

s∏
j=1

∆ij −
s∏
j=1

∆̄ij )| ≤ K(x)hp+1, s = 1, . . . , 2p+ 1, K(x) ∈ F , (7.8)

E

2p+2∏
j=1

|∆̄ij | ≤ K(x)hp+1, K(x) ∈ F ; (7.9)

(c) the function f(x) together with its partial derivatives of order up to 2p+ 2, inclusively, belong to
F;

(d) for a suffi ciently large m (specified below) the expectations E|X̄k|2m exist and are uniformly
bounded with respect to N and k = 0, 1, . . . , N.

Then, for all N and all k = 0, 1, . . . , N the following inequality holds:

|Ef(Xt0,X0(tk))− Ef(X̄t0,X0(tk))| ≤ Khp , (7.10)

i.e., the method (7.6) has order of accuracy p in the sense of weak approximations.

Proof. First of all we note that the Lipschitz condition (7.2) implies that for any m > 0 the
expectations E|X(θ)|2m exist and are uniformly bounded with respect to θ ∈ [t0, T ] if only E|X(t0)|2m <
∞ (see [12]). Moreover, the same (7.2) implies

E

2p+2∏
j=1

|∆ij | ≤ K(x)hp+1, K(x) ∈ F . (7.11)

Further, suppose that u(x) is a function that together with its partial derivatives of order up to 2p+ 2,
inclusively, belong to F. Then

|Eu(Xt,x(t+ h))− Eu(X̄t,x(t+ h))| ≤ K(x)hp+1, K(x) ∈ F . (7.12)

Exercise 7.1 Using (7.8), (7.9), (7.11), prove (7.12).

We introduce the function
u(s, x) = Ef(Xs,x(tk+1)) .

By the conditions (a) and (c), u has partial derivatives with respect to x of order up to 2p+2, inclusively;
moreover, these derivatives belong to F (see [12]). Therefore the function u(s, x) satisfies an estimate of
the form (7.12) uniformly with respect to s ∈ [t0, tk+1].
Further, since X̄0 = X0, Xt0,X0(t1) = X(t1), Xt1,Xt0,X̄0

(t1)(tk+1) = X(tk+1), we have

Ef(X(tk+1)) = Ef(Xt1,Xt0,X̄0
(t1)(tk+1))− Ef(Xt1,X̄1

(tk+1)) + Ef(Xt1,X̄1
(tk+1)) . (7.13)

Similarly, since Xt1,X̄1
(tk+1) = Xt2,Xt1,X̄1

(t2)(tk+1), we have

Ef(Xt1,X̄1
(tk+1)) = Ef(Xt2,Xt1,X̄1

(t2)(tk+1))− Ef(Xt2,X̄2
(tk+1)) + Ef(Xt2,X̄2

(tk+1)) . (7.14)

Now (7.13) and (7.14) imply

Ef(X(tk+1)) = Ef(Xt1,Xt0,X̄0
(t1)(tk+1))− Ef(Xt1,X̄1

(tk+1))

+Ef(Xt2,Xt1,X̄1
(t2)(tk+1))− Ef(Xt2,X̄2

(tk+1)) + Ef(Xt2,X̄2
(tk+1)) .
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Proceeding further, we obtain

Ef(X(tk+1)) =

k−1∑
i=0

Ef(Xti+1,Xti,X̄i (ti+1)(tk+1))−
k−1∑
i=0

Ef(Xti+1,X̄i+1
(tk+1)) (7.15)

+Ef(Xtk,X̄k(tk+1)) .

This immediately implies (recall that X̄i+1 = X̄ti,X̄i(ti+1)) that

Ef(X(tk+1))− Ef(X̄k+1) (7.16)

=

k−1∑
i=0

(EE(f(Xti+1,Xti,X̄i (ti+1)(tk+1))|Xti,X̄i(ti+1))

−EE(f(Xti+1,X̄ti,X̄i (ti+1)(tk+1))|X̄ti,X̄i(ti+1))

+Ef(Xtk,X̄k(tk+1))− Ef(X̄tk,X̄k(tk+1)) .

According to the definition of u(s, x), (7.16) implies

|Ef(X(tk+1))− Ef(X̄k+1)| (7.17)

= |
k−1∑
i=0

(Eu(ti+1, Xti,X̄i(ti + h))− Eu(ti+1, X̄ti,X̄i(ti + h)))

+(Ef(Xtk,X̄k(tk+1))− Ef(X̄tk,X̄k(tk+1)))|

≤
k−1∑
i=0

E|E(u(ti+1, Xti,X̄i(ti + h))− u(ti+1, X̄ti,X̄i(ti + h))|X̄i)|

+E|E(f(Xtk,X̄k(tk+1))− f(X̄tk,X̄k(tk+1))|X̄k)| .

We note that the functions u(s, x) and f(x), which belong to class F and so satisfy an inequality of the
form (7.12), also satisfy the conditional version of this inequality. Suppose that for both u(s, x) and f(x)
we have a function K(x) in this inequality with κ = 2m. Then (7.17) implies

|Ef(X(tk+1))− Ef(X̄k+1)| ≤
k−1∑
i=0

K(1 + E|X̄i|2m)hp+1 +K(1 + E|X̄k|2m)hp+1.

Assuming that the condition (d) holds for precisely this 2m, we arrive at (7.10). �

Exercise 7.2 Using the general convergence theorem (i.e. Theorem 7.1), prove that the Euler scheme is
of weak order 1.

7.2 Nonglobally Lipschitz conditions

As in the case of mean-square schemes (see Section 6.6), the most restrictive conditions of Theorem 7.1
are globally Lipschitz conditions imposed on the coeffi cients of the SDEs (see the assumption (a) of the
theorem). In [45] the concept of rejecting exploding trajectories (CRE) was proposed and justified, which,
in principle, allows us to apply any numerical method to SDEs with nonglobally Lipschitz coeffi cients
for estimating a mean Ef(X(T )), where the time T is fixed. Following this concept, we do not take into
account the approximate trajectories which leave a suffi ciently large sphere SR := {x : |x| < R} during
the time T. It was proved that accuracy of any method of weak order p is estimated by ε+O(hp), where
ε can be made arbitrarily small with growing R. It turns out that in practice the error given by ε is much
smaller than the error of numerical integration. Thus, due to CRE, we can choose a suitable method
for solving a system of SDEs with nonglobally Lipschitz coeffi cients taking into account all the known
methods of numerical integration.
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The other restrictive condition is the assumption (c) requiring the function f(x) to be smooth. It is
particular restrictive for applications in Financial Engineering, where f(x) has the meaning of a payoff
function which is usually nonsmooth (e.g. in the case of digital options it is discontinuous). This
assumption can be relaxed: in [2] weak convergence with order one of the Euler method is proved for any
measurable f(x).

7.3 Second-order weak schemes

Above we have given two variants of Euler schemes (5.3) and (7.4) of weak order one. The next scheme
is of second weak order for the SDE (7.1):

Xk+1 = Xk +

q∑
r=1

σrkξrkh
1/2 + bkh+

q∑
r=1

q∑
i=1

(Λiσr)kξirkh (7.18)

+
1

2

q∑
r=1

(Λrb+ Lσr)kξrkh
3/2 + (Lb)k

h2

2
,

where

ξirk =
1

2
ξikξrk −

1

2
γirζikζrk, γir =

{
−1, i < r,
1 i ≥ r , (7.19)

ξrk and ζik are independent random variables which can be modeled by, e.g., the law P (ξ = 0) = 2/3,

P (ξ = ±
√

3) = 1/6 or P (ξ = ±
√

1−
√

6/3) = 3/8, P (ξ = ±
√

1 +
√

6) = 1/8 and by P (ζ = ±1) = 1/2,

respectively.

Exercise 7.3 Using the general convergence theorem (i.e., Theorem 7.1), prove that the scheme (7.18)-
(7.19) is of weak order 2.

Consider the system with additive noise

dX = b(t,X)dt+

q∑
r=1

σrdwr(t), X(0) = x. (7.20)

The Runge—Kutta method of weak order two for (7.20) has the form (see [44, p. 113]):

Xk+1 = Xk +

q∑
r=1

σrξrkh
1/2 +

h

2

[
bk + b

(
tk+1, Xk +

q∑
r=1

σrξrkh
1/2 + bkh

)]
, (7.21)

where bk = b(tk, Xk) and ξ is, e.g., N (0, 1)-distributed or distributed by the law

P (ξ = 0) = 2/3, P (ξ = ±
√

3) = 1/6.

This method is often called the Heun method. It is of week order 2.

Exercise 7.4 Using the general convergence theorem (i.e. Theorem 7.1), prove that the scheme (7.21)
for (7.20) is of weak order 2.

Remark 7.1 Many other weak schemes can be found in [29, 44, 16], including methods for special classes
of SDEs (e.g. with additive noise, coloured, noise, small noise, etc.).
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7.4 The Talay—Tubaro extrapolation method

It is possible to expand the global errors of weak methods for stochastic systems in powers of time
increment h. The approach is analogous to the Richardson—Runge extrapolation method for deterministic
ODEs which you might have seen in a deterministic numerical analysis course. It allows us to estimate
the global error as well as to improve the accuracy of the method. In particular, we can construct a
method of order two applying the Euler method twice with different time steps.
Here we suppose that the coeffi cients of (7.1) are suffi ciently smooth and all their derivatives up to

a suffi ciently large order are bounded. The function f is assumed to be suffi ciently smooth and with
growth not faster than polynomial at infinity.

Theorem 7.2 Let a one-step weak approximation X̄t,x(t+h) of the solution Xt,x(t+h) of (7.1) generate
a method of order p. Then the global error

R := Ef(Xt0,X0
(T ))− Ef(X̄t0,X0

(T ))

of the method has the following expansion

R = C0h
p + · · ·+ Cnh

p+n +O(hp+n+1) , (7.22)

where the constants C0, . . . , Cn are independent of h, and n is an integer, n ≥ 0 (n can be anyhow large
if the coeffi cients of (7.1) belong to C∞ and their derivatives of any order are bounded).
In particular, for the Euler method

R = C0h+ · · ·+ Cnh
1+n +O(hn+2) . (7.23)

The proof of this theorem can be found in [53, 44].
Due to Theorem 7.2, we obtain an extension of the well known in the case of deterministic differential

equations extrapolation methods to the stochastic case. For example, simulating u(t0, x) = Ef(Xt0,x(T ))
twice by the Euler scheme but with varying time steps h1 = h, h2 = αh, α > 0, α 6= 1, we obtain

ūh1 = Ef(X̄h1
t0,x(T ))

and
ūh2 = Ef(X̄h2

t0,x(T )).

We can expand (see (7.23)

u = ūh1 + Ch1 +O(h2) , (7.24)

u = ūh2 + Ch2 +O(h2) ,

whence

C = − ū
h2 − ūh1

h2 − h1
+O(h) . (7.25)

By (7.24) and (7.25) we get the improved value with error O(h2) :

ūimp = ūh1
h2

h2 − h1
− ūh2

h1

h2 − h1
, u = ūimp +O(h2) . (7.26)

Thus, the obtained method has an accuracy of order two. In the same spirit, using three recalculations of
u = Ef(Xt0,x(T )) by the Euler method with varying time-steps, one can find C0 and C1 from (7.23) and,
as a consequence, a method of order three can be constructed, and so on. On the other hand, Ch gives
the leading term of the error which can be used for error estimation in practice like Richardson-Runge
method in the case of ODEs.
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8 The Monte Carlo technique

We start with an illustrative example to explain the basic idea behind the Monte Carlo technique.
Consider the problem of numerical evaluation of the integral of a ‘good’function f(x) over a unit interval

I =

∫ 1

0

f(x)dx. (8.1)

Let M be a positive integer. We know from the numerical analysis that, e.g., for twice continuously
differentiable functions f(x) the trapezoidal rule

I ≈ Ī =
f(0) + f(1)

2M
+

1

M

M−1∑
m=1

f
(m
M

)
(8.2)

is of order two, i.e.

|I − Ī| ≤ K

M2
, (8.3)

where K > 0 is a constant which does not depend on M.
The trapezoidal rule (8.2) is one of the deterministic methods for approximation of definite integrals.

Deterministic methods suffer from the ‘curse of dimensionality’. Suppose we need to compute a d-
dimensional integral over [0, 1]d. The error of a product trapezoidal rule in d dimension is O(M−2/d)
for twice continuously differentiable integrands. This degradation in convergence rate with increasing
dimension is characteristic of deterministic integration methods and they are not practical in higher
dimensions13 .
Now let us look at how we can numerically estimate the integral (8.1) using probabilistic ideas.

Obviously, we can represent the integral as

I = Ef(ξ), (8.4)

where ξ is a random variable with uniform distribution on [0, 1].

Exercise 8.1 Explain why (8.4) is true.

Using this (probabilistic) representation, we can propose a probabilistic algorithm (the Monte Carlo
method) for evaluating this integral. To this end, suppose we have an algorithm (called random number
generator (RNG)) which allows us to simulate a sample ξ1, ξ2, . . ., ξM from uniform distribution on [0, 1].
Or in other words, we can say this RNG draws ξ1, ξ2, . . ., ξM independently and uniformly from [0, 1].
Then we can obtain an approximation ÎM of I (its Monte Carlo estimate) as follows

I = Ef(ξ) ' ÎM :=
1

M

M∑
m=1

f(ξm). (8.5)

Let me pay your attention that the left-hand side of (8.5) is deterministic, it is just a certain number,
while its right-hand side is random, it depends on a particular realisation of ξ1, ξ2, . . . , ξM .
If f(x) is integrable on [0, 1] then by the Kolmogorov strong law of large numbers (see Theorem 2.1)

ÎM converges to I with probability one as M tends to infinity.

Exercise 8.2 Explain application of the strong law of large numbers here.
13There are sparse grid deterministic integration methods which can work in moderate dimensions, see e.g.

http://garcke.ins.uni-bonn.de/research/pub/sparse_grids_nutshell.pdf
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As it is usual in numerical analysis, when you have a numerical method, we need to ask the question
about its accuracy. In the case of (8.5) we need to ask how fast the random variable ÎM approaches I
when M increases. First, let us compute EÎM :

EÎM = E
1

M

M∑
m=1

f(ξm) =
1

M

M∑
m=1

Ef(ξm) = I,

i.e.
Bias(ÎM ) := E

(
ÎM − I

)
= 0. (8.6)

Thus, there is no systematic error in the approximation of I by ÎM .
Now we assume that f(x) is square integrable and compute variance of the estimator

V ar(ÎM ) =
1

M
V ar(f(ξ)). (8.7)

Exercise 8.3 Prove (8.7).

We note that

V ar(f(ξ)) =

∫ 1

0

(f(x)− I)
2
dx. (8.8)

Exercise 8.4 Show that (8.8) is true.

Equations (8.6) and (8.7) and Central Limit Theorem (CLT, Theorem 2.2) imply (details are given in
the next section) that under a suffi ciently largeM the error ÎM −I is approximately normally distributed
with zero mean (cf. (8.6)) and variance V ar(f(ξ))/M :

ÎM − I ∼ N (0, V ar(f(ξ))/M). (8.9)

We note that the error of the estimator ÎM is random while the error of a deterministic integration rule
(like the trapezoidal rule) is deterministic.
The error of a Monte Carlo estimator, which is characterized by its variance, is called the Monte Carlo

error or statistical error. Let us pay attention to the fact that in this example there is no systematic
error (bias is equal to zero) and only the statistical error is present.
Using the CLT, we can say more (see details in the next section) that the (random) value we find in

a particular run of our Monte Carlo algorithm is such that the true value I belongs to the confidence
interval:

I ∈ (ÎM − c
√
V ar(f(ξ))√

M
, ÎM + c

√
V ar(f(ξ))√

M
) (8.10)

with probability, e.g. 0.68 for c = 1, 0.95 for c = 2 (well, more precisely c = 1.96), and 0.997 for c = 3.
Note that we assume that M is suffi ciently large here in order to use CLT.
The length of the confidence interval (8.10) is decreasing with increase of M as 1/

√
M. This form

of the statistical error is the central feature of the Monte Carlo method. Adding one decimal place of
precision requires 100 times as many sample points. If you compare this with the error (8.3) of the
trapezoidal method, you will see that convergence of the Monte Carlo method is slow. Indeed, Monte
Carlo methods are usually not competitive for one-dimensional integrals. The value of the Monte Carlo
technique is that it can deal, in principle, with the ‘curse of dimensionality’. This is based on the fact
that the Monte Carlo rate of convergence O(1/

√
M) is not restricted to integrals over unit intervals.

What was done in this example can be easily extended to estimating an integral over [0, 1]d (one would
need just to sample a d-dimensional random variable ξ uniformly distributed in the cube [0, 1]d) or any

other domain in Rd. The standard error will still have the form

√
V ar(f(ξ))√

M
for a Monte Carlo estimate
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based on M draws from [0, 1]d. 14 So, the order of convergence of the Monte Carlo method is O(1/
√
M)

for any dimension d while the convergence rate of deterministic methods, e.g. of the trapezoidal rule,
degrade quickly with increase of d (recall that for the trapezoidal rule the order is O(M−2/d)). Thus,
Monte Carlo methods are attractive in evaluating integrals in high dimension.
We see that to quantify the Monte Carlo error we need to know V ar(f(ξ)), i.e. the integral (8.8).

In practical applications it is unreasonable to expect that V ar(f(ξ)) is known. But the variance can be
estimated in the same experiment as

σ2
f := V ar(f(ξ)) ' σ̂2

f :=
1

M

M∑
m=1

[f(ξm)]
2 − Î2

M (8.11)

(instead of 1/M factor one can put 1/(M−1) to get the unbiased sample variance but in the Monte Carlo
simulations samples of a very large size are usually used and the difference between these two sample
variances is negligible). Thus, from simulating M values of the function f(x), we obtain not only an
estimate for the integral I but also a measure of the error in this estimate.

At this point, we finish the illustrative example, which, in a sense, is suffi cient for understanding the
Monte Carlo technique and its further use in various practical situations.

In a broader sense than the above example, the Monte Carlo method is a statistical method by which
one evaluates a nonrandom quantity as an expected value of a random variable. In other words, if you can
find a probabilistic representation for a quantity of your interest (i.e., if you can express this quantity as an
expectation of a certain random variable) then you can straightforwardly apply this statistical technique.
I am sure you already guess that we can combine probabilistic representations of linear PDE problems,
weak-sense approximation and the Monte Carlo technique in order to get probabilistic algorithms for
solving linear PDEs and associated problems like those arising in Financial Engineering and molecular
dynamics.

Historical Remark. The Monte Carlo method was proposed as a tool for evaluating high-dimensional
integrals by John von Neumann and Stanislaw Ulam in March 1947 when they work on thermonuclear
bomb in Los Alamos (US). The name ‘Monte Carlo’for this statistical sampling technique was coined by
Nicholas Metropolis —a friend and collaborator of von Neumann and Ulam. This name was related to
the fact that Ulam had an uncle who was a gambler and would borrow money from relatives because he
“just had to go to Monte Carlo”—a reference to the Monte Carlo Casino in Monaco15 . See an account
of these days by their direct participant in16 . The Monte Carlo method owes its birth not only to the
nuclear arms race and genius of von Neumann and Ulam but also and essentially to appearing of first
computers in 1940s. It should be also noted that random methods in computation can be traced back to
the earliest pioneers of Probability theory, and perhaps the earliest example of ‘Monte Carlo’is Buffon’s
needle problem of 177717 .

Applicable Remark. The Monte Carlo technique (in its huge varieties) is widely used in a large number
of applications. As we saw in the previous remark, it started from application in physics and it is still
one of the important computational tools in physics. With enormous computational power available now
(distributed computer systems, parallel computers, clusters), the Monte Carlo technique is becoming
more and more practical. E.g., it is used in molecular dynamical simulations including simulation of
complex biomolecules and in statistical physics. Monte Carlo methods are also widely used in Statistics.

14Here a certain caution is needed. Note that when we change the dimension, we change the function f(x) and, conse-
quently, change V ar(f(ξ)).
15See it at http://en.montecarloresort.com/Casino-de-Monte-Carlo,507.html
16N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science Special Issue, 1987, 125-130. Available

at http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
17See: G. Buffon. Editor’s note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of

Sciences in Paris. Histoire de l’Acad. Roy. des Sci., 1733, 43-45;
Buffon, G. “Essai d’arithmétique morale.”Histoire naturelle, générale er particulière, Supplément 4, 1777, 46-123.
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It comes as no surprise that the Monte Carlo technique is a natural computational tool in Financial
Engineering.

8.1 The Monte Carlo error

Introduce

η̂M :=
1

M

M∑
m=1

ηm,

which is a statistical estimate for Eη (compare with (8.5)). Here ηm are i.i.d. random variables with
finite mean and finite non-zero variance. It follows from CLT (see (2.14)-(2.15)) that

η̂M − Eη√
V ar(η)/

√
M

=⇒ θ̂ ∼ N (0, 1).

Then for 0 ≤ a, b ≤ ∞18 the probability that an interval of the form (η̂−a
√
V ar(η)/

√
M, η̂+b

√
V ar(η)/

√
M)

covers Eη, i.e.
Eη ∈ (η̂M − a

√
V ar(η)/

√
M, η̂M + b

√
V ar(η)/

√
M), (8.12)

approaches Φ(b)− Φ(−a) as M →∞.

Exercise 8.5 How does (8.12) follow from (2.15)?

We can choose a and b so that the limiting probability is δ with some prescribed δ > 0 (of course, it
is usually of interest to pick δ close to 1). Among all choices of a and b for which Φ(b)− Φ(−a) = δ, the
values minimizing the length of the interval (−a, b) are given by a = b = cδ, where 2Φ(cδ) − 1 = δ. For
simplicity, we will skip the index δ at c in future. The interval

η̂M ± c
√
V ar(η)√
M

(8.13)

covers Eη with probability approaching δ as M → ∞ and is in this sense an asymptotically valid
confidence interval for Eη. For instance, for c = 3 we have δ = 0.997.

Exercise 8.6 If you would like to have an interval to which Eη belongs with 99.99% confidence, what is
the corresponding value of c?

Obviously, the above application of CLT justifies the use of (8.10) in the previous section (just compare
(8.10) with (8.13)). Furthermore, for any consistent estimator ν̂M of

√
V ar(η) (i.e., we require that

ν̂M =⇒
√
V ar(η)), we have ν̂M/

√
V ar(η) =⇒ 1. Then one can show (see, e.g. [15]) that

η̂M − Eη
ν̂M/
√
M

=⇒ θ̂ ∼ N (0, 1)

and hence the interval

η̂M ± c
ν̂M√
M

(8.14)

covers Eη with the corresponding probability. We can take

ν̂M =

√√√√ 1

M − 1

M∑
m=1

η2
m − η̂2

M .

Thus, we provided the theoretical basis for the error analysis of the Monte Carlo method.

18Note that a and b here are not the same as in (2.15).
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8.2 The use of probabilistic representations for PDEs

Based on the probabilistic representation (4.40) of the solution u(t, x) to the problem (4.37)-(4.38) and the
ideas of the Monte Carlo technique, we can construct the following numerical procedure to approximately
evaluate u(t0, x). In comparison with the example at the start of Section 8, we usually cannot simulate
Xt0,x(T ) (and, consequently, f(Xt0,x(T ))) exactly19 . Then, we first need to approximate Xt0,x(T ) and
thus obtain

u(t0, x) = Ef(Xt0,x(T )) ' ū(t0, x) = Ef(X̄t0,x(T )), (8.15)

where X̄t0,x(T ) approximates Xt0,x(T ) in the weak sense (see Section 7).
To make (8.15) realisable on a computer, we apply the Monte Carlo technique to the right-hand side

of (8.15):

ū(t0, x) = Ef(X̄t0,x(T )) ' û(t0, x) :=
1

M

M∑
m=1

f(mX̄t0,x(T )), (8.16)

where mX̄t0,x(T ), m = 1, . . . ,M, are independent realisations of the random variable X̄t0,x(T ). The
approximation of ū(t0, x) by û(t0, x) is similar to what we considered in the example at the beginning of
Section 8 and it is associated with the statistical (Monte Carlo) error.
So, in this case we have two errors: the error of numerical integration ū(t0, x)− u(t0, x), which is the

bias of the estimator û(t0, x) :

Bias(û(t0, x)) = E
1

M

M∑
m=1

f(mX̄t0,x(T ))− u(t0, x) = Ef(X̄t0,x(T ))− u(t0, x) (8.17)

= ū(t0, x)− u(t0, x);

and the statistical error measured via variance of the estimator û(t0, x) :

V ar(û(t0, x)) =
V ar

(
f(X̄t0,x(T ))

)
M

≈ V ar (f(Xt0,x(T )))

M
. (8.18)

As we discussed in the previous sections, the (random) value û(t, x) we find in a particular run of our
Monte Carlo algorithm is such that the value ū(t, x) = Ef(X̄t,x(T )) belongs to the confidence interval:

ū(t, x) ∈ (û(t, x)− c√
M

√
D̂, û(t, x) +

c√
M

√
D̂), (8.19)

D̂ : =
1

M

M∑
m=1

[
f(mX̄t,x(T ))

]2 − [û(t, x)]
2
,

with probability, e.g. 0.68 for c = 1, 0.95 for c = 2, and 0.997 for c = 3.

Remark 8.1 (important) By the Monte Carlo procedure we find the solution u(t, x) at a single point
only. This is in contrast to finite-difference and finite element methods which simulate the solution in the
whole domain.

Exercise 8.7 Consider the linear SDE

dS = rSdt+ σSdw, S(0) = S0, (8.20)

where r ≥ 0 is a risk-free interest rate and σ > 0 is volatility. This is an SDE for GBM (see Section 4)
written under the risk neutral measure. Consider a European call option and assume that the price

19Note that Xt0,x(T ) can be simulated exactly if X(t) is, e.g., a Wiener process or Geometrical Brownian motion.
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process is described by GBM. The price of the call with maturity T and strike K at time t = 0 is equal to
[4, 50, 54]:

u(0, S0) = e−rTE(S(T )−K)+ (8.21)

= S0Φ

(
ln(S0/K) + (r + σ2/2)T

σ
√
T

)
−Ke−rTΦ

(
ln(S0/K) + (r − σ2/2)T

σ
√
T

)
,

where (x)+ = max(x, 0) and Φ(x) is the standard normal distribution function. Apply the three methods
(5.3), (7.4) and (7.18)-(7.19) to the price the call. In MatLab realise these methods accompanying them
by the Monte Carlo technique and study their errors. By taking a large number of Monte Carlo runs,
show that (5.3) and (7.4) are first weak order methods while (7.18)-(7.19) is of second order.

Exercise 8.8 By using the Talay-Tubaro expansion from Section 7.4, improve accuracy of the results
from the previous exercise.

Exercise 8.9 By solving (8.20) explicitly, find the exact expression of S(T ). Apply the Monte Carlo
technique to u(0, S0) = e−rTE(S(T )−K)+ with exact S(T ) and experimentally study convergence of the
Monte Carlo technique. In all exercises do not forget to report the Monte Carlo error: please remember
that reporting outcomes of Monte Carlo simulation without providing the corresponding statistical errors
essentially has no value.

8.3 Variance reduction

We have discussed two errors arising in solving PDEs via the probabilistic approach: numerical integration
error and statistical error. We know from Section 7 that to reduce the integration error, we can reduce
the time step or use a more effective numerical method, which for the same time step gives a smaller
error. Now let us look again at the Monte Carlo error.
We also already know the form of the Monte Carlo error (cf. (8.18)):

ρ = c

√
V ar

(
f(X̄t0,x(T ))

)
√
M

. (8.22)

where, e.g., the values c = 1, 2, 3 correspond to the probabilities 0.68, 0.95, 0.997, respectively. We obvi-
ously can reduce it by increasing the number of independent Monte Carlo runs. But if V ar

(
f(X̄t0,x(T ))

)
is large then to achieve a satisfactory accuracy we have to simulate a very large number of independent
trajectories. We can try to somehow reduce the variance and, clearly, variance reduction is of crucial
importance for effectiveness of any Monte Carlo procedure.
The main idea of the variance reduction is as follows. Find a random variable Γt0,x(T ) such that

EΓt0,x(T ) = Ef(X̄t0,x(T )) (8.23)

and
V ar(Γt0,x(T )) < V ar

(
f(X̄t0,x(T ))

)
. (8.24)

The question is, of course, how to find such Γt0,x(T ). There are a variety of possibilities exist, which
or which realisation is, as a rule, problem dependent. It is well said in [15, p. 185]: “The greatest gains in
effi ciency from variance reduction techniques result from exploiting specific features of a problem, rather
than from generic applications of generic methods”. Indeed, variance reduction to be effi cient requires
some extra knowledge about the problem under consideration.
Here we will discuss only one method to reduce variance in order to illustrate the main idea. More

about variance reduction techniques can be found in [15, Chapter 4] and also [16, 44].
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The method of control variates is among common and broadly applicable techniques. To de-
scribe the method, suppose we would like to compute EY for some random variable Y (e.g., with
Y = f(X̄t0,x(T ))) and for this aim we simulate the sample 1Y, . . . ,M Y and estimate EY as before:

µ := EY ' µ̂ :=
1

M

M∑
m=1

mY (8.25)

(i.e. mY are i.i.d. with the law of Y ).
Suppose now that we know expectation of another random variable Z and can simulate random

variables with the distribution as of (Y, Z), i.e., we can simulate a sample (mY,m Z), m = 1, . . . ,M. Then
we can propose another unbiased estimator for µ :

µ := EY ' µ̌ :=
1

M

M∑
m=1

( mY − λ [mZ − EZ]) , (8.26)

where λ is a parameter and (mY,m Z) are i.i.d. with the law (Y,Z). This is a control variate estimator ;
the observed error serves as a control in estimating.

Exercise 8.10 Show that the control variate estimator (8.26) is unbiased.

We have the free parameter λ in (8.26). How can we use it? Recall that the aim is to get Γ =
Y − λ [Z − EZ] such that

V arΓ < V arY.

Then we would like to have λ such that V arΓ is minimal. We have

V arΓ = V arY − 2λCov(Y,Z) + λ2V arZ. (8.27)

Performing elementary calculations, we get the optimal λ :

λ∗ =
Cov(Y, Z)

V arZ
. (8.28)

Exercise 8.11 Check that (8.28) is true.

Now substituting (8.28) in (8.27), we obtain for the optimal λ∗ :

V arΓ = V ar(Y )[1− ρ2
Y Z ], (8.29)

where ρY Z is the correlation between Y and Z.

Exercise 8.12 Check that (8.29) is true.

We see from (8.29) that V arΓ < V arY unless Y and Z are uncorrelated. The variance reduction
factor 1/(1− ρ2

Y Z) increases very sharply as |ρY Z | approaches 1 and, accordingly, it drops off quickly as
|ρY Z | decreases away from 1. E.g., a correlation of 0.95 produces a ten-fold speed-up, for a correlation
of 0.70 the speed-up drops to about a factor of two. Note that the sign of correlation is irrelevant, it is
absorbed in λ∗.
Of course, in practice we do not know Cov(Y,Z) and might not know V arZ but we can evaluate

(obviously approximately) λ∗ in the same Monte Carlo experiment via computing estimators for Cov(Y,Z)

and V arZ and thus find λ̂
∗
—an estimator for λ∗.

Exercise 8.13 Write down an expression for λ̂
∗
.

For the control variate method to be effi cient in practice, we need to be able to find a auxiliary random
variable Z such that it has a high degree of correlation with Y. It is not an easy task and it is very problem
dependent. Although for some problems there are recipes how to find such Z, in general it is an art.
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Remark 8.2 The other commonly used variance reduction techniques are importance sampling and an-
tithetic variables [15, 16, 44].

Remark 8.3 There are other ways (i.e., not only variance reduction) how Monte Carlo methods can be
made more effi cient, namely quasi-Monte Carlo methods [47] and multi-level Monte Carlo methods [14].

Exercise 8.14 Within the setting of Exercise 8.7, use the Monte Carlo technique to price an Asian
European-type call option, i.e., compute

u(0, S0) = e−rTE

(
1

T

∫ T

0

S(t)dt−K
)

+

. (8.30)

There is no closed-form solution for this option price. Use the knowledge of the plain-vanilla call price
(8.21) to construct a control variate in order to reduce the Monte Carlo error in finding the Asian option
price.

9 Computing ergodic limits

For many applications (in particular, molecular dynamics and Bayesian statistics), it is of interest to
compute the mean of a given function with respect to the invariant law of the diffusion, i.e. the ergodic
limit.
Consider the system of Ito SDEs

dX = b(X)dt+

q∑
l=1

σr(X)dwr(t), X(0) = x, (9.1)

where X, b, σr are d-dimensional column-vectors and wr(t), l = 1, . . . , q, are independent standard
Wiener processes. In this section we use the notation X(t) and X(t;x) for solutions of the problem (9.1).
In what follows we assume that the following conditions are imposed on (9.1).

(A1) The coeffi cients of (9.1) are suffi ciently smooth functions in Rd.

(A2) The solution of (9.1) is regular, i.e., it is defined for all t ≥ 0.

(A3) The process X(t) is ergodic, i.e., there exists a unique invariant measure µ of X and independently
of x ∈ Rd there exists the limit

lim
t→∞

Eϕ(X(t;x)) =

∫
ϕ(x) dµ(x) := ϕerg (9.2)

for any function ϕ(x) with polynomial growth at infinity.

(A4) The Markov transition function20 P (t, x, dy) (it is homogeneous for (9.1)) and the invariant measure
µ(dx) have suffi ciently smooth densities p(t, x, y) and ρ(x), respectively.

Regularity. In connection with the condition (A2), we recall suffi cient conditions for regularity of
SDEs’ solution. Denote by C2 the class of functions defined on [0,∞) × Rd and twice continuously
differentiable with respect to x and once with respect to t. A suffi cient condition of regularity (see [18])
consists in existing a nonnegative function V ∈ C2 which satisfies the inequality

LV (t, x) ≤ c0V (t, x) + c1, (t, x) ∈ [0,∞)×Rd, (9.3)

and
lim
R→∞

inf
|x|≥R

V (t, x) =∞, (9.4)

20 Its meaning is P (t, x, dy) = P (X(t) ∈ dy|X(0) = x), see also (3.7) in Section 3.3.
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where c0 and c1 are some constants and L is the operator

L :=
∂

∂t
+ L

and L is the generator for (9.1):

L :=

d∑
i=1

bi(x)
∂

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
, aij :=

r∑
l=1

σilσ
j
l .

Moreover, if (9.3) and (9.4) are fulfilled and if an initial distribution for x (x can be random) is such that
EV (0, x) exists, then EV (t,X(t;x)) exists for all t ≥ 0. For instance, if V has an m-polynomial growth
at infinity, then there exist moments of order m for X.
The transition density p(t, x, y) from (A4) satisfies the Fokker-Planck (forward Kolmogorov) equation

∂p

∂t
(t, x, y) +

d∑
i=1

∂

∂yi
(
bi(y) p(t, x, y)

)
− 1

2

d∑
i,j=1

∂2

∂yi∂yj
(
aij(y) p(t, x, y)

)
= 0, t > 0, (9.5)

p(0, x, y) = δ(y − x),

and the invariant density ρ(x) satisfies the stationary Fokker-Planck equation

d∑
i=1

∂

∂xi
(
bi(x) ρ(x)

)
− 1

2

d∑
i,j=1

∂2

∂xi∂xj
(
aij(x) ρ(x)

)
= 0. (9.6)

Ergodicity. We are interested here in systems which solutions satisfy a stronger condition than (A3):

(A3e) The process X(t) is exponentially ergodic, i.e., for any x ∈ Rd and any function ϕ with a polynomial
growth we have the following strengthening of (9.2):

|Eϕ(X(t;x))− ϕerg| ≤ Ce−λt, t ≥ 0, (9.7)

where C > 0 and λ > 0 are some constants.

It follows from (9.7) (and (9.2)) that for any ε > 0 there exists T0 > 0 such that for all T ≥ T0

|Eϕ(X(T ;x))− ϕerg| ≤ ε. (9.8)

Thus, the problem of computing the ergodic limit is reduced to evaluating the expectation Eϕ(X(T )) at
a finite (though usually large) time T.

Example 9.1 Consider the Langevin equations

dP = f(Q)dt− γPdt+

√
2γ

β
dw(t), P (0) = P0 = p, (9.9)

dQ = M−1Pdt, Q(0) = Q0 = q,

where P, Q, f(q) = −∇U(q) are n-dimensional column-vectors, γ > 0 is a friction parameter, M is
a non-singular, diagonal matrix, and w(t) = (w1(t), . . . , wn(t))> and wl(t) are independent standard
Wiener processes. Let the potential U(q) satisfy the following assumptions: U(q) ≥ 0 for all q ∈ Rn and
there exists an α1 > 0 and 0 < α2 < 1 such that

1

2
(∇U(q), q) ≥ α2U(q) + γ2α2(2− α2)

8(1− α2)
|q|2 − α1. (9.10)
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Under these assumptions the authors of [32] prove exponential ergodicity of (9.9), i.e., the condition
(A3e) holds. It can directly be verified that the Gibbs distribution

ρ(p, q) ∝ exp

(
−β
{

1

2
p>M−1p+ U(q)

})
(9.11)

is a solution of the stationary Fokker-Planck equation (cf. (9.6)) corresponding to (9.9). The Langevin
equations (9.9) are very popular in, e.g., molecular simulation, when one is interested in constant tem-
perature dynamics.

Exercise 9.1 Verify that ρ(p, q) from (9.11) is a solution of the corresponding stationary Fokker-Planck
equation.

Example 9.2 Assume that ρ(y) > 0, y ∈ Rd, is a suffi ciently smooth density function which is known
up to a constant of proportionality. Consider the stochastic gradient system

dY =
1

2
∇ log ρ(Y )dt+ dw(t). (9.12)

The solution Y (t) of (9.12) is exponentially ergodic under the following conditions (see [48]): ρ(y) is a
bounded density,

log ρ(y) ∈ C2(Rd), (9.13)

and there exists 0 < α < 1 such that

lim inf
|y|→∞

[
(1− α)|∇ log ρ(y)|2 + ∆ log ρ(y)

]
> 0, (9.14)

where ∆ is the Laplace operator. Stochastic gradient systems are widely used in Bayesian statistics and
molecular dynamics.

Exercise 9.2 Show that if the solution to (9.12) is an ergodic process, then its invariant measure is ρ(y).

Resting on (9.8), we can consider the following Monte Carlo estimate for the ergodic limit ϕerg:

ϕ̂erg =
1

M

M∑
m=1

ϕ
(
X̄(m)(T ;x)

)
, (9.15)

where M is the number of independent approximate realizations and X̄(T ;x) is a weak approximation
of X(T ;x) with order p > 0. The total error

Rϕ̂erg := ϕ̂erg − ϕerg (9.16)

consists of three parts: the error ε of the approximation (9.8); the error of numerical integration Khp;
and the Monte Carlo error; i.e.,

Rϕ̂erg ∼ Khp + ε+O

(
1√
M

)
.

More precisely,
Bias(ϕ̂erg) = |Eϕ̂erg − ϕerg| ≤ Khp + ε (9.17)

and the estimator’s variance is
V ar(ϕ̂erg) = O(1/M). (9.18)

Here, in this ensemble average approach to computing ergodic limits, each error is controlled by its
own parameter: suffi ciently large T ensures smallness of ε; time step h (as well as the choice of a
numerical method) controls the numerical integration error; the statistical error is regulated by choosing
an appropriate number of independent trajectories M.
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9 COMPUTING ERGODIC LIMITS

There is also another approach for calculating ergodic limits, which is very popular in the physical
and Bayesian statistics community. It is based on the known equality (time averaging):

lim
t→∞

1

t

t∫
0

ϕ(X(s;x))ds = ϕerg a.s., (9.19)

where the limit does not depend on x. Then by approximating a single trajectory, one gets for a suffi ciently
large T̃ :

1

T̃

T̃∫
0

ϕ(X(s;x))ds ≈ ϕ̌erg = ϕ̌ergL :=
1

L

L∑
l=1

ϕ(X̄(tl;x)), (9.20)

where Lh = T̃ . It was rigorously treated in [51], where ergodicity of numerical methods is investigated in
the case of ergodic SDEs with nondegenerate noise and globally Lipschitz coeffi cients (see also [33] and
references therein). Let us emphasize that T̃ in (9.20) is much larger than T in (9.8) and (9.15) because
T̃ should be such that it not just ensures the distribution of X(t) to be close to the invariant distribution
(like is required from T ) but it should also guarantee smallness of variance of ϕ̌erg.
Under some conditions on the coeffi cients of (9.1), the estimator ϕ̌erg has the following properties

[51, 33]:

Bias(ϕ̌ergL ) ≤ K1h
p +

K2

T̃
; (9.21)

Var(ϕ̌ergL ) ≤ K

T̃
; (9.22)

there exists a deterministic constant K so that for h suffi ciently small, positive ε > 0, and T̃ suffi ciently
large one has:

|ϕ̌ergL − ϕerg| ≤ Khp +
C(ω)

T̃ 1/2−ε
a.s., (9.23)

where C(ω) > 0 is an a.s. bounded random variable depending on ε and the particular ϕ.
In practice one usually estimates the statistical error of the time averaging estimator ϕ̌ergL as follows.

We run a long trajectory MT̃ split into M blocks of a large length T̃ = hL each. We evaluate the
estimators mϕ̌

erg
L , m = 1, . . . ,M, for each block. Since T̃ is big and a time decay of correlations is usually

fast, mϕ̌
erg
L can be considered as almost uncorrelated. We compute the sampled variance

D̂ =
1

M − 1

M∑
m=1

(
m
ϕ̌ergL

)2 − ( 1

M

M∑
m=1m

ϕ̌ergL

)2

.

For a suffi ciently large T̃ and M , E ϕ̌ergL belongs to the confidence interval

E ϕ̌ergL ∈
(
ϕ̌ergLM − c

√
D̂√
M
, ϕ̌ergLM + c

√
D̂√
M

)
,

with probability, for example 0.95 for c = 2 and 0.997 for c = 3. Note that E ϕ̌ergL contains the two errors
forming the bias as explained in (9.21). We also pay attention to the fact that D̂ ∼ 1/T̃ , i.e., it is inverse
proportional to the product hL.

To evaluate ergodic limits, one usually has to integrate a stochastic system over very long time in-
tervals (even if the convergence to ergodic limits is exponential). This is a challenging problem from the
computational point of view. To ensure that such simulations can be done with suffi cient accuracy and
with sensible computational costs. one uses so-called geometric integrators for approximating continuous
dynamics. Geometric integrators are a class of numerical methods which preserve some structural prop-
erties of continuous dynamics they approximate. They are the methods which preserve some geometric
features of the flow of differential equations. For geometric integrators within the stochastic context, see
e.g. [44, 41, 43, 35, 7].
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10 Further reading

For further study of Probability, [49, 58] can be used. The knowledge of stochastic processes and Ito
Calculus can be enhanced using the introductory textbooks [28, 31, 9] and more comprehensive ones such
as [56, 27, 30, 59]. To read on foundations of stochastic numerics, [44, 29, 16] can be used.
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