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Summary. Numerical methods for oscillatory, multi-scale Hamiltonian systems are
reviewed. The construction principles are described, and the algorithmic and ana-
lytical distinction between problems with nearly constant high frequencies and with
time- or state-dependent frequencies is emphasized. Trigonometric integrators for
the first case and adiabatic integrators for the second case are discussed in more
detail.

1 Introduction

Fig. 1.1. Oscillations and long time steps

Hamiltonian systems with oscillatory solution behaviour are ubiquitous in
classical and quantum mechanics. Molecular dynamics, in particular, has mo-
tivated many of the new numerical developments in oscillatory Hamiltonian
systems in the last decade, though the potential range of their applications
goes much farther into oscillatory multi-scale problems of physics and engi-
neering.
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Since the publication of the last review article on the numerical solution of
oscillatory differential equations by Petzold, Jay & Yen [43] in 1997, algorithms
and their theoretical understanding have developed substantially. This fact,
together with the pleasure of presenting a final report after six years of funding
by the DFG Priority Research Program 1095 on multiscale systems, have
incited us to write the present review, which concentrates on Hamiltonian
systems. A considerably more detailed (and therefore much longer) account
than given here, appears in the second edition of the book by Hairer, Lubich
& Wanner [22, pp. 471–565]. Numerical methods for oscillatory Hamiltonian
systems are also treated in the book by Leimkuhler & Reich [37, pp. 257–286],
with a different bias from ours.

The outline of this review is as follows. Section 2 describes some classes
of oscillatory, multi-scale Hamiltonian systems, with the basic distinction be-
tween problems with nearly constant and with varying high frequencies. Sec-
tion 3 shows the building blocks with which integrators for oscillatory systems
have been constructed. As is illustrated in Fig. 1.1, the aim is to have meth-
ods that can take large step sizes, evaluating computationally expensive parts
of the system more rarely than a standard numerical integrator which would
resolve the oscillations with many small time steps per quasi-period. Section 4
deals with trigonometric integrators suited for problems with almost-constant
high frequencies, and Section 5 with adiabatic integrators for problems with
time- or solution-dependent frequencies.

2 Highly oscillatory Hamiltonian systems

We describe some problem classes, given in each case by a Hamiltonian func-
tion H depending on positions q and momenta p (and possibly on time t).
The canonical equations of motion ṗ = −∇qH, q̇ = ∇pH are to be integrated
numerically.

2.1 Nearly constant high frequencies

The simplest example is, of course, the harmonic oscillator given by the Hamil-
tonian function H(p, q) = 1

2p
2 + 1

2ω
2q2, with the second-order equation of

motion q̈ = −ω2q. This is trivially solved exactly, a fact that can be exploited
for constructing methods for problems with Hamiltonian

H(p, q) =
1

2
pTM−1p+

1

2
qTAq + U(q) (2.1)

with a positive semi-definite constant stiffness matrix A of large norm, with a
positive definite constant mass matrix M (subsequently taken as the identity
matrix for convenience), and with a smooth potential U having moderately
bounded derivatives.
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Fig. 2.1. Chain with alternating soft nonlinear and stiff linear springs

The chain of particles illustrated in Fig. 2.1 with equal harmonic stiff
springs is an example of a system with a single high frequency 1/ε. With the
mid-points and elongations of the stiff springs as position coordinates, we have

A =
1

ε2

(
0 0
0 I

)
, 0 < ε≪ 1. (2.2)

Other systems have several high frequencies as in

A =
1

ε2
diag(0, ω1, . . . , ωm), 0 < ε≪ 1, (2.3)

with 1 ≤ ω1 ≤ · · · ≤ ωm, or a wide range of low to high frequencies without
gap as in spatial discretizations of semilinear wave equations.

In order to have near-constant high frequencies, the mass matrix need not
necessarily be constant. Various applications lead to Hamiltonians of the form
studied by Cohen [7] (with partitions p = (p0, p1) and q = (q0, q1))

H(p, q) =
1

2
pT
0M0(q)

−1p0+
1

2
pT
1M

−1
1 p1+

1

2
pTR(q)p+

1

2ε2
qT
1 A1q1+U(q) (2.4)

with a symmetric positive definite matrix M0(q), constant symmetric positive
definite matrices M1 and A1, a symmetric matrix R(q) with R(q0, 0) = 0,
and a potential U(q). All the functions are assumed to depend smoothly on q.
Bounded energy then requires q1 = O(ε), so that pTR(q)p = O(ε), but the
derivative of this term with respect to q1 is O(1). A simple example of (2.4)
is given by a triatomic (water) molecule as illustrated in Fig. 2.2, with strong
linear forces that approximately keep the distances and the angle fixed.

Fig. 2.2. Triatomic molecule

2.2 Explicitly time-dependent high frequencies

Here the prototype model is the harmonic oscillator with time-dependent fre-
quency, H(p, q, t) = 1

2p
2 + 1

2ε
−2ω(t)2q2, with ω(t) and ω̇(t) of magnitude ∼ 1
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and ε ≪ 1. Solutions of the equation of motion q̈ = −ε−2ω(t)2q oscillate
with a quasi-period ∼ ε, but the frequencies change on the slower time scale
∼ 1. The action (energy divided by frequency) I(t) = H(p(t), q(t))/ω(t) is
an almost-conserved quantity, called an adiabatic invariant; see, e.g., Hen-
rard [24]. Numerical methods designed for problems with nearly constant fre-
quencies (and, more importantly, nearly constant eigenspaces) behave poorly
on this problem, or on its higher-dimensional extension

H(p, q, t) =
1

2
pTM(t)−1p+

1

2ε2
qTA(t)q + U(q, t), (2.5)

which describes oscillations in a mechanical system undergoing a slow driven
motion. Here M(t) is a positive definite mass matrix, A(t) is a positive semi-
definite stiffness matrix, and U(q, t) is a potential, all of which are assumed to
be smooth with derivatives bounded independently of the small parameter ε.
This problem again has adiabatic invariants associated with each of its high
frequencies as long as the frequencies remain separated. However, on small
time intervals where eigenvalues almost cross, rapid non-adiabatic transitions
may occur, leading to further numerical challenges.

2.3 State-dependent high frequencies

Similar difficulties are present, and related numerical approaches have recently
been developed, in problems where the high frequencies depend on the po-
sition, as in the problem class studied analytically by Rubin & Ungar [45],
Takens [46], and Bornemann [3]:

H(p, q) =
1

2
pTM(q)−1p+

1

ε2
V (q) + U(q), (2.6)

with a constraining potential V (q) that takes its minimum on a manifold
and grows quadratically in non-tangential directions, thus penalizing motions
away from the manifold. In appropriate coordinates we have

V (q) =
1

2
qT
1 A(q0)q1 for q = (q0, q1)

with a positive definite matrix A(q0).

Fig. 2.3. Triple pendulum with stiff springs
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A multiple spring pendulum with stiff springs as illustrated in Fig. 2.3 is a
simple example, with angles as slow variables q0 and elongations of stiff springs
as fast variables q1. In contrast to the triatomic molecule of Fig. 2.2, where
also the angle is kept approximately constant, here the frequencies of the high
oscillations depend on the angles which change during the motion. Different
phenomena occur, and different numerical approaches are appropriate for the
two different situations.

As in the case of time-dependent frequencies, difficulties (numerical and
analytical) arise when eigenfrequencies cross or come close, which here can lead
to an indeterminacy of the slow motion in the limit ε→ 0 (Takens chaos).

2.4 Almost-adiabatic quantum dynamics and

mixed quantum–classical molecular dynamics

A variety of new developments in the numerics of oscillatory problems within
the last decade were spurred by problems from quantum dynamics; see,
e.g., [4, 10, 14, 27, 28, 29, 32, 33, 34, 35, 41, 42, 44]. Though these prob-
lems can formally be viewed as belonging to the classes treated above, it is
worthwhile to state them separately: time-dependent quantum dynamics close
to the adiabatic limit is described by an equation

iεψ̇ = H(t)ψ (2.7)

with a finite-dimensional hermitian matrixH(t) with derivatives of magnitude
∼ 1 representing the quantum Hamiltonian. This is a complex Hamiltonian
system with the time-dependent Hamiltonian function 1

2ψ
∗H(t)ψ (consider

the real and imaginary parts of ψ as conjugate variables, and take an ε−1-
scaled canonical bracket).

A widely used (though disputable) model of mixed quantum–classical me-
chanics is the Ehrenfest model

q̈ = −∇q

(
ψ∗H(q)ψ

)

iεψ̇ = H(q)ψ
(2.8)

with a hermitian matrix H(q) depending on the classical positions q. This cor-
responds to the Hamiltonian function 1

2p
T p+ 1

2ψ
∗H(q)ψ. The small parameter

ε here corresponds to the square root of the mass ratio of light (quantum) and
heavy (classical) particles. While this is indeed small for electrons and nuclei,
it is less so for protons and heavy nuclei. In the latter case an adiabatic reduc-
tion to just a few eigenstates is not reasonable, and then one has to deal with a
quantum Hamiltonian which is a discretization of a Laplacian plus a potential
operator that depends on the classical position. Both cases show oscillatory
behaviour, but the appropriate numerical treatment is more closely related
to that in Sects. 2.3 and 2.1 in the first and second case, respectively. Irre-
spective of its actual physical modeling qualities, the Ehrenfest model is an
excellent model problem for studying numerical approaches and phenomena
for nonlinearly coupled slow and fast, oscillatory motion.
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3 Building-blocks of long-time-step methods:

averaging, splitting, linearizing, corotating

We are interested in numerical methods that can attain good accuracy with
step sizes whose product with the highest frequency in the system need not be
small; see Fig. 1.1. A large variety of numerical methods to that purpose has
been proposed in the last decade, and a smaller variety among them has also
been carefully analysed. All these long-time-step and multiscale methods are
essentially based on a handful of construction principles, combined in different
ways. In addition to those described in the following, time-symmetry of the
method has proven to be extremely useful, whereas symplecticity appears to
play no essential role in long-time-step methods.

3.1 Averages

A basic principle underlying all long-time-step methods for oscillatory differ-
ential equations is the requirement to avoid isolated pointwise evaluations of
oscillatory functions, but instead to rely on averaged quantities.

Following [22, Sect. VIII.4], we illustrate this for a method for second-order
differential equations such as those appearing in the previous section,

q̈ = f(q), f(q) = f [slow](q) + f [fast](q). (3.1)

The classical Störmer–Verlet method with step size h uses a pointwise evalu-
ation of f ,

qn+1 − 2qn + qn−1 = h2 f(qn), (3.2)

whereas the exact solution satisfies

q(t+ h) − 2q(t) + q(t− h) = h2

∫ 1

−1

(1 − |θ|) f
(
q(t+ θh)

)
dθ . (3.3)

The integral on the right-hand side represents a weighted average of the force
along the solution, which will now be approximated. At t = tn, we replace

f
(
q(tn + θh)

)
≈ f [slow](qn) + f [fast]

(
u(θh)

)

where u(τ) is a solution of the differential equation

ü = f [slow](qn) + f [fast](u) . (3.4)

We then have

h2

∫ 1

−1

(1−|θ|)
(
f [slow](qn)+ f [fast]

(
u(θh)

))
dθ = u(h)−2u(0)+u(−h) . (3.5)

For the differential equation (3.4) we assume the initial values u(0) = qn and
u̇(0) = q̇n or simply u̇(0) = 0. This initial value problem is solved numeri-
cally, e.g., by the Störmer–Verlet method with a micro-step size ±h/N with
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N ≫ 1 on the interval [−h, h], yielding numerical approximations uN(±h) and
u̇N (±h) to u(±h) and u̇(±h), respectively. No further evaluations of f [slow]

are needed for the computation of uN(±h) and u̇N (±h). This finally gives the
symmetric two-step method of Hochbruck & Lubich [26],

qn+1 − 2qn + qn−1 = uN (h) − 2uN(0) + uN (−h) . (3.6)

The method can also be given a one-step formulation, see [22, Sect. VIII.4].
Further symmetric schemes using averaged forces were studied by Hochbruck
& Lubich [28] and Leimkuhler & Reich [36].

The above method is efficient if solving the fast equation (3.4) over the
whole interval [−h, h] is computationally less expensive than evaluating the
slow force f [slow]. Otherwise, to reduce the number of function evaluations we
can replace the average in (3.5) by an average with smaller support,

qn+1 − 2qn + qn−1 = h2

∫ δ

−δ

K(θ)
(
f [slow](qn) + f [fast]

(
u(θh)

))
dθ (3.7)

with δ ≪ 1 and an averaging kernel K(θ) with integral equal to 1. This is fur-
ther approximated by a quadrature sum involving the values f [fast]

(
uN(mh/N)

)

with |m| ≤ M and 1 ≪ M ≪ N . The resulting method is an example of a
heterogeneous multiscale method as proposed by E [12] and Engquist & Tsai
[13], with macro-step h and micro-step h/N . Method (3.7) is in between the
Störmer–Verlet method (3.2) (δ = 0) and the averaged-force method (3.6)
(δ = 1).

In the above methods, the slow force is evaluated, somewhat arbitrarily,
at the particular value qn approximating the oscillatory solution q(t). Instead,
one might evaluate f [slow] at an averaged position qn, defined by solving ap-
proximately an approximate equation

ü = f [fast](u), u(0) = qn, u̇(0) = 0, and setting qn =

∫ δ

−δ

K̃(θ)u(θh) dθ,

with another averaging kernel K̃(θ) having integral 1. Such an approach
was first studied by Garćıa-Archilla, Sanz-Serna & Skeel [15] for the impulse
method (see below), and subsequently in [26] for the averaged-force method,
in order to reduce the sensitivity to step size resonances in the numerical so-
lution. For that purpose, it turned out that taking δ = 1 (or an integer) is
essential.

3.2 Splitting

The Störmer–Verlet method (see [23]) can be interpreted as approximating
the flow ϕH

h of the system with Hamiltonian H(p, q) = T (p) + V (q) with
T (p) = 1

2p
T p by the symmetric splitting
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ϕV
h/2 ◦ ϕT

h ◦ ϕV
h/2 .

In the situation of a potential V = V [fast] + V [slow], we may instead use a
different splitting of H = (T + V [fast]) + V [slow] and approximate the flow ϕH

h

of the system by

ϕV [slow]

h/2 ◦ ϕT+V [fast]

h ◦ ϕV [slow]

h/2 .

This is the impulse method that was proposed in the context of molecular
dynamics by Grubmüller, Heller, Windemuth & Schulten [20] and Tuckerman,
Berne & Martyna [47]:

1. kick: set p+
n = pn − 1

2h∇V [slow](qn)

2. oscillate: solve q̈ = −∇V [fast](q) with initial values (qn, p
+
n )

over a time step h to obtain (qn+1, p
−

n+1)

3. kick: set pn+1 = p−n+1 − 1
2h∇V [slow](qn+1) .

(3.8)

Step 2 must in general be computed approximately by a numerical integrator
with a smaller time step. If the inner integrator is symplectic and symmetric,
as it would be for the Störmer–Verlet method, then also the overall method
is symplectic and symmetric.

Garćıa-Archilla, Sanz-Serna & Skeel [15] mollify the impulse method by
replacing the slow potential V [slow](q) by a modified potential V [slow](q), where
q represents a local average as considered above.

3.3 Variation of constants formula

A particular situation arises when the fast forces are linear, as in

q̈ = −Ax+ g(q) (3.9)

with a symmetric positive semi-definite matrix A of large norm. With Ω =
A1/2, the exact solution satisfies

(
q(t)
q̇(t)

)
=

(
cos tΩ Ω−1 sin tΩ

−Ω sin tΩ cos tΩ

) (
q0
q̇0

)
(3.10)

+

∫ t

0

(
Ω−1 sin(t− s)Ω

cos(t− s)Ω

)
g
(
q(s)

)
ds .

Discretizing the integral in different ways gives rise to various numerical
schemes proposed in the literature for treating (3.9) (the earliest references
are Hersch [25] and Gautschi [16]). This also gives reinterpretations of the
methods discussed above when they are applied to (3.9). We consider a class
of trigonometric integrators that reduces to the Störmer-Verlet method for
A = 0 and gives the exact solution for g = 0 [22, Chap. XIII]:
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qn+1 = coshΩ qn +Ω−1 sinhΩ q̇n +
1

2
h2Ψ g(Φqn) (3.11)

q̇n+1 = −Ω sinhΩ qn + coshΩ q̇n +
1

2
h
(
Ψ0 g(Φqn) + Ψ1 g(Φqn+1)

)
. (3.12)

Here Ψ = ψ(hΩ) and Φ = φ(hΩ), where the filter functions ψ and φ are
smooth, bounded, real-valued functions with ψ(0) = φ(0) = 1. Moreover,
we have Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ) with even functions ψ0, ψ1 satisfying
ψ0(0) = ψ1(0) = 1. The method is symmetric if and only if

ψ(ξ) = sinc(ξ)ψ1(ξ) , ψ0(ξ) = cos(ξ)ψ1(ξ) , (3.13)

where sinc(ξ) = sin(ξ)/ξ. In addition, the method is symplectic (for g =
−∇U) if and only if

ψ(ξ) = sinc(ξ)φ(ξ) . (3.14)

The two-step form of the method reads

qn+1 − 2 cos(hΩ) qn + qn−1 = h2Ψg(Φqn) . (3.15)

Various methods of Sects. 3.1 and 3.2 can be written in this way, with different
filters Ψ and Φ, when they are applied to (3.9):

ψ(ξ) = sinc2(1
2ξ) φ(ξ) = 1 Gautschi [16] and averaged method (3.6)

ψ(ξ) = sinc(ξ) φ(ξ) = 1 Deuflhard [11] and impulse method (3.8)
ψ(ξ) = sinc2(ξ) φ(ξ) = sinc(ξ) Garćıa-Archilla & al. [15]: mollified i.m.
ψ(ξ) = sinc2(ξ) φ(ξ) = 1 Hairer & Lubich [21]
ψ(ξ) = sinc3(ξ) φ(ξ) = sinc(ξ) Grimm & Hochbruck [19]

As will be seen in Sect. 4, the choice of the filter functions has a substantial
influence on the long-time properties of the method.

3.4 Transformation to corotating variables

For problems where the high frequencies and the corresponding eigenspaces
depend on time or on the solution, as in (2.5)–(2.8), it is useful to transform
to corotating variables in the numerical treatment.

We illustrate the basic procedure for Schrödinger-type equations (2.7) with
a time-dependent real symmetric matrixH(t) changing on a time scale ∼ 1, for
which the solutions are oscillatory with almost-period ∼ ε. A time-dependent
linear transformation η(t) = Tε(t)ψ(t) takes the system to the form

η̇(t) = Sε(t) η(t) with Sε = ṪεT
−1
ε − i

ε
TεHT

−1
ε . (3.16)

A first approach is to freeze H(t) ≈ H∗ over a time step and to choose the
transformation
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Tε(t) = exp
( it
ε
H∗

)

yielding a matrix function Sε(t) that is highly oscillatory and bounded in norm
by O(h/ε) for |t− t0| ≤ h, if H∗ = H(t0 + h/2). Numerical integrators using
this transformation together with an appropriate treatment of the oscillatory
integrals, are studied by Hochbruck & Lubich [28], Iserles [30, 31], and Degani
& Schiff [10]. Step sizes are still restricted by h = O(ε) in general, but can be
chosen larger in the special case when the derivatives of 1

εH(t) are moderately
bounded.

A uniformly bounded matrix Sε(t) in (3.16) is obtained if we diagonalize

H(t) = Q(t)Λ(t)Q(t)T

with a real diagonal matrix Λ(t) = diag (λj(t)) and an orthogonal matrix Q(t)
of eigenvectors depending smoothly on t (possibly except where eigenvalues
cross). We define η(t) by the unitary adiabatic transformation

η(t) = exp
( i
ε
Φ(t)

)
Q(t)Tψ(t) with Φ(t) = diag (φj(t)) =

∫ t

0

Λ(s) ds,

(3.17)
which represents the solution in a rotating frame of eigenvectors. Such trans-
formations have been in use in quantum mechanics since the work of Born
& Fock [2] on the adiabatic invariants Ij(t) = |ηj(t)|2 in Schrödinger equa-
tions. Figure 3.1 illustrates the effect of this transformation, showing solution
components in the original and in the adiabatic variables.

−1 0 1
−1

0

1

q
1
(t)

time t
−1 0 1

−0.01

0

0.01

real part of η
1
(t)

time t
0.95 1

−1

0

1
x 10

−3

real part of η
1
(t) 

(zoomed)

time t

Fig. 3.1. Oscillatory solution component and adiabatic variable as functions of time

The transformation (3.17) to adiabatic variables yields a differential equa-
tion where the ε-independent skew-symmetric matrix

W (t) = Q̇(t)TQ(t)

is framed by oscillatory diagonal matrices:

η̇(t) = exp
( i
ε
Φ(t)

)
W (t) exp

(
− i

ε
Φ(t)

)
η(t). (3.18)
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Numerical integrators for (2.7) based on the transformation to the differential
equation (3.18) are given by Jahnke & Lubich [34] and Jahnke [33]. The
simplest of these methods freezes the slow variables η(t) and W (t) at the
mid-point of the time step, makes a piecewise linear approximation to the
phase Φ(t), and then integrates the resulting system exactly over the time
step. This gives the following adiabatic integrator :

ηn+1 = ηn + hB(tn+1/2)
1

2
(ηn + ηn+1) with (3.19)

B(t) =

(
exp

(
− i

ε

(
φj(t) − φk(t)

))
sinc

( h

2ε

(
λj(t) − λk(t)

))
wjk(t)

)

j,k

.

More involved — and substantially more accurate — methods use a Neumann
or Magnus expansion in (3.18) and a quadratic phase approximation. Numer-
ical challenges arise near avoided crossings of eigenvalues, where η(t) remains
no longer nearly constant and a careful choice of step size selection strategy
is needed in order to follow the non-adiabatic transitions; see [34] and [22,
Chap. XIV].

The extension of this approach to (2.5), (2.6), and (2.8) is discussed in
Sect. 5. The transformation to adiabatic variables is also a useful theoretical
tool for analysing the error behaviour of multiple time-stepping methods ap-
plied to these problems in the original coordinates, such as the impulse and
mollified impulse methods considered in Sect. 3.2; see [22, Chap.XIV].

4 Trigonometric integrators for problems with nearly

constant frequencies

A good understanding of the behaviour of numerical long-time-step methods
over several time scales has been gained for Hamiltonian systems with almost-
constant high frequencies as considered in Sect. 2.1. We here review results
for single-frequency systems (2.1) with (2.2) (and M = I) from Hairer &
Lubich [21] and [22, Chap.XIII], with the particle chain of Fig. 2.1 serving
as a concrete example. The variables are split as q = (q0, q1) according to
the blocks in (2.2). We consider initial conditions for which the total energy
H(p, q) is bounded independently of ε,

H(p(0), q(0)) ≤ Const.

The principal theoretical tool is a modulated Fourier expansion of both the
exact and the numerical solution,

q(t) =
∑

k z
k(t) eikt/ε, (4.1)

an asymptotic multiscale expansion with coefficient functions zk(t) changing
on the slow time scale 1, which multiply exponentials that oscillate with fre-
quency 1/ε. The system determining the coefficient functions turns out to
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have a Hamilton-type structure with formal invariants close to the total and
oscillatory energies.

The results on the behaviour of trigonometric integrators (3.15) on differ-
ent time scales have been extended from single- to multi-frequency systems
(possibly with resonant frequencies) by Cohen, Hairer & Lubich [9], and to
systems (2.4) with non-constant mass matrix by Cohen [6, 7].

4.1 Time scale ε

On this time scale the system (2.1) with (2.2) only shows near-harmonic oscil-
lations with frequency 1/ε and amplitude O(ε) in the fast variables q1, which
are well reproduced by just any numerical integrator.

4.2 Time scale ε
0

This is the time scale of motion of the slow variables q0 under the influence
of the potential U(q). Here it is of interest to have an error in the numerical
methods which is small in the step size h and uniform in the product of the
step size with the high frequency 1/ε. The availability of such uniform error
bounds depends on the behaviour of the filter functions ψ and φ in (3.15) at
integral multiples of π. Under the conditions

ψ(2kπ) = ψ′(2kπ) = 0, ψ((2k − 1)π) = 0, φ(2kπ) = 0 (4.2)

for k = 1, 2, 3, . . . , it is shown in [22, Chap.XIII.4] that the error after n time
steps is bounded by

‖qn − q(nh)‖ ≤ C h2, ‖q̇n − q̇(nh)‖ ≤ C h for nh ≤ Const., (4.3)

with C independent of h/ε and of bounds of derivatives of the highly oscilla-
tory solution.

Error bounds without restriction of the product of the step size with
the frequencies are given for general positive semi-definite matrices A in
(2.1) by Garćıa-Archilla, Sanz-Serna & Skeel [15] for the mollified impulse
method (ψ(ξ) = sinc2(ξ), φ(ξ) = sinc(ξ)), by Hochbruck & Lubich [26] and
Grimm [17] for Gautschi-type methods (ψ(ξ) = sinc2(ξ/2) and suitable φ),
and most recently by Grimm & Hochbruck [19] for general A and general
classes of filter functions ψ and φ.

4.3 Time scale ε
−1

An energy exchange between the stiff springs in the particle chain takes place
on the slower time scale ε−1. To describe this in mathematical terms, let q1,j

be the jth component of the fast position variables q1, and consider

Ij =
1

2
q̇21,j +

1

2ε2
q21,j ,
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which in the example represents the harmonic energy in the jth stiff spring.
The quantities Ij change on the time scale ε−1. To leading order in ε, their
change is described by a differential equation that determines the coefficient
of eit/ε in the modulated Fourier expansion (4.1). It turns out that for a
trigonometric method (3.15), the differential equation for the corresponding
coefficient in the modulated Fourier expansion of the numerical solution is
consistent with that of the exact solution for all step sizes if and only if

ψ(ξ)φ(ξ) = sinc(ξ) for all ξ ≥ 0.

It is interesting to note that this condition for correct numerical energy ex-
change is in contradiction with the condition (3.14) of symplecticity of the
method, with the only exception of the impulse method, given by ψ =
sinc, φ = 1. That method, however, does not satisfy (4.2) and is in fact
extremely sensitive to near-resonances between frequency and step size (h/ε
near even multiples of π). A way out of these difficulties is to consider trigono-
metric methods with more than one force evaluation per time step, as is shown
in [22, Chap.XIII].

50 100 150
0

1

50 100 150
0

1

50 100 150
0

1

50 100 150
0

1

50 100 150
0

1

50 100 150
0

1

(A) H

I

(B) H

I

(C) H

I

Fig. 4.1. Energy exchange between the stiff springs for methods (A)-(C), with
h = 0.015 (upper) and h = 0.03 (lower), for ε = 0.02

In Fig. 4.1 we show the energy exchange of three numerical methods for
the particle chain of Fig. 2.1, with ε = 0.02 and with potential and initial
data as in [22, p. 22]. At t = 0 only the first stiff spring is elongated, the
other two being at rest position. The harmonic energies I1, I2, I3, their sum
I = I1+I2+I3, and the total energyH (actuallyH−0.8 for graphical reasons)
are plotted along the numerical solutions of the following methods, with step
sizes h = 0.015 and h = 0.03:
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(A) impulse method (ψ = sinc, φ = 1)
(B) mollified impulse method (ψ = sinc2, φ = sinc)
(C) heterogeneous multiscale method (3.7) with δ =

√
ε.

For this problem with linear fast forces, the averaging integrals of Sect. 3.1
and the solution of (3.8) are computed exactly. We notice that for the larger
step size only method (A) reproduces the energy exchange in a correct way.
Method (C) behaves very similarly to the Störmer–Verlet method.

4.4 Time scales ε
−N with N ≥ 2

In Fig. 4.1 it is seen that the total oscillatory energy I remains approximately
conserved over long times. Along the exact solution of the problem, I is in
fact conserved up to O(ε) over exponentially long times t ≤ ec/ε; see Benet-
tin, Galgani & Giorgilli [1] and Cohen, Hairer & Lubich [8] for different proofs
based on canonical transformations of Hamiltonian perturbation theory and
modulated Fourier expansions (4.1), respectively. Along the numerical solu-
tion by a trigonometric integrator (3.15), near-conservation of the oscillatory
energy I and the total energy H are shown in [21] and [22, Chap. XIII] over
times t ≤ ε−N under a non-resonance condition between the frequency and
the step-size: ∣∣∣ sin

(kh
2ε

)∣∣∣ ≥ c
√
h for k = 1, . . . , N.

It is known from [21] that the condition

ψ(ξ) = sinc2(ξ)φ(ξ)

is necessary to have long-time conservation of the total energy uniformly for
all values of h/ε, and numerical experiments indicate that this condition on
the filter functions may also be sufficient. Otherwise, energy conservation is
lost at least when h/ε is close to an even multiple of π.

Figure 4.2 shows, for the same data and methods as before, the maximum
deviations of H and I on the interval [0, 1000] as functions of h/ε.

.1

.2

.1

.2

.1

.2

.1

.2

.1

.2

.1

.2

π

(A)

π

(B)

π

(C)

π

(A)

π

(B)

π

(C)

Fig. 4.2. Maximum deviation of total energy (upper) and oscillatory energy (lower)
as functions of h/ε (for step size h = 0.02)
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5 Adiabatic integrators for problems with varying

frequencies

Adiabatic integrators are a novel class of numerical integrators that have
been devised in [34, 33, 32, 39, 38, 22] for various kinds of oscillatory prob-
lems with time- or solution-dependent high frequencies, including (2.5)–(2.8).
These integrators have in common that the oscillatory part of the problem is
transformed to adiabatic variables (cf. Sect. 3.4) and the arising oscillatory
integrals are computed analytically or approximated by an appropriate expan-
sion. The methods allow to integrate these oscillatory differential equations
with large time steps in the adiabatic regime of well-separated frequencies and
follow non-adiabatic transitions with adaptively refined step sizes.

5.1 Adiabatic integrators for quantum-classical molecular

dynamics

Following Jahnke [32], we sketch how to construct a symmetric long-time-step
method for problem (2.8), which couples in a nonlinear way slow motion and
fast oscillations with frequencies depending on the slow variables.

Proceeding as in Sect. 3.4, the quantum system is transformed to adiabatic
variables by

η(t) = exp

(
i

ε
Φ(t)

)
Q

(
q(t)

)T
ψ(t) , (5.1)

where H(q) = Q(q)Λ(q)Q(q)T is a smooth eigendecomposition of the Hamil-
tonian and

Φ(t) =

∫ t

t0

Λ
(
q(s)

)
ds, Φ = diag(φj) (5.2)

is the phase matrix, a diagonal matrix containing the time integrals over the
eigenvalues λj(q(t)) along the classical trajectory. Inserting (5.1) into (2.8)
yields the new equations of motion

q̈ = −η∗ exp

(
i

ε
Φ

)
K(q) exp

(
− i

ε
Φ

)
η, (5.3)

η̇ = exp

(
i

ε
Φ

)
W (q, q̇) exp

(
− i

ε
Φ

)
η (5.4)

with the tensor K(q) and skew-symmetric matrix W (q, q̇) given as

K(q) = Q(q)T∇qH(q)Q(q),

W
(
q, q̇

)
=

(
d

dt
Q

(
q
))T

Q
(
q
)

=
(
∇qQ

(
q
)
q̇
)T

Q
(
q
)
. (5.5)
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Equations (5.3) and (5.4) can be restated as

q̈ = −η∗
(
E(Φ) •K(q)

)
η, (5.6)

η̇ =
(
E(Φ) •W (q, q̇)

)
η. (5.7)

where • means entrywise multiplication, and E(Φ) denotes the matrix

E(Φ) =
(
ejk(Φ)

)
, ejk(Φ) = exp

(
i

ε
(φj − φk)

)
. (5.8)

The classical equation can be integrated using the averaging technique from
Sect. 3. We insert (5.6) into (3.3) and, in order to approximate the integral,
keep the smooth variables η(t) and K(q(t)) fixed at the midpoint tn of the
interval [tn−1, tn+1]. Since more care is necessary for the oscillating exponen-
tials, we replace Φ by the linear approximation

Φ(tn + θh) ≈ Φ(tn) + θhΛ
(
q(tn)

)
. (5.9)

These modifications yield the averaged Störmer-Verlet method of [32]:

qn+1 − 2qn + qn−1 = −h2 η∗n

(
E(Φn) • I(qn) •K(qn)

)
ηn (5.10)

with I(qn) =

∫ 1

−1

(1 − |θ|)E
(
θhΛ(qn)

)
dθ.

The matrix of oscillatory integrals I(qn) can be computed analytically: its
entries Ijk(qn) are given by

Ijk(qn) =

∫ 1

−1

(1 − |θ|) exp(iθξjk) dθ = sinc2(1
2ξjk)

with ξjk =
h

ε

(
λj(qn) − λk(qn)

)
. (5.11)

Note that in the (computationally uninteresting) small-time-step limit h/ε→
0 the integrator (5.10) converges to the Störmer-Verlet method.

The easiest way to approximate the quantum vector η(t) is to keep
η(t) ≡ η(0) simply constant. According to the quantum adiabatic theorem
[2] the resulting error is only O(ε) as long as the eigenvalues of H(q(t)) are
well separated and the eigendecomposition remains smooth. A more reliable
method, which in its variable-time-step version follows non-adiabatic tran-
sitions in η occurring near avoided crossings of eigenvalues, is obtained by
integrating Eq. (5.7) from tn − h to tn + h, using the linear approximation
(5.9) for Φ(t), and freezing the slow coupling matrix W (q(t), q̇(t)) at the mid-
point tn. This yields the adiabatic integrator from [32],



Integrators for oscillatory Hamiltonian systems 17

ηn+1 − ηn−1 =2h
(
E(Φn) • J (qn) •Wn

)
ηn (5.12)

with J (qn) =
1

2

∫ 1

−1

E
(
θhΛ(qn)

)
dθ.

The (j, k)-entry of the matrix of oscillatory integrals J (qn) is simply

Jjk(qn) =
1

2

∫ 1

−1

exp(iθξjk) dθ = sinc ξjk.

The explicit midpoint rule is recovered in the limit h/ε → 0. The derivative
contained in (5.5) and the integral in (5.2) are not known explicitly but can
be approximated by the corresponding symmetric difference quotient and the
trapezoidal rule, respectively. These approximations are denoted by Wn and
Φn in the above formulas.

The approximation properties of method (5.10), (5.12) for large step sizes
up to h ≤ √

ε are analysed in [32]. A discrete quantum-adiabatic theorem is
established, which plays an important role in the error analysis.

5.2 Adiabatic integrators for problems with time-dependent

frequencies

Adiabatic integrators for mechanical systems with a time-dependent multi-
scale Hamiltonian (2.5) are presented in [22, Chap. XIV] and [38], following
up on previous work by Lorenz, Jahnke & Lubich [39] for systems (2.5) with
M(t) ≡ I and A(t) a symmetric positive definite matrix. To simplify the
presentation, we ignore in the following the slow potential and set U ≡ 0.

The approach is based on approximately separating the fast and slow time
scales by a series of time-dependent canonical linear coordinate transforma-
tions, which are done numerically by standard numerical linear algebra rou-
tines. The procedure can be sketched as follows:

• The Cholesky decomposition M(t) = C(t)−TC(t) and the transformation
q 7→ C(t)q change the Hamiltonian in such a way that the new mass matrix
is the identity.

• The eigendecomposition

A(t) = Q(t)

(
0 0
0 Ω(t)2

)
Q(t)T , Ω(t) = diag(ωj(t))

of the symmetric stiffness matrix A(t) allows to split the positions q =
(q0, q1) and momenta p = (p0, p1) into slow and fast variables q0, p0 and
q1, p1, respectively.

• The fast positions and momenta are rescaled by ε−1/2Ω(t)1/2 and by
ε1/2Ω(t)−1/2, respectively.
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• The previous transforms produce a non-separable term qTK(t)p in the
Hamiltonian. One block of the matrix K(t) is of order O(ε−1/2) and has
to be removed by one more canonical transformation.

The Hamiltonian in the new coordinates p = (p0, p1) and q = (q0, q1) then
takes the form

H(p, q, t) =
1

2
pT
0 p0 +

1

2ε
pT
1Ω(t)p1 +

1

2ε
qT
1 Ω(t)q1 + qTL(t)p+

1

2
qTS(t)q

with a lower block-triangular matrix L and a symmetric matrix S of the form

L =

(
L00 0

ε1/2L10 L11

)
, S =

(
S00 ε1/2S01

ε1/2S10 εS11

)
.

Under the condition of bounded energy, the fast variables q1 and p1 are now
of order O(ε1/2). The equations of motion read

ṗ0 = f0(p, q, t)

q̇0 = p0 + g0(q, t)

(
ṗ1

q̇1

)
=

1

ε

(
0 −Ω(t)

Ω(t) 0

) (
p1

q1

)
+

(
f1(p, q, t)
g1(q, t)

)

with functions
(
f0
f1

)
= −L(t)p− S(t)q,

(
g0
g1

)
= L(t)T q,

which are bounded uniformly in ε. The oscillatory part now takes the form of
a skew-symmetric matrix multiplied by 1/ε, similar to (2.7). We diagonalize
this matrix and define the diagonal phase matrix Φ as before:

(
0 −Ω(t)

Ω(t) 0

)
= ΓiΛ(t)Γ ∗, Γ =

1√
2

(
I I

−iI iI

)
, (5.13)

Λ(t) =

(
Ω(t) 0

0 −Ω(t)

)
, Φ(t) =

∫ t

t0

Λ(s) ds. (5.14)

The transformation to adiabatic variables is now taken as

η = ε−1/2 exp
(
− i

ε
Φ(t)

)
Γ ∗

(
p1

q1

)
(5.15)

with the factor ε−1/2 introduced such that η = O(1). The equations of motion
become

ṗ0 = −L00p0 − S00q0 − εS01Q1η

q̇0 = p0 + LT
00q0 + εLT

10Q1η (5.16)
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for the slow variables, and

η̇ = exp
(
− i

ε
Φ
)
W exp

( i
ε
Φ
)
η − P ∗

1

(
L10p0 + S10q0

)
(5.17)

for the adiabatic variables, where

W = Γ ∗

(
−L11 −εS11

0 LT
11

)
Γ,

(
P1

Q1

)
= Γ exp

( i
ε
Φ
)
.

Slow and fast degrees of freedom are only weakly coupled, because in the
slow equations (5.16) the fast variable η always appears with a factor ε. The
oscillatory part has the familiar form of a coupling matrix framed by oscilla-
tory exponentials, cf. (3.18) and (5.4). Under a separation condition for the
frequencies ωj(t), the fact that the diagonal of W is of size O(ε) implies that
the expressions Ij = |ηj |2 are adiabatic invariants. Ij is the action (energy
divided by frequency)

Ij =
1

ωj

(1

2
p2
1,j +

ω2
j

2ε2
q21,j

)
.

An adiabatic integrator for (2.5) is obtained by the following splitting (for
details see [22, Chap. XIV] and Lorenz [38]):

1. Propagate the slow variables (p0, q0) with a half-step of the symplectic
Euler method. For the oscillatory function Q1(t), replace the evaluation
at tn+1/2 = tn + h/2 by the average

Q−

1 ≈ 2

h

∫ tn+1/2

tn

Q1(t) dt,

obtained with a linear approximation of the phase Φ(t) and analytic com-
putation of the integral.

2. Propagate the adiabatic variable η with a full step of a method of type
(3.19) for (5.17).

3. Propagate the slow variables (p0, q0) with a half-step of the adjoint sym-
plectic Euler method, with an appropriate average of Q1(t).

The approximation properties of this method are analyzed in [22, Chap. XIV],
where it is shown that the error over bounded time intervals, in the original
variables of (2.5), is of order O(h2) in the positions and O(h) in the momenta,
uniformly in ε for h ≤ √

ε. Numerical comparisons with other methods illus-
trate remarkable benefits of this approach [38, 39].

We present numerical illustrations from Lorenz [38] for the time-dependent
Hamiltonian (2.5) with M(t) ≡ I and

A(t) =

(
t+ 3 δ
δ 2t+ 3

)2
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Fig. 5.1. Frequencies ωj (upper) and ‖Q̇‖ (lower) for δ = 1, 0.1, 0.01

on the time interval [−1, 1]. The behaviour of the components of the solution
q(t) and the adiabatic variable η(t) are as in Fig. 3.1 for δ = 1 and η = 0.01.

Figure 5.1 shows the frequencies and the norm of the time derivative of
the matrix Q(t) that diagonalizes A(t) for various values of the parameter δ.
For small values of δ, the frequencies approach each other to O(δ) at t = 0,
and ‖Q̇(0)‖ ∼ δ−1. This behaviour affects the adiabatic variables ηj(t), as is
shown in Fig. 5.2.
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Fig. 5.2. Adiabatic variables ηj as functions of time

For δ ∼ ε1/2, there appears an O(1) change in η in an O(δ) neighbourhood
of t = 0, and for smaller values of δ the components of η essentially exchange
their values; cf. Zener [48] for the analogous situation in Schrödinger-type
equations (2.7). Small step sizes are needed near t = 0 to resolve this be-
haviour. Figure 5.3 shows the step sizes chosen by a symmetric adaptive step
selection algorithm described in [22, Chap.XIV] for different values of δ. Er-
rors of similar size are obtained in each case.
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Fig. 5.3. Step size vs. time for δ = 20, 2−2, 2−4, 2−6 (increasingly thicker lines)

5.3 Integrators for motion under a strong constraining force

The methods and techniques of the previous subsection can be extended to
problems (2.6) with solution-dependent high frequencies [22, 38]. The pro-
cedure is again to apply a series of canonical coordinate transformations to
transform (numerically) to a system with nearly-separated slow and fast com-
ponents:

ṗ0 = −∇q0

(1

2
pT
0M0(q0)

−1p0 + U(q0, 0)
)

−∇q0

( 1

2ε
pT
1Ω(q0)p1 +

1

2ε
qT
1 Ω(q0)q1

)
+ f0(p, q)

q̇0 = M0(q0)
−1p0 + g0(p, q) (5.18)

(
ṗ1

q̇1

)
=

1

ε

(
0 −Ω(q0)

Ω(q0) 0

) (
p1

q1

)
+

(
f1(p, q)
g1(p, q)

)

with the diagonal matrix Ω(q0) of frequencies ωj(q0) and smooth functions of
magnitude f0 = O(ε), g0 = O(ε) and f1 = O(ε1/2), g1 = O(ε1/2) in the case
of bounded energy and well-separated frequencies. The fast motion of (p1, q1)
is followed numerically in the adiabatic variables η, which are again defined
by (3.17). In these coordinates, the integrator used is then similar to those
of Sects. 5.1 and 5.2. Alternatively, the system is integrated in the original
coordinates by multiple time-stepping methods such as the (mollified) impulse
method of Sect. 3.2, and the above-mentioned transformations are only used
as a theoretical tool for analysing the numerical method. We refer to [22,
Chap. XIV] for more details.

The actions Ij = |ηj |2 are again adiabatic invariants in the case of well-
separated frequencies, remaining O(ε1/(m+1)) close to their initial values over
bounded time intervals if additionally all the expressions ωj ± ωk ± ωl have
zeros of multiplicity at most m. It is worthwhile to note that the oscillatory
energy appearing in (5.18) can be written as

1

2ε
pT
1Ω(q0)p1 +

1

2ε
qT
1 Ω(q0)q1 =

∑
j Ij ωj(q0)
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so that the limit equation of the slow variables for ε→ 0 takes the form first
discovered by Rubin & Ungar [45],

ṗ0 = −∇q0

(1

2
pT
0M0(q0)

−1p0 + U(q0, 0) +
∑

j Ij ωj(q0)
)

q̇0 = M0(q0)
−1p0

with the oscillatory energy acting as an extra potential. However, as was noted
by Takens [46], the slow motion can become indeterminate in the limit ε→ 0
when the frequencies do not remain separated; see also Bornemann [3]. In
contrast to the integration of the slow limit system with constant actions
Ij , the numerical integration of the full oscillatory system by an adiabatic
integrator with adaptive time steps detects changes in the actions. Moreover, it
can follow an almost-solution (having small defect in the differential equation)
that passes through a non-adiabatic transition.

Acknowlegdement. This work has been supported by the DFG Priority
Program 1095 “Analysis, Modeling and Simulation of Multiscale Problems”
under LU 532/3-3. In addition to the discussions with participants of this
program, we particularly acknowledge those with Assyr Abdulle, Ernst Hairer,
and Gerhard Wanner.

References

1. G. Benettin, L. Galgani & A. Giorgilli, Realization of holonomic con-
straints and freezing of high frequency degrees of freedom in the light of
classical perturbation theory. Part I, Comm. Math. Phys. 113 (1987) 87–
103.

2. M. Born & V. Fock, Beweis des Adiabatensatzes, Zeitschr. f. Physik 51
(1928) 165–180.

3. F. Bornemann, Homogenization in Time of Singularly Perturbed Mechan-
ical Systems, Springer LNM 1687 (1998).

4. F. A. Bornemann, P. Nettesheim, B. Schmidt, & C. Schütte, An ex-
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