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Abstract

This article presents explicit exponential integrators for stochastic Maxwell’s
equations driven by both multiplicative and additive noises. By utilizing the
regularity estimate of the mild solution, we first prove that the strong order of
the numerical approximation is 1

2 for general multiplicative noise. Combing a
proper decomposition with the stochastic Fubini’s theorem, the strong order of
the proposed scheme is shown to be 1 for additive noise. Moreover, for linear
stochastic Maxwell’s equation with additive noise, the proposed time integrator
is shown to preserve exactly the symplectic structure, the evolution of the energy
as well as the evolution of the divergence in the sense of expectation. Several
numerical experiments are presented in order to verify our theoretical findings.
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1. Introduction

In the context of electromagnetism, a common way to model precise mi-
croscopic origins of randomness (such as thermal motion of electrically charged
micro-particles) is by means of stochastic Maxwell’s equations [RKT89]. Fur-
ther applications of stochastic Maxwell’s equations are: In [Ord96], a stochastic

IThis work was supported by the National Natural Science Foundation of China (NO.
91530118, NO. 91130003, NO. 11021101, NO. 91630312 and NO. 11290142), the Swedish
Foundation for International Cooperation in Research and Higher Education (STINT project
nr. CH2016 − 6729), as well as the Swedish Research Council (VR) (projects nr. 20134562
and 2018− 04443). The computations were performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at HPC2N, Umeå University.

∗Corresponding author.
Email addresses: david.cohen@umu.se (David Cohen), jianbocui@lsec.cc.ac.cn

(Jianbo Cui), hjl@lsec.cc.ac.cn (Jialin Hong), liyingsun@lsec.cc.ac.cn (Liying Sun)

Preprint submitted to Elsevier March 8, 2019



model of Maxwell’s field equations in 1 + 1 dimension is shown to be a simple
modification of a random walk model due to Kac, which provides a basis for the
telegraph equations. The work [KS14] studies the propagation of ultra-short
solitons in a cubic nonlinear medium modeled by nonlinear Maxwell’s equations
with stochastic variations of media. To simulate a coplanar waveguide with un-
certain material parameters, time-harmonic Maxwell’s equations are considered
in [BS15]. For linear stochastic Maxwell’s equations driven by additive noise,
the work [HJZ14] proves that the problem is a stochastic Hamiltonian partial
differential equation whose phase flow preserves the multi-symplectic geometric
structure. In addition, the averaged energy along the flow increases linearly with
respect to time and the flow preserves the divergence in the sense of expectation,
see [CHZ16]. Let us finally mention that linear stochastic Maxwell’s equations
are relevant in various physical applications, see e.g. [RKT89, Chapter 3].

We now review the literature on the numerical discretisation of stochas-
tic Maxwell’s equations. The work [Zha08] performs a numerical analysis of
the finite element method and discontinuous Galerkin method for stochastic
Maxwell’s equations driven by colored noise. A stochastic multi-symplectic
method for 3 dimensional problems with additive noise, based on stochastic
variational principle, is studied in [HJZ14]. In particular, it is shown that the
implicit numerical scheme preserves a discrete stochastic multi-symplectic con-
servation law. The work [CHZ16] inspects geometric properties of the stochas-
tic Maxwell’s equation with additive noise, namely the behavior of averaged
energy and divergence, see below for further details. Especially, the authors of
[CHZ16] investigate three novel stochastic multi-symplectic (implicit in time)
methods preserving discrete versions of the averaged divergence. None of the
proposed numerical schemes exactly preserve the behavior of the averaged en-
ergy. The work [HJZC17] proposes a stochastic multi-symplectic wavelet col-
location method for the approximation of stochastic Maxwell’s equations with
multiplicative noise (in the Stratonovich sense). For the same stochastic Maxwell’s
equation as the one considered in this paper (see below for a precise defini-
tion), the recent reference [CHJ18a] shows that the backward Euler–Maruyama
method converges with mean-square convergence rate 1

2 . Finally, the preprint
[CHJ18b] studies implicit Runge–Kutta schemes for stochastic Maxwell’s equa-
tion with additive noise. In particular, a mean-square convergence of order 1 is
obtained.

In the present paper, we construct and analyse an exponential integra-
tor for stochastic Maxwell’s equations which is explicit (thus computation-
ally more efficient than the above mentioned time integrators) and which en-
joys excellent long-time behavior. Observe that exponential integrators are
widely used for efficient time integrations of deterministic differential equa-
tions, see for instance [HLS98, CCO08, HO10, CG12] and more specially [TB02,
NTB07, KSHS08, VB09, Paž13] and references therein for Maxwell-type equa-
tions. In recent years, exponential integrators have been analysed in the context
of stochastic (partial) differential equations (S(P)DEs). Without being too ex-
haustive, we mention analysis and applications of such numerical schemes for the
following problems: stochastic differential equations [SXZ12, KB14, KCB17];
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stochastic parabolic equations [JK09, LT13, BCH18, CH18, ACQS18]; stochas-
tic Schrödinger equations [AC18, CD17, CHLZ17]; stochastic wave equations
[CLS13, Wan15, CQS16, ACLW16, QW17] and references therein.

The main contributions of the present paper are:

• a strong convergence analysis of an explicit exponential integrator for
stochastic Maxwell’s equations in R3. By making use of regularity esti-
mates of the exact and numerical solutions, the strong convergence order
is shown to be 1

2 for general multiplicative noise. Furthermore, by using a
proper decomposition and stochastic Fubini’s theorem, we prove that the
strong convergence order of the proposed scheme can achieve 1.

• an analysis of long-time conservation properties of an explicit exponen-
tial integrator for linear stochastic Maxwell’s equations driven by additive
noise. Especially, we show that the proposed explicit time integrator is
symplectic and satisfies a trace formula for the energy for all times, i. e. the
linear drift of the averaged energy is preserved for all times. In addition,
the numerical solution preserves the averaged divergence. This shows that
the exponential integrator inherits the geometric structure and the dynam-
ical behavior of the flow of the linear stochastic Maxwell’s equations. This
is not the case for classical time integrators such as Euler–Maruyama type
schemes.

• an efficient numerical implementation of two-dimensional models of stochas-
tic Maxwell’s equations by explicit time integrators.

We would like to remark that the proofs of strong convergence for the exponen-
tial integrator use similar ideas present in various proofs of strong convergence
from the literature. But, to the best of our knowledge, the present paper offers
the first explicit time integrator for linear stochastic Maxwell’s equations that is
of strong order 1, symplectic, exactly preserves the linear drift of the averaged
energy, and preserves the averaged divergence for all times. A weak convergence
analysis of the proposed scheme for stochastic Maxwell’s equations driven by
multiplicative noise will be reported elsewhere.

An outline of the paper is as follows. Section 2 sets notations and introduces
the stochastic Maxwell’s equation. This section also presents assumptions to
guarantee existence and uniqueness of the exact solution to the problem and
shows its Hölder continuity. The exponential integrator for stochastic Maxwell’s
equation is introduced in Section 3, where we also prove its strong order of
convergence for additive and multiplicative noise. In Section 4, we show that
the proposed scheme has several interesting geometric properties: it preserves
the evolution laws of the averaged energy, the evolution laws of the divergence,
and the symplectic structure of the original linear stochastic Maxwell’s equations
with additive noise. We conclude the paper by presenting numerical experiments
supporting our theoretical results in Section 5.
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2. Well-posedness of stochastic Maxwell’s equations

We consider the stochastic Maxwell’s equation driven by multiplicative Itô
noise

dU = AUdt+ F(U)dt+G(U)dW, t ∈ (0,+∞),

U(0) = (E⊤
0 ,H

⊤
0 )

⊤ (1)

supplemented with the boundary condition of a perfect conductor n × E = 0
as in [HJZ14]. Here, U = (E⊤,H⊤)⊤, is R6-valued function whose domain
O is a bounded and simply connected domain in R3 with smooth boundary
∂O. The unit outward normal vector to ∂O is denoted by n. Moreover, dW
stands for the formal time derivative of a Q-Wiener process W on a stochastic
basis (Ω,F , {Ft}t≥0,P). The Q-Wiener process can be written as W (x, t) =∑
k∈N+

Q
1
2 ek(x)βk(t), where {βk}k∈N+

is a sequence of mutually independent and

identically distributed R-valued standard Brownian motions; {ek}k∈N+
is an

orthonormal basis of U := L2(O;R) consisting of eigenfunctions of a symmetric,
nonnegative and of finite trace linear operator Q, i. e., Qek = ηkek, with ηk ≥ 0
for k ∈ N+. Assumptions on F and G are provided below.

The Maxwell’s operator A is defined by

A

(
E
H

)
:=

(
0 ϵ−1∇×

−µ−1∇× 0

)(
E
H

)
=

(
ϵ−1∇×H
−µ−1∇×E

)
. (2)

It has the domain D(A) := H0(curl,O)×H(curl,O), where

H(curl,O) := {U ∈ (L2(O))3 : ∇×U ∈ (L2(O))3},

is termed by the curl-space and

H0(curl,O) := {U ∈ H(curl,O) : n×U|∂O = 0}

is the subspace of H(curl,O) with zero tangential trace. In addition, ϵ and µ
are bounded and uniformly positive definite functions:

ϵ, µ ∈ L∞(O), ϵ, µ ≥ κ > 0

with κ being a positive constant. These conditions on ϵ, µ ensure that the
Hilbert space V := (L2(O))3 × (L2(O))3 is equipped with the weighted scalar
product ⟨(

E1

H1

)
,

(
E2

H2

)⟩
V

=

∫
O

(µ⟨H1,H2⟩+ ϵ⟨E1,E2⟩) dx,

where ⟨·, ·⟩ stands for the standard Euclidean inner product. This weighted
scalar product is equivalent to the standard inner product on (L2(O))6. More-
over, the corresponding norm, which stands for the electromagnetic energy of
the physical system, induced by this inner product reads∥∥∥∥(EH

)∥∥∥∥2
V

=

∫
O

(
µ∥H∥2 + ϵ∥E∥2

)
dx
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with ∥ · ∥ being the Euclidean norm. Based on the norm ∥ · ∥V , the associated
graph norm of A is defined by

∥V∥2D(A) := ∥V∥2V + ∥AV∥2V .

It is well known that Maxwell’s operator A is closed and that D(A) equipped
with the graph norm is a Banach space, see e.g. [Mon03]. Moreover, A is
skew-adjoint, in particular, for all V1,V2 ∈ D(A),

⟨AV1,V2⟩V = −⟨V1, AV2⟩V .

In addition, the operator A generates a unitary C0-group S(t) := exp(tA) via
Stone’s theorem, see for example [HJS15]. According to the definition of unitary
groups, one has

∥S(t)V∥V = ∥V∥V for all V ∈ V, (3)

which means that the electromagnetic energy is preserved, for Maxwell’s opera-
tor, see [HP15]. Besides, the unitary group S(t) satisfies the following properties
which will be made use of in the next section.

Lemma 2.1 (Theorem 3 with q = 0 in [BT79]). For the semigroup {S(t); t ≥
0} on V , it holds that

∥S(t)− Id∥L(D(A);V ) ≤ Ct, (4)

where the constant C does not depend on t. Here, L(D(A);V ) denotes the space
of bounded linear operators from D(A) to V .

Observe that, throughout the paper, C stands for a constant that may vary
from line to line.

For two real-valued separable Hilbert spaces (H1, ⟨·, ·⟩H1
, ∥·∥H1

) and (H2, ⟨·, ·⟩H2
, ∥·

∥H2), we denote the set of Hilbert–Schmidt operators from H1 to H2 by L2(H1,H2).
It will be equipped with the norm

∥Γ∥2L2(H1,H2)
:=

∞∑
i=1

∥Γϕi∥2H2
,

where {ϕi}i∈N+
is any orthonormal basis of H1. Furthermore, let Q

1
2 be the

unique positive square root of the linear operator Q (defining the noise W ). We
also introduce the separable Hilbert space U0 := Q

1
2U endowed with the inner

product ⟨u1, u2⟩U0
:= ⟨Q− 1

2u1, Q
− 1

2u2⟩U for u1, u2 ∈ U0, where we recall that
U = L2(O;R).

Lemma 2.2. As a consequence of Lemma 2.1, for any Φ ∈ L2 (U0, D(A)) and
any t ≥ 0, we have

∥ (S(t)− Id)Φ∥L2(U0,V ) ≤ Ct∥Φ∥L2(U0,D(A)). (5)
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Proof Thanks to Lemma 2.1 and the definition of the Hilbert–Schmidt norm,
we know that, for {ek}k∈N+ an orthonormal basis of U ,

∥ (S(t)− Id)Φ∥2L2(U0,V ) =
∑
k∈N+

∥ (S(t)− Id)ΦQ
1
2 ek∥2V

≤ Ct2
∑
k∈N+

∥ΦQ 1
2 ek∥2D(A) ≤ Ct2∥Φ∥2L2(U0,D(A)),

which proves the claim. □
To guarantee existence and uniqueness of strong solutions to (1), we make

the following assumptions:

Assumption 2.1 (Coefficients). Assume that the coefficients of Maxwell’s
operator (2) satisfy

ϵ, µ ∈ L∞(O), ϵ, µ ≥ κ > 0

with some positive constant κ.

Assumption 2.2 (Initial value). The initial value U(0) of the stochastic Maxwell’s
equation (1) is a D(A)-valued stochastic process with E

[
∥U(0)∥pD(A)

]
< ∞ for

any p ≥ 1.

Assumption 2.3 (Nonlinearity). We assume that the operator F : V → V is
continuous and that there exists constants CF, C

1
F > 0 such that

∥F(V1)− F(V2)∥V ≤ CF∥V1 − V2∥V , V1,V2 ∈ V,

∥F(V1)− F(V2)∥D(A) ≤ C1
F∥V1 − V2∥D(A), V1,V2 ∈ D(A),

∥F(V)∥V ≤ CF(1 + ∥V∥V ), V ∈ V,

∥F(V)∥D(A) ≤ C1
F
(
1 + ∥V∥D(A)

)
, V ∈ D(A).

Assumption 2.4 (Noise). We assume that the operator G : V → L2(U0, V )
satisfies

∥G(V1)−G(V2)∥L2(U0,V ) ≤ CG∥V1 − V2∥V , V1,V2 ∈ V,

∥G(V1)−G(V2)∥L2(U0,D(A)) ≤ C1
G∥V1 − V2∥D(A), V1,V2 ∈ D(A),

∥G(V)∥L2(U0,V ) ≤ CG(1 + ∥V∥V ), V ∈ V,

∥G(V)∥L2(U0,D(A)) ≤ C1
G(1 + ∥V∥D(A)), V ∈ D(A),

(6)

where CG, C
1
G > 0 may depend on the operator Q. We recall that L2(U0, V )

and L2(U0, D(A)) denote the spaces of Hilbert–Schmidt operators from U0 to V ,
resp. to D(A).

We now present two examples of an operator G verifying Assumption 2.4
(we only prove one of the inequality in (6), the others follow in a similar way).

For the first example (inspired by [HJZ14]), let O = [0, 1]3, ϵ = µ = 1
and consider G ≡ (λ1, λ1, λ1, λ2, λ2, λ2)

T for two real numbers λ1 and λ2. The
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stochastic Maxwell’s equation (1) then becomes an SPDE driven by additive
noise. In this case, one chooses the orthonormal basis of U to be sin(iπx1) sin(jπx2) sin(kπx3),
for i, j, k ∈ N+, and x1, x2, x3 ∈ [0, 1]. Assuming for example that ∥Q 1

2 ∥L2(U,H1
0)

<

∞, where H1
0 := H1

0(O) = {u ∈ H1(O) : u = 0 on ∂O}, one can get that
GQ

1
2V ∈ D(A) for all V ∈ D(A) and thus the last inequality in (6) holds.
For the second example (inspired by [CHJ18a]), consider G(V) = V for

V ∈ V , the domain O = [0, 1]3 and ϵ = µ = 1. Taking the same orthonormal
basis as above, and assuming in addition that Q 1

2 ∈ L2(U,H1+γ(O)) with γ > 3
2 ,

one gets for instance

∥G(V)∥L2(U0,D(A)) ≤ C∥Q 1
2 ∥L2(U,H1+γ)(1 + ∥V∥D(A)). (7)

Using the definition of the graph norm one gets

∥G(V)∥2L2(U0,D(A)) =
∑
k∈N+

∥VQ 1
2 ek∥2V +

∑
k∈N+

∥A(VQ
1
2 ek)∥2V .

Denoting V = (ET
V ,H

T
V )

T and using the definition of the operator A, one obtains

∥G(V)∥2L2(U0,D(A))

=
∑
k∈N+

∑
i=1,2,3

∥Ei
VQ

1
2 ek∥2U +

∑
k∈N+

∑
i=1,2,3

∥Hi
VQ

1
2 ek∥2U

+
∑
k∈N+

(
∥∇ × (EVQ

1
2 ek)∥2U3 + ∥∇ × (HVQ

1
2 ek)∥2U3

)
≤ C

∑
k∈N+

∥Q 1
2 ek∥2L∞(O)∥V∥

2
V +

∑
k∈N+

(
∥∇ × (EVQ

1
2 ek)∥2U3 + ∥∇ × (HVQ

1
2 ek)∥2U3

)
.

We now illustrate how to estimate the term ∥∇× (EVQ
1
2 ek)∥2U3 as an example.

Using the definition of the curl operator, one gets

∥∇ × (EVQ
1
2 ek)∥2U3 = ∥ ∂

∂x2
(E3

VQ
1
2 ek)−

∂

∂x3
(E2

VQ
1
2 ek)∥2U

+ ∥ ∂

∂x1
(E3

VQ
1
2 ek)−

∂

∂x3
(E1

VQ
1
2 ek)∥2U

+ ∥ ∂

∂x1
(E2

VQ
1
2 ek)−

∂

∂x2
(E1

VQ
1
2 ek)∥2U

≤ C∥Q 1
2 ek∥2L∞(O)

(
∥ ∂

∂x2
E3

V − ∂

∂x3
E2

V∥2U + ∥ ∂

∂x1
E3

V −∇3E1
V∥2U

+ ∥ ∂

∂x1
E2

V −∇2E1
V∥2U

)
+ C

(
∥ ∂

∂x1
Q

1
2 ek∥2L∞(O) + ∥ ∂

∂x2
Q

1
2 ek∥2L∞(O) + ∥ ∂

∂x3
Q

1
2 ek∥2L∞(O)

)
∥EV∥2U3

≤ C∥Q 1
2 ek∥2L∞(O)∥∇ ×EV∥2U3 + C∥∇Q

1
2 ek∥2L∞(O)∥EV∥2V .
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Combing the above estimates, we obtain

∥G(V)∥2L2(U0,D(A)) ≤ C
∑
k∈N+

∥Q 1
2 ek∥2L∞(O)

(
∥V∥2V + ∥AV∥2V

)
+ C

∑
k∈N+

∥∇Q
1
2 ek∥2L∞(O)∥V∥

2
V .

Using the Sobolev embedding Hγ(O) ↪→ L∞(O) for any γ > 3
2 , one finally

obtains (7) and the linear growth property of G.
The above assumptions suffice to establish well-posedness and regularity re-

sults of solutions to (1). This uses similar arguments as, for instance, [LSY10,
Theorem 9] (for a more general drift coefficient in (1)) and [CHJ18a, Corol-
lary 3.1].

Lemma 2.3. Let T > 0. Under the Assumptions 2.1-2.4, the stochastic Maxwell’s
equation (1) is strongly well posed and its solution U satisfies

E
[

sup
0≤t≤T

∥U(t)∥pD(A)

]
< C

(
1 + E

[
∥U(0)∥pD(A)

])
for any p ≥ 2. Here, the constant C depends on p, T , Q, bounds for F and G,
and U(0).

Subsequently we present a lemma on the Hölder regularity in time of solutions
to (1). This result is important in analysing the approximation error of the
proposed time integrator in Section 3.

Lemma 2.4. Let T > 0. Under the Assumptions 2.1-2.4, the solution U of the
stochastic Maxwell’s equation (1) satisfies

E
[
∥U(t)− U(s)∥2pV

]
≤ C|t− s|p,

for any 0 ≤ s, t ≤ T , and p ≥ 1. Here, the constant C depends on p, T , Q,
bounds for F and G, and U(0).

The proof is very similar to the proof of [CHJ18a, Proposition 3.2], we omit
it for ease of presentation.

Based on the above regularity results for solutions to the stochastic Maxwell’s
equation (1), the work [CHJ18a] shows mean-square convergence order 1

2 of the
backward Euler–Maruyama scheme (in temporal direction). In the next section,
we design and analyse an explicit and effective numerical scheme, the exponen-
tial integrator, which has the rate of convergence 1 and preserves many inherent
properties of the original problem (in the case of the stochastic Maxwell’s equa-
tions with additive noise).

3. Exponential integrators for stochastic Maxwell’s equations and er-
ror analysis

This section is concerned with a convergence analysis in strong sense of an
exponential integrator for the stochastic Maxwell’s equation (1). We first show
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an a priori estimate of the numerical solution. Then the strong convergence rate
is studied in two cases, first when equation (1) is driven by additive noise and
then for multiplicative noise.

Fix a time horizon T > 0 and an integer N > 0. Define a stepsize ∆t such
that T = N∆t. We then construct a uniform partition of the interval [0, T ]

0 = t0 < t1 < . . . < tN−1 < tN = T

with tn = n∆t for n = 0, . . . , N . Next, we consider the mild solution of the
stochastic Maxwell’s equation (1) on the small time interval [tk, tk+1] (with
U(tk) = Uk):

U(tk+1) = S(∆t)Uk+

∫ tk+1

tk

S(tk+1−s)F(U(s))ds+
∫ tk+1

tk

S(tk+1−s)G(U(s))dW.

By approximating both integrals in the above mild solution at the left end point,
one obtains the exponential integrator

Uk+1 = S(∆t)Uk + S(∆t)F(Uk)∆t+ S(∆t)G(Uk)∆Wk, (8)

where ∆Wk = ∆W (tk+1)−∆W (tk) stands for Wiener increments. One readily
sees that (8) is an explicit numerical approximation of the exact solution U(tk+1)
of the stochastic Maxwell’s equation (1).

In order to present a result on the strong error of the exponential integrator
(8), we first show an a priori estimate of the numerical solution.

Theorem 3.1. Under the Assumptions 2.1-2.4, the numerical solution to the
stochastic Maxwell’s equation given by the exponential integrator (8) satisfies

E
[
∥Uk∥2pD(A)

]
≤ C(U0, Q, T, p,F,G)

for all p ≥ 1 and k = 0, 1, . . . , N .

Proof. The numerical approximation given by the exponential integrator can
be rewritten as

Uk = S(tk)U(0) + ∆t

k−1∑
j=0

S(tk − tj)F(Uj) +

k−1∑
j=0

S(tk − tj)G(Uj)∆Wj .

Taking norm and expectation leads to, for p ≥ 1,

E
[
∥Uk∥2pD(A)

]
≤ CE

[
∥S(tk)U(0)∥2pD(A)

]
+ CE


∥∥∥∥∥∥∆t

k−1∑
j=0

S(tk − tj)F(Uj)

∥∥∥∥∥∥
2p

D(A)


+ CE


∥∥∥∥∥∥
k−1∑
j=0

S(tk − tj)G(Uj)∆Wj

∥∥∥∥∥∥
2p

D(A)

 .
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For the first term, using the definition of the graph norm and property (3), we
obtain

∥S(tk)U(0)∥2pD(A) = (∥S(tk)U(0)∥V + ∥S(tk)AU(0)∥V )2p = ∥U(0)∥2pD(A),

which leads to E
[
∥S(tk)U(0)∥2pD(A)

]
= E

[
∥U(0)∥2pD(A)

]
. Based on the linear

growth property of F and Hölder’s inequality, the second term is estimated as
follows ∥∥∥∥∥∥∆t

k−1∑
j=0

S(tk − tj)F(Uj)

∥∥∥∥∥∥
2p

D(A)

≤C + C∆t2p

k−1∑
j=0

∥Uj∥D(A)

2p

≤C + C∆t2pk2p−1
k−1∑
j=0

∥Uj∥2pD(A).

One then obtains

E


∥∥∥∥∥∥∆t

k−1∑
j=0

S(tk − tj)F(Uj)

∥∥∥∥∥∥
2p

D(A)

 ≤ C + C∆tE

k−1∑
j=0

∥Uj∥2pD(A)

 .

The third term is equivalent to

E


∥∥∥∥∥∥
k−1∑
j=0

S(tk − tj)G(Uj)∆Wj

∥∥∥∥∥∥
2p

D(A)

 = E

[∥∥∥∥∫ tk

0

S
(
tk − [

s

∆t
]∆t
)
G(U[ s

∆t ]∆t)dW (s)

∥∥∥∥2p
D(A)

]

with [ s
∆t ] being the integer part of s

∆t . The Burkholder–Davis–Gundy inequality
for stochastic integrals and our assumption on G give

E

[∥∥∥∥∫ tk

0

S
(
tk − [

s

∆t
]∆t
)
G(U[ s

∆t ]∆t)dW (s)

∥∥∥∥2p
D(A)

]
≤

≤ CE

[(∫ tk

0

∥∥∥G(U[ s
∆t ]∆t)

∥∥∥2
L2(U0,D(A))

ds
)p
]

≤ C + CE

[(∫ tk

0

∥∥∥U[ s
∆t ]∆t

∥∥∥2
D(A)

ds
)p
]
= C + CE

∆t

k−1∑
j=0

∥Uj∥2D(A)

p .

Using Hölder’s inequality, the last term in the above inequality becomes∆t

k−1∑
j=0

∥Uj∥2D(A)

p

≤ ∆tpkp−1
k−1∑
j=0

∥Uj∥2pD(A).

10



Taking expectation, we then obtain

E

[∥∥∥∥∫ tk

0

S
(
tk − [

s

∆t
]∆t
)
G(U(s))dW (s)

∥∥∥∥2p
D(A)

]
≤ C + C∆t

k−1∑
j=0

E
[
∥Uj∥2pD(A)

]
.

Altogether, we get that

E
[
∥Uk∥2pD(A)

]
≤ C + C∆tE

k−1∑
j=0

∥Uj∥2pD(A)

 .

A discrete Gronwall inequality concludes the proof. □
Using the above theorem, we arrive at

Corollary 3.1. Under the same assumptions as in Theorem 3.1, for all p ≥ 1,
there exists a constant C := C(U(0), Q, T, p,F,G) such that

E
[

sup
0≤k≤N

∥Uk∥2pD(A)

]
≤ C. (9)

Proof. The main idea to derive the estimate (9) is to properly estimate the
stochastic integral

E

 sup
0≤k≤N

∥∥∥∥∥∥
k−1∑
j=0

S(tk − tj)G(Uj)∆Wj

∥∥∥∥∥∥
2p

D(A)

 =

= E

[
sup

0≤k≤N

∥∥∥∥∫ tk

0

S
(
tk − [

s

∆t
]∆t
)
G(U[ s

∆t ]∆t)dW (s)

∥∥∥∥2p
D(A)

]
.

Based on the unitarity of S(·), Burkholder–Davis–Gundy’s inequality, Hölder’s
inequality, and our assumptions on G, the right hand side (RHS) of the above
equality becomes

RHS ≤ CE

[(∫ T

0

∥∥∥G(U[ s
∆t ]∆t)

∥∥∥2
L2(U0,D(A))

ds
)p]

≤ C + C∆t

N−1∑
j=0

E
[
∥Uj∥2pD(A)

]
≤ C,

where we use the result of Theorem 3.1 in the last step. The estimations of
the other terms in the numerical solution are done in a similar way as in the
previous result. □

We are now in position to show the error estimates of the exponential inte-
grator for the stochastic Maxwell’s equation (1) driven by additive noise.
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Theorem 3.2. Let Assumptions 2.1-2.4 hold. Assume in addition that F ∈
C2

b (V ) and G does not dependent on U. The strong error of the exponential
integrator (8) when applied to the stochastic Maxwell’s equation (1) verifies, for
all p ≥ 1, (

E
[

max
k=0,...,N

∥U(tk)− Uk∥2pV
]) 1

2p

≤ C∆t,

where the positive constant C depends on bounds for F (and its derivatives) and
G, as well as on T , p and Q.

Proof. Let us denote ϵk = U(tk)− Uk, for k = 0, . . . , N . We then have

ϵk+1 =

k∑
j=0

∫ tj+1

tj

(S(tk+1 − s)F(U(s))− S(tk+1 − tj)F(Uj)) ds

+

k∑
j=0

∫ tj+1

tj

((S(tk+1 − s)− S(tk+1 − tj))G) dW (s)

=: Errk1 + Errk2 . (10)

We now rewrite the term Errk1 as

Errk1 =

k∑
j=0

∫ tj+1

tj

(S(tk+1 − s)(F(U(s))− F(U(tj)))) ds

+

k∑
j=0

∫ tj+1

tj

((S(tk+1 − s)− S(tk+1 − tj))F(U(tj))) ds

+

k∑
j=0

∫ tj+1

tj

(S(tk+1 − tj)(F(U(tj))− F(Uj))) ds

=: Ik1 + Ik2 + Ik3.

We first estimate the term Ik1. Using a Taylor expansion, we obtain

F(U(s))− F(U(tj)) =
∂F
∂u

(U(tj))(U(s)− U(tj))

+
1

2

∂2F
∂u2

(Θ)(U(s)− U(tj),U(s)− U(tj)),

where Θ := θU(s)+(1−θ)U(tj), for some θ ∈ [0, 1], depends on U(s) and U(tj).
Combing this with the mild formulation of the exact solution on the interval
[tj , s],

U(s) = S(s− tj)U(tj) +
∫ s

tj

S(s− r)F(U(r))dr +
∫ s

tj

S(s− r)GdW (r),

12



we rewrite the term Ik1 as
Ik1 = Ak

1 +Ak
2 ,

where we define

Ak
1 =

k∑
j=0

∫ tj+1

tj

S(tk+1 − s)
∂F
∂u

(U(tj))(S(s− tj)− Id)U(tj)ds

+

k∑
j=0

∫ tj+1

tj

S(tk+1 − s)
∂F
∂u

(U(tj))
∫ s

tj

S(s− r)F(U(r))dr ds

+

k∑
j=0

∫ tj+1

tj

S(tk+1 − s)
∂F
∂u

(U(tj))
∫ s

tj

S(s− r)GdW (r)ds

=: IIk1 + IIk2 + IIk3,

and

Ak
2 =

k∑
j=0

∫ tj+1

tj

S(tk+1 − s)
1

2

∂2F
∂u2

(Θ)(U(s)− U(tj),U(s)− U(tj))ds.

The assumption that F ∈ C2
b (V ) and the Hölder continuity of the exact solution

U in Lemma 2.4 provide us with the bound E
[
∥A2∥2pV

]
≤ C∆t2p. For the term

II1, we use property (3), the boundedness of the derivatives of F and Lemma 2.1,
combined with Hölder’s inequality, to deduce that

∥IIk1∥V ≤
k∑

j=0

∫ tj+1

tj

∥∥∥∥∂F∂u (U(tj))(S(s− tj)− Id)U(tj)
∥∥∥∥
V

ds

≤ C

k∑
j=0

∫ tj+1

tj

|s− tj |∥U(tj)∥D(A) ds ≤ C(∆t)2
k∑

j=0

∥U(tj)∥D(A)

≤ C(∆t)2

 k∑
j=0

∥U(tj)∥2pD(A)

 1
2p (

tk+1

∆t

) 2p−1
2p

≤ C∆t

(
sup

0≤j≤k
∥U(tj)∥2pD(A)

) 1
2p

.

This leads to

E
[

max
k=0,...,N−1

∥IIk1∥
2p

V

]
≤ C(∆t)2pE

[
sup

0≤j≤N
∥U(tj)∥2pD(A)

]
≤ C(∆t)2p

using Lemma 2.3. Next, we estimate the term IIk2. Using Lemma 2.1 and

13



Hölder’s inequality, we obtain

∥IIk2∥V ≤ C

k∑
j=0

∫ tj+1

tj

∫ s

tj

∥F(U(r))∥V dr ds

≤ C

k∑
j=0

∫ tj+1

tj

∫ s

tj

(1 + ∥U(r)∥V )dr ds

≤ C∆t+ C

k∑
j=0

∫ tj+1

tj

(s− tj)
2p−1
2p

(∫ s

tj

∥U(r)∥2pV dr
) 1

2p

ds

≤ C∆t+ C∆t

(
sup

0≤t≤T
∥U(t)∥2pV

) 1
2p

.

From Lemma 2.3, It then follows that

E
[

max
k=0,...,N−1

∥IIk2∥
2p

V

]
≤ C(∆t)2p + C(∆t)2pE

[
sup

0≤t≤T
∥U(t)∥2pV

]
≤ C(∆t)2p.

We now proceed to the estimation of the term IIk3. First notice that stochastic
Fubini’s theorem leads to

IIk3 =

k∑
j=0

∫ tj+1

tj

S(tk+1 − s)
∂F
∂u

(U(tj))
∫ s

tj

S(s− r)GdW (r)ds

=

k∑
j=0

∫ tj+1

tj

∫ tj+1

r

S(tk+1 − s)
∂F
∂u

(U(tj))S(s− r)dsdW (r)

=

∫ tk+1

0

∫ ([ r
∆t ]+1)∆t

r

S(tk+1 − s)
∂F
∂u

(U([
s

∆t
]∆t))S(s− r)dsdW (r)

and the integrand in the above equation is Fr-adaptive. Then by the Burkholder–
Davis–Gundy’s inequality, we get

E[ max
k=0,...,N−1

∥IIk3∥
2p
V ]

≤ CE

∫ T

0

∥∥∥∥∥
∫ ([ r

∆t ]+1)∆t

r

S(tk+1 − s)
∂F
∂u

(U([
s

∆t
]∆t))S(s− r)ds

∥∥∥∥∥
2

L2(U0,V )

dr

p .
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Then, using the assumption that F ∈ C2
b (V ), we obtain

E
[

max
k=0,...,N−1

∥IIk3∥
2p

V

]

≤CE

N−1∑
j=0

∫ tj+1

tj

(∫ tj+1

r

∥∥∥∥S(tk+1 − s)
∂F
∂u

(U(tj))S(s− r)

∥∥∥∥
L2(U0,V )

ds
)2

dr

p
≤CE

N−1∑
j=0

∫ tj+1

tj

(∫ tj+1

r

∥∥∥Q 1
2

∥∥∥
L2(U,V )

ds
)2

dr

p ≤ C(∆t)2p.

Thus, the above allows us to get the following estimate

E
[

max
k=0,...,N−1

∥A1∥2pV

]
≤ C(∆t)2p,

which implies the estimate

E
[

max
k=0,...,N−1

∥Ik1∥
2p

V

]
≤ C(∆t)2p.

For the term Ik2, we use the unitary property of the semigroup (3) to get

∥Ik2∥V ≤
k∑

j=0

∫ tj+1

tj

∥(S(tk+1 − s)− S(tk+1 − tj))F(U(tj))∥V ds

=

k∑
j=0

∫ tj+1

tj

∥(S(tj − s)− Id)F(U(tj))∥V ds.

According to Lemma 2.1 and the linear growth property of F, the above term
can be bounded by

∥Ik2∥V ≤ C

k∑
j=0

∫ tj+1

tj

|tj − s| ∥F(U(tj))∥D(A) ds

≤ C(∆t)2
k∑

j=0

∥F(U(tj))∥D(A)

≤ C∆t+ C(∆t)2
k∑

j=0

∥U(tj)∥D(A) .

Taking the 2p-th power on both sides of the above inequality and then expec-
tation, we obtain

E
[

max
k=0,...,N−1

∥Ik2∥
2p

V

]
≤ C(∆t)2p + C(∆t)2pE

[
sup

0≤t≤T
∥U(t)∥2pD(A)

]
≤ C(∆t)2p
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by Lemma 2.3 in Section 2. For the term Ik3, similarly as above, using properties
of the semigroup and of F, and Hölder’s inequality, we obtain

∥Ik3∥V ≤ ∆t

k∑
j=0

∥ϵj∥V ≤ ∆t

 k∑
j=0

∥ϵj∥2pV

 1
2p (

tk+1

∆t

) 2p−1
2p

≤ C∆t

 k∑
j=0

∥ϵj∥2pV

 1
2p

(∆t)
1−2p
2p = C(∆t)

1
2p

 k∑
j=0

∥ϵj∥2pV

 1
2p

.

This gives us

E
[

max
k=0,...,N−1

∥Ik3∥
2p

V

]
≤ C∆t

N−1∑
j=0

E
[

max
l=0,...,j

∥ϵl∥2pV
]
.

The last term Errk2 can be bounded as follows

E
[

max
k=0,...,N−1

∥Errk2∥
2p
V

]

= E

 max
k=0,...,N−1

∥∥∥∥∥∥
k∑

j=0

∫ tj+1

tj

(S(tk+1 − s)− S(tk+1 − tj))GdW (s)

∥∥∥∥∥∥
2p

V


= E

[
max

k=0,...,N−1

∥∥∥∥∫ tk+1

0

(
S(tk+1 − s)− S(tk+1 −

[ s

∆t

]
∆t)

)
GdW (s)

∥∥∥∥2p
V

]

≤ E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

S(t−
[ s

∆t

]
∆t)

(
S(
[ s

∆t

]
∆t− s)− Id

)
GdW (s)

∥∥∥∥2p
V

]
.

Thanks to Burkholder–Davis–Gundy’s inequality and properties of the semi-
group, we obtain

E
[

max
k=0,...,N−1

∥Errk2∥
2p
V

]
≤ CE

[(∫ T

0

∥∥∥(S([ s

∆t

]
∆t− s)− Id)G

∥∥∥2
L2(U0,V )

ds
)p]

= CE

N−1∑
j=0

∫ tj+1

tj

∥(S(tj − s)− Id)G∥2L2(U0,V ) ds

p
≤ CE

N−1∑
j=0

∫ tj+1

tj

|tj − s|2
∥∥∥GQ

1
2

∥∥∥2
L2(U,D(A))

ds

p
≤ C(∆t)2p,

where we have used the linear growth property of G in L2(U0, D(A)) in the last
step.
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Collecting all the above estimates gives us the bound

E
[

max
k=0,...,N−1

∥ϵk+1∥2pV
]
≤ C(∆t)2p + C∆t

N−1∑
j=0

E
[

max
l=0,...,j

∥ϵl∥2pV
]
.

An application of Gronwall’s inequality yields(
E
[

max
k=0,...,N

∥ϵk∥2pV
]) 1

2p

≤ C∆t,

which means that the strong order of the exponential scheme is 1 if the noise is
additive in the stochastic Maxwell’s equation (1). □

Now we turn to the case where the stochastic Maxwell’s equation (1) is
driven by a more general multiplicative noise.

Theorem 3.3. Let Assumptions 2.1-2.4 hold. The strong error of the exponen-
tial integrator (8) when applied to the stochastic Maxwell’s equation (1) verifies,
for all p ≥ 1, (

E
[

max
k=0,...,N

∥U(tk)− Uk∥2pV
]) 1

2p

≤ C∆t
1
2 ,

where the positive constant C depends on the Lipschitz coefficients of F and G,
p, U(0), Q and T .

Proof. When the noise is multiplicative, the term Errk2 in (10) becomes

Errk2 =

k∑
j=0

∫ tj+1

tj

(S(tk+1 − s)G(U(s))− S(tk+1 − tj)G(Uj)) dW (s),

which can be rewritten as

Errk2 =

k∑
j=0

∫ tj+1

tj

S(tk+1 − s)(G(U(s))−G(U(tj)))dW (s)

+

k∑
j=0

∫ tj+1

tj

(S(tk+1 − s)− S(tk+1 − tj))G(U(tj))dW (s)

+

k∑
j=0

∫ tj+1

tj

S(tk+1 − tj)(G(U(tj))−G(Uj))dW (s)

=: III1 + III2 + III3.

By Burkholder–Davis–Gundy’s inequality and the assumptions on G, one ob-
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tains

E
[

max
k=0,...,N−1

∥III1∥2pV
]

≤E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(G(U(s))−G(U(
[ s

∆t

]
∆t)))dW (s)

∥∥∥∥2p
V

]

≤CE

[(∫ T

0

∥∥∥G(U(s))−G(U(
[ s

∆t

]
∆t))

∥∥∥2
L2(U0,V )

ds
)p]

≤CE

[(∫ T

0

∥∥∥U(s)− U(
[ s

∆t

]
∆t)

∥∥∥2
V

ds
)p]

.

Based on Hölder’s inequality and the continuity of U in Lemma 2.4, we have

E
[

max
k=0,...,N−1

∥III1∥2pV
]

≤CE

(∫ T

0

∥∥∥U(s)− U(
[ s

∆t

]
∆t)

∥∥∥2p
V

ds
) 1

p

T
p−1
p

p
≤CE

[∫ T

0

∥∥∥U(s)− U(
[ s

∆t

]
∆t)

∥∥∥2p
V

ds
]

≤C

N−1∑
j=0

∫ tj+1

tj

|s− tj |p ds ≤ C(∆t)p.

Similarly, for the term III2, we obtain

E
[

max
k=0,··· ,N−1

∥III2∥2pV
]

≤E

[
sup

0≤t≤T

(∥∥∥∥∫ t

0

S(t− s)− S(t−
[ s

∆t

]
∆t)

)
G(U(

[ s

∆t

]
∆t))dW (s)

∥∥∥∥2p
V

]

≤CE

[(∫ T

0

∥∥∥(S(t− s)− S(t−
[ s

∆t

]
∆t)

)
G(U(

[ s

∆t

]
∆t))

∥∥∥2
L2(U0,V )

ds
)p]

≤CT p−1E

[∫ T

0

∥∥∥(S(s− [ s

∆t

]
∆t)− Id)G(U(

[ s

∆t

]
∆t))

∥∥∥2p
L2(U0,V )

ds
]

≤C

N−1∑
j=0

∫ tj+1

tj

|s−
[ s

∆t

]
∆t|2pE

[∥∥∥G(U(
[ s

∆t

]
∆t))

∥∥∥2p
L2(U0,D(A))

ds
]

≤C(∆t)2p.

18



For the last term III3, using Assumption 2.4, we get

E
[

max
k=0,...,N−1

∥III3∥2pV
]

≤E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

S(
[ s

∆t

]
∆t)(G(U(

[ s

∆t

]
∆t))−G(U[ s

∆t ]
))dW (s)

∥∥∥∥2p
V

]

≤CE

[(∫ T

0

∥∥∥G(U(
[ s

∆t

]
∆t))−G(U[ s

∆t ]
)
∥∥∥2
L2(U0,V )

ds
)p]

≤CE

[(∫ T

0

∥∥∥U([ s

∆t

]
∆t)− U[ s

∆t ]

∥∥∥2
V

ds
)p]

≤C∆t

N−1∑
j=0

E
[

max
l=0,...,j

∥U(tl)− Ul∥2pV

]
.

Altogether, we obtain

E
[

max
k=0,...,N−1

∥Errk2∥
2p

V

]
≤ C(∆t)p + C∆t

N−1∑
j=0

E
[

max
l=0,...,j

∥ϵl∥2pV
]
,

where we recall the notation ϵl = U(tl)−Ul. Another difference with the proof
for the additive noise case is estimating the term Ik1. Using (3) and Assump-
tion 2.3, we obtain

∥Ik1∥
2p

V ≤

 k∑
j=0

∫ tj+1

tj

∥S(tk+1 − s)(F(U(s))− F(U(tj)))∥V ds

2p

≤ C

 k∑
j=0

∫ tj+1

tj

∥U(s)− U(tj)∥V ds

2p

≤ C

k∑
j=0

∫ tj+1

tj

∥U(s)− U(tj)∥2pV ds.

Using Lemma 2.4, one gets

E
[

max
k=0,...,N−1

∥Ik1∥
2p

V

]
≤C

k∑
j=0

∫ tj+1

tj

|s− tj |p ds ≤ C(∆t)p.

Putting all these estimates together yields

E
[

max
k=0,...,N−1

∥ϵk+1∥2pV
]
≤ C(∆t)p + C∆t

N−1∑
j=0

E
[

max
l=0,...,j

∥ϵl∥2pV
]
.
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An application of Gronwall’s inequality completes the proof, that is, on gets(
E
[

max
k=0,...,N

∥ϵk∥2pV
]) 1

2p

≤ C(∆t)
1
2 .

□

4. Linear stochastic Maxwell’s equations with additive noise

In this section, we study phenomena where the densities of the electric and
magnetic currents are assumed to be linear. This is an important example
of application of stochastic Maxwell’s equations in physics, see e.g. [RKT89,
Chapter 3, pages 112-114]. We thus now inspect the long-time behavior of the
exponential integrator applied to the linear stochastic Maxwell’s equation with
additive noise. We also briefly comment on the symplectic structure of the
exact and numerical solutions. For simplicity of presentation, in this section
we consider a similar setting as in [CHZ16]: we assume that ϵ = µ = 1, take
F = 0 and G = (λ1, λ1, λ1, λ2, λ2, λ2)

⊤ for two real numbers λ1 and λ2. Then
the stochastic Maxwell’s equation (1) becomes the linear stochastic Maxwell’s
equation with additive noise:

dE−∇×Hdt = λ1edW,

dH+∇×Edt = λ2edW, (11)

where e = (1, 1, 1)⊤. In [CHZ16], it is shown that the averaged energy increases
linearly with respect to the evolution of time and that the flow of the linear
stochastic Maxwell’s equation with additive noise preserves the divergence in
the sense of expectation. We now recall these results and analyse the behavior
of the exponential integrator with respect to the preservation of these geometric
properties of the problem.

Lemma 4.1 (Theorems 2.1 and 2.2 in [CHZ16], Theorem 3.1 in [CHJ18b]).
Consider the linear stochastic Maxwell’s equation (11) with a trace class noise.
There exists a constant K = 3

(
λ2
1 + λ2

2

)
Tr(Q) such that the averaged energy of

the exact solution satisfies the trace formula

E
[
Φexact(t)

]
= E

[
Φexact(0)

]
+Kt for all times t,

where Φexact(t) :=

∫
O

(
∥E(t)∥2 + ∥H(t)∥2

)
dx denotes the energy of the prob-

lem.
Assume that Q

1
2 ∈ L(L2(O),H1(O)), then the solution to equation (11)

preserves the averaged divergence

E [div(E(t))] = E [div(E(0))] , E [div(H(t))] = E [div(H(0))]

for all times t.
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The solutions to Maxwell’s equation (11) preserves the symplectic structure

ω(t) = ω(0) P-a.s.,

where ω(t) :=

∫
O

dE(t,x) ∧ dH(t,x) dx.

We now show that the proposed exponential integrator possesses the same
long-time behavior as the exact solution to the linear stochastic Maxwell’s equa-
tion. This is certainly not the case for traditional time integrators such as
Euler–Maruyama’s scheme, see the numerical experiments below. Recall, that
under this setting, the exponential integrator applied to (11) reads

Uk+1 = S(∆t)Uk + S(∆t)G∆Wk. (12)

We look at the trace formula for the energy first.
Proposition 4.1. The numerical scheme (12) satisfies the same trace formula
for the energy as the exact solution to the linear stochastic Maxwell’s equation

E [Φ(tk)] = E [Φ(0)] +Ktk for all discrete times tk,

where we denote Φ(tk) :=

∫
O

(
∥Ek∥2 + ∥Hk∥2

)
dx the numerical energy, recall

that tk = k∆t for k = 1, 2, . . . and K = 3
(
λ2
1 + λ2

2

)
Tr(Q) as in the above result.

Proof. We first observe that Φ(tk) stands for the norm ∥Uk∥2V which we now
compute

∥Uk∥2V = ∥S(∆t)Uk−1∥2V + 2⟨S(∆t)Uk−1,S(∆t)G∆Wk−1⟩V
+ ∥S(∆t)G∆Wk−1∥2V

= ∥Uk−1∥2V + 2⟨S(∆t)Uk−1,S(∆t)G∆Wk−1⟩V + ∥G∆Wk−1∥2V ,

which leads to

E
[
∥Uk∥2V

]
= E

[
∥Uk−1∥2V

]
+ E

[
∥G∆Wk−1∥2V

]
.

Moreover, using the definition of the ∥ · ∥V norm and Itô’s isometry, one obtains

E
[
∥G∆Wk−1∥2V

]
=3
(
λ2
1 + λ2

2

) ∫
O
E

∥∥∥∥∥
∫ tk

tk−1

dW (s)

∥∥∥∥∥
2
 dx

=3
(
λ2
1 + λ2

2

)
∆t

∫
O

∑
n∈N+

ηnen(x)
2

 dx

=3
(
λ2
1 + λ2

2

)
Tr(Q)∆t = K∆t.

A recursion concludes the proof. □
The above proposition thus shows that the exact trace formula for the en-

ergy also holds for the numerical solution given by the exponential integrator
(12). The following proposition shows that the exponential integrator (12) also
preserves the discrete version of the averaged divergence exactly.
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Proposition 4.2. The numerical approximation to the linear stochastic Maxwell’s
equation (11) given by the exponential integrator (12) exactly preserves the fol-
lowing discrete averaged divergence

E [div(Ek)] = E [div(Ek−1)] , E [div(Hk)] = E [div(Hk−1)]

for all k ∈ N+.

Proof. Let us denote (div,div)(ET ,HT )T := (divET ,divHT )T . Taking now
the divergence and expectation of both components of the numerical solution
leads to

E [(div,div)Uk] = E [(div,div)(S(∆t)Uk−1)] . (13)

We next notice that S(∆t)Uk−1 is the solution of the deterministic Maxwell’s
equation at time t = ∆t,

dE−∇×Hdt = 0,

dH+∇×Edt = 0, (ET ,HT )T (0) = Uk−1.

Using the property div(∇×·) = 0 and a similar argument as in [CHZ16, Theorem
2.2], we obtain

(div,div)(S(∆t)Uk−1) = (div,div)(Uk−1). (14)

Finally, combing (13) and (14) yields the desired result. □
Regarding the symplectic structure of the numerical solutions, we obtain the

following result.

Proposition 4.3. The exponential integrator (12) has the discrete stochastic
symplectic conservation law

ω1 =

∫
O

dE1 ∧ dH1 dx =

∫
O

dE0 ∧ dH0 dx = ω0 P-a.s.

Proof. Taking the differential of the numerical solution (12) gives dUk+1 =
d
(
S(∆t)Uk

)
. Thus, showing symplecticity of the exponential integrator is equiv-

alent to showing the symplecticity of the flow of the deterministic linear Maxwell’s
equation with initial value Uk. This is a well know fact. □

5. Numerical experiments

This section presents various numerical experiments in order to illustrate the
main properties of the stochastic exponential integrator (8), denoted by SEXP
below. We will compare this numerical scheme with the following classical ones:

• The Euler–Maruyama scheme (denoted by EM below)

Uk+1 = Uk +AUk∆t+ F(Uk)∆t+G(Uk)∆Wk. (EM)
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• The semi-implicit Euler–Maruyama scheme (denoted by SEM below)

Uk+1 = Uk +AUk+1∆t+ F(Uk)∆t+G(Uk)∆Wk. (SEM)

Below, we consider the stochastic Maxwell’s equation (1) with TM polarization
on the domain [0, 1]× [0, 1]. In this setting, the electric and magnetic fields are
E = (0, 0, E3), resp. H = (H1,H2, 0). The spatial discretisation is done by the
stagged uniform grid from [Ver11] with mesh sizes ∆x = ∆y = 2−4. Unless
stated otherwise, the initial condition reads

E3(x, y, 0) = 0.1 exp(−50((x− 0.5)2 + (y − 0.5)2))

H1(x, y, 0) = randy

H2(x, y, 0) = randx,

where randx, resp. randy, are random initial values in one direction whereas the
other direction is kept constant. This is done in order to have zero divergence.
The eigenvalues of the linear operator Q are given by 3/(j3 + k3) for j, k =
1, 2, . . ..

5.1. Strong convergence
We first illustrate the strong rates of convergence of the exponential inte-

grator (8) stated in Theorems 3.2 and 3.3. To do this, we compute the errors
E
[
∥UN − Uref(T )∥2V

]
at the final time T = 0.5 for time steps ranging from

∆t = 2−8 to ∆tref = 2−13 and report these errors in Figure 1. The reference
solution is computed using the exponential integrator and the expected values
are approximated by computing averages over Ms = 500 samples. We observed
that using a larger number of samples (Ms = 750) does not significantly improve
the behavior of the convergence plots. The theoretical rates of convergence of
the exponential integrator stated in the above theorems are indeed observed in
these plots.
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Figure 1: Strong rates of convergence for the stochastic Maxwell’s equation with F(U) =
U+ cos(U) and G(U) = sin(U) (left) and F(U) = U and G(U) = 1

T (right).
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5.2. Averaged energy and divergence
We now illustrate the geometric properties of the exponential integrator

stated in Section 4. We consider the problem (11) with λ1 = λ2 = 0.5, the time
interval [0, 5], a step size ∆t = 0.01 and Ms = 25000 samples to approximate the
expectations. The numerical averaged energies and divergences are displayed
in Figure 2. The trace formula for the energy of the stochastic exponential
integrator, as stated in Proposition 4.1, is observed in this figure (left and middle
plots). This is in contrast with the wrong behavior of the SEM scheme and the
EM scheme, where explosion in the energy is observed for the EM scheme (left
plot). In this figure (right plot), one can also observe the preservation of the
averaged divergence of the magnetic field along the numerical solution given by
the exponential integrator. This confirms the result of Proposition 4.2.
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Figure 2: Averaged energy on a short time (left) and on a longer time (middle), averaged
divergence (right).
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