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Abstract. A new class of energy-preserving numerical schemes for stochastic Hamiltonian systems with non-
canonical structure matrix (in the Stratonovich sense) is proposed. These numerical integrators are of mean-square
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1. Introduction We consider numerical discretisations of stochastic perturbations of
Poisson systems of the form

dyt =B(yt)∇H(yt)
(

dt+c◦dWt

)
. (1.1)

The above stochastic differential system is understood in the Stratonovich setting and the
symbol ◦ stands for the Stratonovich product. Here, c≥0 measures the size of the perturba-
tion and Wt is a one-dimensional Wiener process. Moreover, we assume that B(y)∈Rd×d is
a smooth skew-symmetric matrix-valued function and the Hamiltonian H(y) is a sufficiently
smooth scalar function of y∈Rd such that an exact solution of our problem exists for all time.
This system describes a Hamiltonian motion perturbed by a multiplicative white noise which
in some sense respects the geometric structure of the phase space: the randomness in the
Hamiltonian vector field consists in a random force in the direction of the deterministic force
and a random modification of the deterministic velocities that do not modify the structure of
the phase space.

Stochastic canonical Hamiltonian systems (see for example [17] and references therein)
of the form

dyt =J−1∇H(yt)
(

dt+c◦dWt

)
, (1.2)

with J :=
(

0 Id
−Id 0

)
, where Id denotes an identity matrix, can be put into the form (1.1) by

taking the constant matrix B(y)=J−1. A typical example where the matrix in (1.1) is non-
constant is given by a randomly perturbed rigid body problem [14, 13, 1], see also Section 4.2.
That is, the motion of a rigid body in R3 subject to a white noise perturbation.

An application of the chain rule for Stratonovich differential equations shows us imme-
diately that the Hamiltonian H(y) is a conserved quantity [18, 19, 20, 21, 26], that is

H(yt)=H(y0)≡Const,

for all positive time t along almost all realisations of the exact solution of (1.1). Here, y0
denotes the initial value of the problem (1.1).
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2 Energy-preserving integrators for stochastic Poisson systems

Recently, many efforts have been made to construct and analyse symplectic numerical
schemes for stochastic Hamiltonian problems [17, 28, 3, 27, 22, 4, 15]. In general, these
schemes do not preserve exactly the Hamiltonian function H(y). Our main interest in the
present paper is thus the design of numerical integrators that exactly preserve the Hamiltonian
H(y). Let us mention, that there is a lot of ongoing research activities in energy-preserving
numerical integrators for deterministic problems, and various methods have been proposed
in the literature, see [8, 25, 5, 9, 6]. However, in the stochastic setting, we are only aware
of the numerical schemes proposed in [21] and in [7] for stochastic canonical Hamiltonian
problems. Furthermore, [10] proposes a stochastic discrete gradient scheme which share
similarities with the numerical methods that we propose here (see below for more details).
Closely related to the thematic addressed in these papers, are the semianalytic numerical algo-
rithms proposed in [23]: these splitting-step methods guarantee that the numerical solutions
remain in a domain.

The present article is devoted to a stochastic extension of the (deterministic) methods
introduced in [9] and in [6]. As we will show, our new numerical schemes exactly preserve
the energy H(y), quadratic Casimir functions and are of mean-square order of convergence
one. Moreover, they reduce to the method proposed in [21] and to one of the method proposed
in [10] in the following canonical case

dyt =

(
0 −1
1 0

)
∇H(yt)

(
dt+c◦dWt

)
, (1.3)

where yt ∈R2, c is a real non-negative parameter, Wt is a one-dimensional standard Wiener
process and H(y) is a quadratic function of y. Let us also note that, again if H(y) is a quadratic
function, our numerical method reduces to the stochastic midpoint scheme from [17].

The new class of numerical schemes is presented in Section 2 and the main properties
of the methods are proved in Section 3. Finally, numerical experiments demonstrate the
efficiency of our approach in Section 4 and possible extensions of this work are highlighted
in the conclusion.

To close this introduction, let us mention several straightforward extensions of problems
of the form (1.1) or (1.2) that one could discretise with similar techniques. Everything that
is done in the present paper for one-dimensional white noise can easily be extended to the
following case

dyt =B(yt)∇H(yt)
(

dt+
m

∑
j=1

c j◦dW j
t

)
,

where for all j, c j ≥0. One can also handle problems of the form

dyt =B(yt)∇H(yt)dt+
m

∑
j=1

G j∇H(yt)◦dW j
t ,

with several skew-symmetric matrices G j of a special kind, see [7] for more details on the
canonical Hamiltonian case B(y)=J−1, and derive energy-preserving numerical schemes for
these problems too. Closely related to the previous class of problems are the randomised
Hamiltonian systems from [2, Chap. V.4], [20] and [12, Sect. 3.1]

dyt =J−1∇H0(yt)dt+
m

∑
j=1

J−1∇H j(yt)◦dW j
t ,

for which one can also derive numerical methods that preserve the first integral H0 of the
above problem. We recall, that H is a first integral if one has {H,H0}={H,H1}= ...=
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{H,Hm}=0 with the Poisson bracket {·,·} associated to the above problem. An extension
of the proposed numerical integrators for the exact preservation of other (or multiple) first
integrals is however not obvious.

2. Energy-preserving schemes
The proposed numerical scheme for the discretisation of (1.1) reads

yn+1=yn+B
(yn+yn+1

2

)∫ 1

0
∇H(yn+τ(yn+1−yn))dτ

(
h+c∆Wn

)
, (2.1)

where h denotes the time step and ∆Wn are Wiener increments.
One immediately sees that the above numerical scheme reduces to that of order two

proposed in [6] in the deterministic context (c=0). In fact, scheme (2.1) corresponds to that
of [6] with a random step. Moreover, one notes that, if the matrix B(y)=B is constant (e.g.,
if (1.1) is a canonical Hamiltonian problem, see [21, 17]) the method reduces to

yn+1=yn+B
∫ 1

0
∇H(yn+τ(yn+1−yn))dτ

(
h+c∆Wn

)
. (2.2)

This is a natural extension of the second order scheme from [9] (see also the averaged vector
field method from [25]) to the stochastic setting. We remark that another possibility would be
to use the (deterministic) scheme proposed by Gonzalez [8] which would result to the sym-
metric discrete gradient method from [7]. Additionally, as already noted in the introduction,
when applied to (1.3), the numerical integrator (2.2) reduces to the scheme proposed in [21],
see Section 4 for more details.
REMARK 2.1. Since the proposed numerical methods are implicit with respect to both the
drift and diffusion terms, some difficulties (essentialy due to the unboundedness of ∆Wn) may
happen when implementing the schemes. As proposed by [17], one way to address this issue
is to consider truncated random variables instead of the Wiener increments ∆Wn :=

√
hξ , with

ξ an N (0,1)-distributed random variable. Indeed, setting Ah :=
√

2k|ln(h)| (for an integer
k≥0), one defines the truncated random variable [17]

ζh=


ξ , if |ξ |≤Ah,

Ah, if ξ >Ah,

−Ah, if ξ <−Ah.

Moreover, one has the following approximation property, see Lemma 2.1 from [17],

0≤E[ξ 2−ζ 2
h ]=(1+2

√
2k|ln(h)|)hk.

This is what we do in the present paper using the notation ∆Ŵn :=
√

hζh for the truncated
random Wiener processes and taking k=2 in the definition of Ah. With this choice of truncated
random variables, one can show that the stochastic midpoint scheme has order one [17, Th.
2.6] (this fact will be used in Theorem 3.3 below).

3. Properties of the energy-preserving schemes
The methods of the previous section have been designed to preserve exactly the Hamil-

tonian H(y). It turns out that they enjoy further interesting properties. The proofs of the
geometric properties of the numerical integrators follow easily from the one given in [6].
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3.1. Exact energy preservation
PROPOSITION 3.1. If B(y) is skew-symmetric for all y, then the numerical method (2.1)
exactly preserves the energy, i.e., H(yn)=Const for all n.

Proof. From the fundamental theorem of calculus we have

H(yn+1)−H(yn)=
∫ 1

0
∇H(yn+τ(yn+1−yn))

T(yn+1−yn)dτ.

From the definition of the method (2.1) we thus get for the difference above

(∫ 1

0
∇H(yn+τ(yn+1−yn))dτ

)T
B
(yn+yn+1

2

)∫ 1

0
∇H(yn+τ(yn+1−yn))dτ

(
h+c∆Ŵn

)
,

which vanishes by the skew-symmetry of the matrix B(y).

3.2. Conservation of quadratic Casimir’s
A function C(y) is called a Casimir function of the stochastic differential equation

(1.1) if ∇C(y)TB(y)=0 for all y. Along solutions of (1.1) we have C(yt)=Const, because
dC(yt)=∇C(yt)

TB(yt)∇H(yt)
(
dt+c◦dWt

)
=0. This property is independent of the Hamil-

tonian H(y).
PROPOSITION 3.2. Let C(y)=yTAy (with a symmetric constant matrix A) be a Casimir
function of the problem (1.1). The energy-preserving method (2.1) exactly preserves this
Casimir.

Proof. Using again the fundamental theorem of calculus we have

C(yn+1)−C(yn)=
∫ 1

0
∇C(yn+τ(yn+1−yn))

T(yn+1−yn)dτ.

Since the integrand is a polynomial of degree 1 in τ , an application of the midpoint quadrature
rule gives the exact result. For the difference C(yn+1)−C(yn), using the definition of the
numerical scheme, we thus obtain

∇C(yn+
1
2
(yn+1−yn))

TB
(yn+yn+1

2

)∫ 1

0
∇H(yn+τ(yn+1−yn))dτ

(
h+c∆Ŵn

)
,

which vanishes due to the fact that C(y) is a Casimir.

3.3. Quadratic Hamiltonian functions
In this subsection, we show that the numerical integrator (2.1) is equivalent to the

stochastic midpoint rule [17] in the case of quadratic Hamiltonian functions. Indeed, let us
consider the following Hamiltonian function H(y)= 1

2 yTDy+eTy with a constant symmetric
matrix D and a constant vector e. In this case, the numerical method (2.1) reads

yn+1=yn+B
(yn+yn+1

2

)∫ 1

0

(
(yn+τ(yn+1−yn))

TD+eT)dτ
(

h+c∆Ŵn

)
=yn+B

(yn+yn+1

2

)(1
2
(yn+1+yn)

TD+eT)(h+c∆Ŵn

)
,

which is the stochastic midpoint rule applied to problem (1.1) with the above quadratic Hamil-
tonian function.
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3.4. Order of the methods
The goal of this subsection is to prove that the scheme (2.1) has mean-square order 1

(see Theorems 3.3 and 3.4 below). To do so, we first prove in Lemma 3.2 estimates on the
remainder of an asymptotic expansion of our scheme (2.1), in order to compare it with the
stochastic midpoint method from [17]. This order property of the energy-preserving scheme
(2.1) is not directly linked to the geometric structure of the scheme. Hence, we simply denote
by f (y)=B(y)∇H(y) the Poisson vector field. We also set g(y)=∇H(y). For the sake of
simplicity of the presentation, we firstly restrict ourselves to the case where the Hamiltonian
H(y) and the structure matrix B(y) are smooth functions of y with globally bounded deriva-
tives up to order 3 for B and 4 for the function H. Thanks to the energy preservation of the
scheme (see Proposition 3.1), this is indeed not a restriction for the applications we have in
mind (see Section 4), as we explain in Remarks 3.4 and 3.5.

Let us recall the following
LEMMA 3.1. For all p∈ [1,+∞), there exists a positive constant Cp>0 such that for all n∈N
and all h∈(0,1), we have(

E
(
|∆Wn|p

))1/p
≤Cph1/2 and

(
E
(
|∆Ŵn|p

))1/p
≤Cph1/2.

Proof. Since ∆Wn is a real normal random variable with density e−x2/2h/
√

2πh, we have
for some positive constant Cp>0,

E[|∆Wn|p]≤Cph
p
2 .

Since |∆Ŵn|≤|∆Wn| almost surely, we infer that E[|∆Ŵn|p]≤Cph
p
2 .

We are now able to prove the following
LEMMA 3.2. The numerical solutions provided by the numerical method (2.1) have the
following asymptotic expansion1:

yn+1−yn=a(yn)(h+c∆Ŵn)+b(yn)(h+c∆Ŵn)
2+c(yn)(h+c∆Ŵn)

3+Rn, (3.1)

with a(yn)=(B∇H)(yn), b(yn)=(B∇H)′(yn)(B∇H)(yn)/2, and c(yn) are independent of
yn+1, and Rn depends on yn+1 and satisfies the following estimates

E[∥Rn∥]=O(h2) and (E[∥Rn∥2])
1
2 =O(h2). (3.2)

REMARK 3.3. Note that, in view of the hypotheses on the functions B and H, the functions
a,b and c above are bounded almost surely along the numerical solution by a constant which
does not depend on h∈(0,1). In particular, for all p≥1, their moments of order p are finite
and bounded by a constant which does not depend on h.

Proof. We proceed by successive Taylor expansions of yn+1−yn in order to justify the
expansion (3.1), and in particular to show that Rn is of the form (h+c∆Ŵn)

4rn, where rn
depends on yn+1 and all the moments of rn are bounded by a constant which does not depend
on h. The estimates (3.2) then follow by applying the Cauchy-Schwartz inequality. In this
proof, R will denote a random variable which may vary from one line to the other and with
finite moments of order p for all p≥1 bounded by a constant which does not depend on

1Note that, in view of Lemma 3.1, one can see that the terms in the expansion (3.1) are not properly ordered
and some of them could be included in the remainder. However, we keep this writing for the expansion because it is
more compact and it helps understanding the computational process of the expansion.
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h∈(0,1). We will use repeatedly the fact that if R and S are two such random variables with
appropriate dimensions, then so are RS and (h+c∆Ŵn)R.

Let us start with the expansion of order 1. Since B and g are smooth functions, we have

B(yn+
yn+1−yn

2
)=B(yn)+

1
2

∫ 1

0
B′(yn+

s
2
(yn+1−yn))(yn+1−yn)ds,

and ∫ 1

0
g(yn+τ(yn+1−yn))dτ =g(yn)+

∫ 1

0

∫ τ

0
g′(yn+s(yn+1−yn))(yn+1−yn)dsdτ.

Using the definition of the scheme (2.1) and plugging the expression of yn+1−yn in the right
hand side of the relations above, we obtain

B(yn+
yn+1−yn

2
)=B(yn)+(h+c∆Ŵn)R,

and ∫ 1

0
g(yn+τ(yn+1−yn))dτ =g(yn)+(h+c∆Ŵn)R.

Taking the product of the two expansions above yields

yn+1−yn=(h+c∆Ŵn)B(yn)g(yn)+(h+c∆Ŵn)
2R. (3.3)

We can now repeat this procedure to obtain the expansion of order 2. We first write by Taylor
expansions and use of the definition of the scheme (2.1),

B(yn+
yn+1−yn

2
)=B(yn)+

1
2

B′(yn)(yn+1−yn)+(h+c∆Ŵn)
2R,

and ∫ 1

0
g(yn+τ(yn+1−yn))dτ =g(yn)+

1
2

g′(yn)(yn+1−yn)+(h+c∆Ŵn)
2R.

Inserting the expansion (3.3) of order 1 into the expressions above and taking the product, we
obtain the expansion of order 2:

yn+1−yn=(h+c∆Ŵn)B(yn)g(yn)

+
(h+c∆Ŵn)

2

2

(
B′(yn)(B(yn)g(yn))g(yn)+B(yn)g′(yn)(B(yn)g(yn))︸ ︷︷ ︸

=(Bg)′(yn)(Bg)(yn)

)
+(h+c∆Ŵn)

3R.

Another step of this procedure, expanding B(yn+(yn+1−yn)/2) and
∫ 1

0 g(yn+τ(yn+1−
yn))dτ around yn up to order 3 thanks to the smoothness of B and g=∇H, using the defi-
nition of the scheme in the terms of order 3 and the Taylor expansion of order 2 in the other
terms and then taking the product, yields the expansion (3.1) with an explicit expression of
c(yn) which does not depend on yn+1 or ∆Ŵn and with Rn=(h+c∆Ŵn)

4R. The estimates
(3.2) follow by the Cauchy-Schwartz inequality.

We can now compare the method (2.1) with the well-known stochastic midpoint method
to ensure that
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THEOREM 3.3. Assume that the Hamiltonian H(y) and the structure matrix B(y) are smooth
functions of y with globally bounded derivatives up to order 3 for B and 4 for the function H.
Then the energy-preserving scheme (2.1) has mean-square order of convergence 1.

Proof. Recall that f =B∇H. Using the same expansion method as the one we used in the
proof of Lemma 3.2, we find that the stochastic midpoint method defined by

ỹn+1− ỹn= f ((ỹn+ ỹn+1)/2)(h+c∆Ŵn), (3.4)

has an asymptotic expansion similar to the one proposed in [16]

ỹn+1− ỹn=(h+c∆Ŵn)a(ỹn)+(h+c∆Ŵn)
2b(ỹn)+(h+c∆Ŵn)

3c̃(ỹn)+R̃n, (3.5)

with the same functions a and b as that of the expansion (3.1) of the scheme (2.1), with
a function c̃ which does not depend on ỹn+1 and a function R̃n of the form (h+c∆Ŵn)

4R,
where R is a function depending on ỹn+1 through ∆Ŵn and with finite moments bounded by a
constant which does not depend on h∈(0,1). In view of the smoothness hypotheses on B and
H and hence on f and of the boundedness hypotheses on these functions and their derivatives,
the random variables a(ỹn), b(ỹn) and c̃(ỹn) are almost surely bounded by a constant which
does not depend on h. Using the Cauchy-Schwarz inequality as in the proof of Lemma 3.2,
yields

E[
∥∥R̃n

∥∥]=O(h2) and (E[
∥∥R̃n

∥∥2
])

1
2 =O(h2).

Considering the difference between the solution yn+1 provided by the energy-preserving
scheme (2.1) and the solution ỹn+1 provided by the midpoint scheme (3.4) starting from the
same point yn= ỹn, we obtain using (3.1) and (3.5)

yn+1− ỹn+1=
(
c(yn)− c̃(yn)

)
(h+c∆Ŵn)

3+(Rn−R̃n). (3.6)

Since Rn (see Lemma 3.2) and R̃n are of the form (h+c∆Ŵn)
4R, we have∥∥E[Rn−R̃n]

∥∥≤E[
∥∥Rn−R̃n

∥∥]=O(h2). (3.7)

Moreover using the independence of the truncated Wiener increment ∆Ŵn with yn, we have

E
[
(c(yn)− c̃(yn))(h+c∆Ŵn)

3]=E[c(yn)− c̃(yn)]E[(h+c∆Ŵn)
3]=O(h2),

since E[(h+c∆Ŵn)
3]=h3+3c2h2. We infer, that

E[yn+1− ỹn+1]=O(h2). (3.8)

Moreover, using the triangle inequality in the right hand side of (3.6), the Cauchy-Schwartz
inequality and the estimation (3.7), we obtain

(E[∥yn+1− ỹn+1∥2])
1
2 ≤(E[∥c(yn)− c̃(yn)∥4])

1
4︸ ︷︷ ︸

<+∞

(E[(h+c∆Ŵn)
12])

1
4︸ ︷︷ ︸

=O(h3/2)

+(E[
∥∥Rn−R̃n

∥∥2
])

1
2︸ ︷︷ ︸

=O(h2)

,

which implies

(E[∥yn+1− ỹn+1∥2])
1
2 =O(h

3
2 ). (3.9)
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The stochastic midpoint method is known to have mean-square order 1 in the present context
(see Theorem 2.6 in [17]). Since the local difference between this scheme and the energy-
preserving method (2.1) satisfies estimates (3.8) and (3.9), Lemma 2.1 of [16] with p1=2
and p2=3/2 ensures that the method (2.1) also has mean-square order 1.

We can now relax the hypotheses on the boundedness of the functions H(y) and B(y)
and their derivatives in the theorem above. First, the boundedness of H is not mandatory (see
Remark 3.4 below). Second, the boundedness of f =B∇H and B and their derivatives up to
order 3 need not be global: local boundedness is sufficient to get a mean-square order 1 thanks
to the energy preservation property (Proposition 3.1) of the scheme (2.1) (see Remark 3.5
below).
REMARK 3.4. The results above extend to several cases where f =B∇H is smooth, sub-
linear and all its derivatives are globally bounded. In fact, neither the results above nor the
results of [16] do require the boundedness of the function H (they only need the boundedness
of g=∇H and its derivatives).
REMARK 3.5. Since the method (2.1) exactly preserves the energy by Proposition 3.1, one
can find, for problems such as those presented in Section 4, for all initial datum y0, a convex
subset of the phase space containing almost surely the numerical trajectories starting from
y0 on which the vector field f and the function B as well as their derivatives up to order 3 are
bounded. Hence, the estimates in the proofs above extend to these cases straightforwardly.
For example,

• for the harmonic oscillator starting at y0=(x0,p0)∈R2 (see Section 4.1), such a
convex set is the ball centered at the origin of the phase space with radius (y2

0+
p2

0)/2. Since f is smooth on this compact set, it is bounded on it and so are its
derivatives up to order 3.

• for the mathematical pendulum (see Section 4.3), such a convex set for an initial

datum y0=(q0,p0) is for example {q∈R}×{p∈R | |p|≤
√

p2
0+4}. Even if

this set is not compact, the continuity and the q-periodicity of f and its derivatives
ensure that f as well as its derivatives up to order 3 are bounded on such a convex
set.

• for the stochastic rigid body (see Section 4.2), for an initial datum (y0
[1],y

0
[2],y

0
[3])∈

R3, a compact convex set on which the functions f , B and their derivatives
are bounded is the convex hull of the ellipsoid of equation H(y[1],y[2],y[3])=
H(y0

[1],y
0
[2],y

0
[3]).

• for the Lotka-Volterra system (see Section 4.4), any numerical solution can be in-
cluded in a rectangle which is the product of two compact intervals. Hence the
functions B and f as well as their derivatives up to order 3 are bounded on such a
compact (and convex) set.

We can summarise the results above in the
THEOREM 3.4. Assume that the function H and the matrix B are of class C 4, resp. C 3, on
Rd and that any energy-level H(y)=Const is included in a convex set on which the functions
B and ∇H as well as all their derivatives up to order 3 are bounded. Then the scheme (2.1)
applied to the stochastic problem (1.1) has mean-square order 1.

4. Numerical experiments
In this section, we perform some numerical experiments in order to illustrate the conver-

gence order and various geometric properties of the proposed numerical integrators. We will
compare the energy-preserving scheme (2.1) with the following numerical integrators:

• the classical Euler-Maruyama scheme of mean-square order 1/2 (applied to the con-
verted Ito stochastic differential equation), see for example [11];
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• the classical Milstein scheme of mean-square order 1 (applied to the converted Ito
stochastic differential equation), see for example [11];

• the Euler-Heun scheme of mean-square order 1 introduced in [24]. When applied to
Stratonovich differential equations

dyt =a(yt)dt+σ(yt)◦dWt ,

this numerical integrator reads

yaux
n =yn+ha(yn)+σ(yn)∆Ŵn

yn+1=yn+ha(yn)+
1
2
(
σ(yaux

n )+σ(yn)
)
∆Ŵn;

• the midpoint scheme of mean-square order 1 from [17]. When applied to
Stratonovich differential equations

dyt =a(yt)dt+σ(yt)◦dWt ,

this numerical method reads

yn+1=yn+ha(
yn+yn+1

2
)+σ(

yn+yn+1

2
)∆Ŵn;

• the stochastic discrete gradient of mean-square order 1 from [10]. When applied to
Stratonovich differential equations, with a conserved quantity I(y), of the form

dyt =S(yt)∇I(yt)dt+T (yt)∇I(yt)◦dWt ,

with two skew symmetric matrices S(y) and T (y), this numerical method reads

yn+1=yn+hS(yn)∇I(yn,yn+1)+T (
yn+yn+1

2
)∇I(yn,yn+1)∆Ŵn.

In our case (1.1), we will take I(y)=H(y) and the natural choices S(y)=T (y)=B(y)
(or S(y)=T (y)=J−1 for stochastic canonical Hamiltonian systems). Furthermore,

∇I(y,ȳ)=
1
2
(
∇1I(y,ȳ)+∇1I(ȳ,y)

)
,

is a symmetric discrete gradient (see [10] for more details) with

∇1I(y,ȳ) :=



I(ȳ[1],y[2],...,y[d])−I(y[1],y[2],...,y[d])
ȳ[1]−y[1]

I(ȳ[1],ȳ[2],...,y[d])−I(ȳ[1],y[2],...,y[d])
ȳ[2]−y[2]

...

I(ȳ[1],ȳ[2],...,ȳ[d])−I(ȳ[1],ȳ[2],...,ȳ[d−1],y[d])
ȳ[d]−y[d]


,

where y=(y[1],...,y[d])T and ȳ=(ȳ[1],...,ȳ[d])T.
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FIGURE 4.1. Stochastic harmonic oscillator with parameters x0 =0.1,p0 =0.2,c=1. N=105 steps of length
h=10−2 for Euler-Maruyama (+), energy-preserving scheme (solid line), Milstein (∗), and Euler-Heun (□).

4.1. The stochastic harmonic oscillator with one dimensional Wiener process
Let us first consider the stochastic harmonic oscillator [21]

d
(

xt
pt

)
=

(
pt
−xt

)
(dt+c◦dWt),

where c is a real non-negative parameter, xt ,pt are scalar stochastic processes and Wt is a one-
dimensional Wiener process. The Hamiltonian thus reads H(p,x)= p2/2+x2/2 and remains
constant along the exact solution of the above problem. Noting y=(p,x)T, one thus gets
equation (1.3). For this case, the scheme (2.2) reduces to(

xn+1
pn+1

)
=

1

1+ 1
4 (h+c∆Ŵn)2

(
(1− 1

4 (h+c∆Ŵn)
2)xn+(h+c∆Ŵn)pn

−(h+c∆Ŵn)xn+(1− 1
4 (h+c∆Ŵn)

2)pn

)
,

which is precisely the method proposed in [21], the stochastic midpoint scheme from [17],
or the stochastic discrete gradient method from [10]. One can remark that, for this problem,
one does not really need to use truncated random variables ∆Ŵn since the numerical method
is well defined.

Figure 4.1 displays the numerical solutions in the phase space, the computed energies
and the numerical position x along one sample. For a better visibility in our figures, not all
points of the numerical solutions are displayed. On the one hand, it can be observed that
the numerical solutions given by the energy-preserving scheme remain on the initial energy
circle so that this scheme has a long time stability. This stability can also be observed in
the figure to the right, where the numerical positions of the energy-preserving method and
Euler-Heun’s method are displayed (the other numerical schemes offer similar behaviour as
that of the Euler-Heun’s method, the results are however not shown). On the other hand, one
can observe that Euler-Maruyama’s method, Euler-Heun’s method and Milstein’s method are
not appropriate for numerical simulations of the stochastic oscillator over long time intervals.

Figure 4.2 displays the mean-square errors at the final step(
E
[
∥ytN −yN∥2])1/2

,

of the numerical integrators with the same parameters x0,p0 and c as in the previous nu-
merical experiment. Here, we take as the exact solution ytN the numerical one using the
Milstein scheme and a very small step size hexact=2−14. The expected values are approxi-
mated by computing averages over M=5000 samples. Convergence of order one, as stated
by Theorem 3.4, is observed for the energy-preserving scheme. Remark, that in this case, the
Hamiltonian of the problem is quadratic so that, by the result of Subsection 3.3, the energy-
preserving scheme, the midpoint method and the stochastic discrete gradient are the same
numerical integrator.
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FIGURE 4.2. Stochastic harmonic oscillator. Plot of the order of convergence: mean-square errors at time
tend =5. M=5000 samples used. The dashed lines have slopes 1/2 and 1.

4.2. A stochastic rigid body problem with one dimensional Wiener process
The equations of motion of a stochastic rigid body [14] are a Lie-Poisson system with

Casimir C(y)=∥y∥2
2:dy[1]
dy[2]
dy[3]

=

 0 −y[3] y[2]
y[3] 0 −y[1]
−y[2] y[1] 0

y[1]/I1
y[2]/I2
y[3]/I3

(
dt+c◦dW

)
,

where y=(y[1],y[2],y[3])T and I=(I1,I2,I3) are the moments of inertia. The Hamiltonian

H(y)=
1
2
(
y2
[1]/I1+y2

[2]/I2+y2
[3]/I3

)
,

is thus a conserved quantity and method (2.1) exactly preserves it together with the quadratic
Casimir

C(y)=
1
2
(
y2
[1]+y2

[2]+y2
[3]
)
.

Figure 4.3 (left) displays the computed Casimirs along one sample of the Euler-Maruyama,
the Euler-Heun, the Milstein, the stochastic discrete gradient and the energy-preserving
schemes. We used N=300 steps of the integrators with stepsize h=10−2. It can be ob-
served that the Casimir does not remain constant along the numerical solutions of the Euler-
Maruyama, the Euler-Heun, the Milstein and the stochastic discrete gradient methods. Sim-
ilar behaviours are observed for the Hamiltonian (except for the stochastic discrete gradient
method, which of course preserves this invariant). For the parameters in the problem, we used
c=1, initial values y0=(0.8,0.6,0) and moments of inertia I=(0.345,0.653,1). The mean-
square orders of convergence at time tend=1 of the methods are also presented. Remark that,
in this case too, the Hamiltonian of the problem is quadratic, so that the energy-preserving
scheme is the midpoint method.

4.3. The mathematical pendulum with two dimensional Wiener processes
Let us now consider a problem with a non-quadratic Hamiltonian, for example a stochas-

tic perturbation of a mathematical pendulum

d
(

pt
qt

)
=

(
−sin(qt)

pt

)
(dt+c1◦dW 1

t +c2◦dW 2
t ),
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FIGURE 4.3. Computed Casimirs along the numerical solutions of a stochastic rigid body (left). The right
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FIGURE 4.4. Stochastic mathematical pendulum with p0 =0.2,q0 =1,c1 =1,c2 =0.5. Energy along all the
numerical solutions (left). Zoom for the computed energy of the midpoint and energy-preserving schemes (middle).
Numerical positions of the energy-preserving scheme and Euler-Heun’s method.

with two independent Wiener processes W 1
t and W 2

t and two real non-negative parameters
c1,c2.

Figure 4.4 (left plot) displays the energy H(p,q)= 1
2 p2−cos(q) along one sample of the

numerical solutions given by all the methods. The long time interval is [0,500] and the numer-
ical schemes use a step size h=2−6. The energy does not remain constant along numerical
solutions given by the Euler-Maruyama, the Euler-Heun and the Milstein methods. However,
the numerical solution given by the midpoint scheme remains almost constant over this long
time interval as observed in this figure (middle plot). This behaviour is very interesting and
could result from the symplecticity of this method. The energy along the stochastic discrete
gradient method and the energy-preserving scheme is of course preserved. A good long time
stability of the proposed scheme can be observed in this figure too (right plot), where the nu-
merical positions of the energy-preserving method and Euler-Heun’s method are displayed.
A good long time stability of the stochastic discrete gradient and the midpoint methods is also
observed, the results are however not shown for a better visibility.

We also show the convergence order of all the numerical integrators in Figure 4.5.
Here, the reference solution is computed using the stochastic midpoint scheme with step
size hexact=2−12 and M=1000 samples are used for the expectations. A mean-square order
of convergence one is observed for the energy-preserving scheme.

4.4. Lotka-Volterra system
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FIGURE 4.5. Stochastic mathematical pendulum. Mean-square errors at time tend =2: M=1000 samples used
and reference solution computed with the midpoint scheme and a step size hexact =2−12. The dashed lines have
slopes 1/2 and 1.

We finally consider a stochastic extension of the Lotka-Volterra system [6], for which

B(y)=

 0 dy[1]y[2] bdy[1]y[3]
−dy[1]y[2] 0 −y[2]y[3]
−bdy[1]y[3] y[2]y[3] 0

,

and

H(y)=aby[1]+y[2]−ay[3]+ν lny[2]−µ lny[3].

For our numerical experiments, we choose the following parameters a=−2, b=−1, d=
−0.5, ν =1, µ =2, and initial values y0=(1.0,1.9,0.5). The constant in front of the noise
term is taken to be c=0.5. Figure 4.6 displays the Hamiltonian along one sample of the nu-
merical solutions given by all the numerical integrators. We used the schemes with a step size
h=2−8 on the interval [0,5]. As expected, the total energy of our problem remains constant
along the numerical solutions given by the energy-preserving scheme (2.1) and the stochastic
discrete gradient from [10] up to roundoff errors. This fact is not observed along numerical
solutions given by the other schemes. In the convergence plot, a rate of convergence in the
mean-square sense of one is observed for the energy-preserving method. For these numeri-
cal experiments, the reference solution was computed using the midpoint rule and a stepsize
hexact=2−12.

5. Conclusion and prospects
In this paper, we have extended deterministic energy-preserving schemes from [6] to the

case of randomised Poisson systems. We have proved that these numerical integrators are of
mean-square order one, preserve the energy and quadratic Casimirs for problem (1.1). A few
questions remain open at the moment:

• What is the weak order of convergence of the proposed numerical schemes? We
suspect that the weak order of the proposed scheme is the same as the weak order
of the midpoint method from [17]. This question will be addressed in a forthcoming
work.

• Is it possible, as in the deterministic case, to raise the order of the energy-preserving
schemes? This seems a difficult task for the mean-square order. However, the tech-
niques developed in [1] may be used to construct high weak order based on the
energy-preserving scheme 2.1.
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FIGURE 4.6. Hamiltonian along the numerical solutions of a Lotka-Volterra system (left plot). Loglog plot of
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• In the end of Section 1 we addressed the question of developing numerical schemes
that preserve more than one first integrals of the problem. This certainly deserves
further theoretical investigations.
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[2] J.-M. Bismut. Mécanique Aléatoire, volume 866 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1981. With an English summary.

[3] N. Bou-Rabee and H. Owhadi. Stochastic variational integrators. IMA J. Numer. Anal., 29(2):421–443, 2009.
[4] K. Burrage and P. M. Burrage. Low rank Runge–Kutta methods, symplecticity and stochastic Hamiltonian

problems with additive noise. J. Comput. Appl. Math., 236(16):3920–3930, 2012.
[5] E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren, G. R. W. Quispel, and W. M. Wright. Energy-

preserving Runge-Kutta methods. M2AN Math. Model. Numer. Anal., 43(4):645–649, 2009.
[6] D. Cohen and E. Hairer. Linear energy-preserving integrators for Poisson systems. BIT, 51(1):91–101, 2011.
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