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ut − uxxt +

1

2
g(u)x − γ(2uxuxx + uuxxx) = 0, u|t=0 = u0, (1)with periodi boundary onditions and where u = u(x, t) and g is a given smooth fun-tion. The generalised hyperelasti-rod wave was �rst introdued in [8℄; it de�nes a wholelass of equations, depending on the funtion g and the value of γ, whih ontains severalwell-known nonlinear dispersive equations. Taking γ = 1 and g(u) = 2κu + 3u2 (with

κ ≥ 0), equation (1) redues to the Camassa�Holm equation:
ut − uxxt + κux + 3uux − 2uxuxx − uuxxx = 0. (2)1



Sine its apparition in [4℄ in the ontext of water wave propagation where u representsthe height's free surfae above a �at bottom while κ is a parameter, the Camassa�Holmequation has been extensively studied, mainly beause of its rih mathematial struture.The Camassa�Holm equation possesses a Lax pair whih allows for a sattering andinverse sattering analysis, showing that the equation is integrable ([4, 12, 16, 26℄). It isa geodesi on the group of di�eomorphisms for a given metri ([27, 15℄). In addition, theCamassa�Holm equation is bi-Hamiltonian (see Setion 2 for de�nitions and referenes).The bi-Hamiltonian struture of the equation will be used in this artile to derive energypreserving numerial shemes (see Setion 3). For g(u) = 3u2, equation (1) beomes thehyperelasti-rod wave:
ut − uxxt + 3uux − γ(2uxuxx + uuxxx) = 0, (3)whih was introdued by Dai [18℄ in 1998. The equation models the propagation ofnonlinear waves in ylindrial axially symmetri hyperelasti-rod. The parameter γ ∈ Ris a onstant depending on the material and prestress of the rod. The well-posedness ofthe Cauhy problem for (3) is established in [17, 38℄. For g(u) = 2u + u2 and for γ = 0,equation (1) leads to the Benjamin-Bona-Mahony (BBM) equation (or regularised longwave) [1℄:

ut − uxxt + ux + uux = 0, (4)whih desribes surfae wave in a hannel. While the solutions of the BBM equation areunique and globally de�ned in time, the solutions of the Camassa�Holm and hyperelasti-rod wave equations may break down in �nite time. Due to the partiular irumstanesin whih this ours, this situation is also refered as wave breaking (see [13, 14℄ for moredetails). After wave breaking, the solutions are no longer unique and, in this artile, onlysolutions before wave breaking will be onsidered.We now brie�y review � without intending to be exhaustive � the numerial shemesrelated to the generalised hyperelasti-rod wave equation that an be found in the lit-erature. For the Camassa�Holm equation, shemes using pseudospetral disretisationhave been used in [5, 25℄. Methods based on multipeakons, a speial lass of solutionsof the Camassa�Holm equation, an be found in [7, 6, 24, 23℄. Finite di�erene shemeswith onvergene proof are studied in [9, 22℄. In [37℄, the authors use a �nite elementmethod to derive a sheme whih is high order aurate and nonlinearly stable. TheCamassa-Holm equation admits a multi-sympleti formulation whih an be used to de-rive multi-sympleti numerial shemes, see [10℄. For the BBM equation, onservative�nite di�erene shemes were proposed in [36℄ with a onvergene and stability analysis.We also refer to [30, 28℄. As far as the hyperelasti-rod wave equation, the authors areonly aware of the numerial sheme given in [32℄ whih is based on a Galerkin approxi-mation and preserves a disretisation of the energy.In this artile we derive �nite di�erene shemes for the generalised hyperelasti-rodequation whih preserve some of the geometri properties of the equation. The �rstproperty is a global one, namely the preservation of the energy, while the seond is loaland orresponds to the preservation of multi-sympletiity. In Setion 2, we look at theHamiltonian (or �Hamiltonian-like�) formulations of (1) and explain how methods for2



ordinary di�erential equations based on disrete gradients that have been developed in[33℄ an be applied to equation (1). In Setion 3, the disrete gradients are omputedand the orresponding energy preserving shemes are derived. In Setion 4, we reviewsome of the general theory of multi-sympleti PDEs following the approah of Bridgesand Reih [3℄ and based on the work in [10℄, we derive a multi-sympleti sheme for thegeneralised hyperelasti-rod wave equation (1). Finally, we illustrate the behaviour ofthese new shemes by numerial experiments in Setion 5.2 The disrete gradient approahIn this setion we review the Hamiltonian formulation for partial di�erential equations,give some �Hamiltonian like formulations� for our various equations and �nally presentthe disrete gradient methods for ODEs of [33℄.We �rst onsider the Camassa�Holm equation (2) in his limiting ase κ = 0:
ut − uxxt + 3uux − 2uxuxx − uuxxx = 0.De�ning m = u−uxx, this equation an be rewritten as a Hamiltonian partial di�erentialequation, that is,

mt = D(m)
δH
δm

, (5)where the funtional H(m) is the Hamiltonian and δH
δm

denotes the variational derivativeof H with respet to m de�ned as
〈

δH
δm

, m̃
〉

L2
=

d

dε

∣∣∣
ε=0

H(m + εm̃) for all m̃(here 〈v,w〉L2 =
∫

v(x)w(x)dx denotes the L2-salar produt). Equation (5) de�nes aHamiltonian equation if in addition the operator D(m) is antisymmetri with respet tothe L2-salar produt, that is,
〈v,D(m)w〉L2 = −〈D(m)v,w〉L2 ,and its Lie-Poisson braket
{F,H}(m) =

〈
δF

δm
,D(m)

δH

δm

〉
L2satis�es the Jaobi identity

{{F,G},H} + {{G,H}, F} + {{H,F}, G} = 0. (6)The Camassa-Holm equation has a bi-Hamiltonian struture (see [35℄ for the de�nitionand [4, 11℄ for the proofs): It is Hamiltonian for the two following pairs of antisymmetrioperator and Hamiltonian funtion,
D1(m)(·) = −(u − uxx)(·)x − ((u − uxx)(·))x,

H1(m) =
1

2

∫
(u2 + u2

x)dx (7)3



and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(u3 + uu2

x)dx. (8)For the other partial di�erential equations onsidered in the introdution, it is not learif they also possess a Hamiltonian struture (the issue here being the Jaobi identity (6)),nevertheless we have the following �Hamiltonian-like� formulations. For the hyperelasti-rod wave (3), there exist, at least, two funtionals H1(m), whih orresponds to theenergy of the problem, and H2(m) and two antisymmetri operators D1(m) and D2(m)suh that this equation an be written as a Hamiltonian problem as in (5). They aregiven by
D1(m)(·) = −(u − γuxx)(·)x − ((u − γuxx)(·))x,

H1(m) =
1

2

∫
(u2 + u2

x)dx (9)and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(u3 + γuu2

x)dx. (10)For the Camassa�Holm equation given by (2), we obtain
D1(m)(·) = −(u − uxx +

κ

2
)(·)x − ((u − uxx +

κ

2
)(·))x,

H1[m] =
1

2

∫
(u2 + u2

x)dx (11)and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2[m] =
1

2

∫
(u3 + κu2 + uu2

x)dx. (12)For the generalised hyperelasti-rod wave (1), the formulation equivalent to (9) is notavailable and we only have a Hamiltonian like formulation given by
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(G(u) + γuu2

x)dx, (13)where G is an integral of g, i.e., G′ = g. Finally, for the BBM equation (4), we have
D1(m)(·) = −(

u

3
+

1

2
)(·)x − ((

u

3
+

1

2
)(·))x,

H1(m) =
1

2

∫
(u2 + u2

x)dx, (14)4



and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(u2 +

u3

3
)dx. (15)A remarkable feature of a Hamiltonian partial di�erential equation is the fat that theHamiltonian funtional H is onserved along the exat solution of the problem. Indeed,we have dHdt

=
〈

δH
δm

,
dmdt

〉
=

〈
δH
δm

,D(m)
δH
δm

〉
= 0, (16)using the fat that the operator D(m) is antisymmetri. The Hamiltonians H1 and H2are thus onserved along the exat solution of the partial di�erential equations onsideredhere. Our goal in the next setion will be to exploit this feature of the exat solution todesign numerial shemes that exatly preserve a disretised version of these Hamiltoni-ans. To do so, we �rst have to �nd appropriate disretisations of the partial di�erentialequations (see Setion 3 for the details) and then integrate the obtained di�erentialequations in time by the disrete gradient approah.We now review the disrete gradient approah used in the numerial integration ofODEs proposed in [33℄ (see also referenes therein). For a given smooth funtion H :

R
n → R and a skew-symmetri matrix D(y) depending on y, we onsider the di�erentialequation in R

n given by
ẏ = f(y) = D(y)∇H(y). (17)We say that ∇H is a disrete gradient of H if

H(y′) − H(y) = ∇H(y, y′) · (y′ − y) for all y, y′ ∈ R
n (18)and the onsisteny relation ∇H(y, y) = ∇H(y) is satis�ed. Given a disrete gradient

∇H, one an onstrut shemes of the form
yn+1 − yn

∆t
= D̃(yn, yn+1,∆t)∇H(yn, yn+1), (19)where we impose that the operator v 7→ D̃(y, y′,∆t)(v) is antisymmetri for all y, y′,∆tand, for onsisteny reason, D̃(y, y, 0) = D(y). There exist several disrete gradients ofthe same funtion H and one of them is given by the mean value disrete gradient, see[21, 33℄, whih is given by

∇H(yn, yn+1) =

∫ 1

0
∇H((1 − ζ)yn + ζyn+1)dζ. (20)In the next setion, we will introdue another disrete gradient whih an be applied tothe type of Hamiltonians we will be onsidering.Shemes whih takes the form (19) exatly preserve the value of H(yn), as we have

H(yn+1) − H(yn) = ∇H(yn, yn+1) · (yn+1 − yn)

= ∆t∇H(yn, yn+1) · D̃(yn, yn+1, h)∇H(yn, yn+1) = 0. (21)5



3 Energy preserving shemesWe onsider periodi solutions on the interval [0, T ]. We introdue the partition of [0, T ]in points separated by a distane ∆x = 1/n denoted xi = i∆x for i = 0, . . . , n − 1. Weonsider the time step disretisation step ∆t and tj = j∆t. At x = xi and t = tj, thevalue of u is approximated by uj
i . We de�ne the right and left disrete derivatives withrespet to spae at (xi, tj) as
(δ±x u)ji =

±1

∆x
(uj

i±1 − uj
i ).and the symmetri derivative as

δx =
1

2
(δ+

x + δ−x ).In order to derive energy-preserving shemes, we have to de�ne all the ontinuous oper-ations at the disrete level. The L2-salar produt in the ontinuous ase beomes thefollowing disrete one
〈u, v〉 = ∆x

n−1∑

i=0

uivi (22)for whih the following disrete summation by part rules hold:
〈
δ±x u, v

〉
= −

〈
u, δ∓x v

〉 and 〈δxu, v〉 = −〈u, δxv〉 . (23)We have to disretise the Hamiltonians H1 and H2. We will only onsider in details thehyperelasti-rod wave equation, the results for the other equations being listed below.We approximate H1 and H2 by
H1(m) =

∆x

2

n−1∑

i=0

(
u2

i + (δxui)
2
) (24)and

H2(m) =
∆x

2

n−1∑

i=0

(
u3

i + γui(δxui)
2
)
, (25)respetively. Here m = (1 − δ2

x)u. Several methods to ompute disrete gradients aregiven in [33℄. In this setion, we present another method whih an be used in the asewhere the Hamiltonians onsist only of sums and produts of the unknown variables(i.e. {ui}
n−1
i=0 ), as in (24) and (25). For a salar funtion f , we denote the di�erene

f(m′)−f(m) by δ[f ] and the average f(m′)+f(m)
2 by µ[f ]. A straightforward omputationshows that, for any m and m′, we have

f(m′)g(m′)−f(m)g(m) =
1

2
(f(m′)−f(m))(g(m′)+g(m))+

1

2
(g(m′)−g(m))(f(m′)+f(m))whih rewrites with our new notation as

δ[(f · g)] = δ[f ] · µ[g] + δ[g] · µ[f ]. (26)6



Note the similarity between (26) and the Leibniz rule (fg)′ = f ′g + g′f and it beomeslear that the operator µ is introdued to aount for the failure of a simple di�ereneto ful�ll the Leibnitz rule. By reursively applying the produt rule (26), we obtain
δ[H1] =

∆x

2

n−1∑

i=0

δ[(ui)
2 + (δxui)

2]

=
∆x

2

n−1∑

i=0

(2δ[ui]µ[ui] + 2δ[δxui]µ[δxui]).We use the fat that δ and µ ommute with δx (whih follows from the linearity of δ),the summation by part rule, and we obtain
δ[H1] = ∆x

n−1∑

i=0

(δ[ui]µ[ui] − µ[ui]δ[δ
2
xui])

= ∆x
n−1∑

i=0

µ[ui](δ[ui] − δ[δ2
xui])

= 〈µ[u], δ[m]〉 ,by the de�nition of the disrete salar produt (22). Hene, using the fat that m =
(1 − δ2

x)u, we get
H1(m

′) − H1(m) =

〈
u′ + u

2
,m′ − m

〉 (27)and therefore
∇H1(m,m′) =

u + u′

2
= (1 − δ2

x)−1
(

m + m′

2

)
. (28)For the seond Hamiltonian of the hyperelasti-rod wave given by (25) , we obtain

δ[H2] =
∆x

2

n−1∑

i=0

δ[u3
i + γui(δxui)

2]

=
∆x

2

n−1∑

i=0

(µ[u2
i ]δ[ui] + µ[ui]δ[u

2
i ] + γδ[ui]µ[(δxui)

2] + 2γµ[ui]µ[δxui]δ[δxui])

=
∆x

2

n−1∑

i=0

((
µ[u2

i ] + 2µ[ui]
2 + γµ[(δxui)

2]
)
δ[ui] + 2γµ[ui]µ[δxui]δ[δxui]

)

=
∆x

2

n−1∑

i=0

(
µ[u2

i ] + 2µ[ui]
2 + γµ[(δxui)

2] − 2γδx(µ[ui]δxµ[ui])
)
δ[ui]

=
〈

1

2
µ[u2] + µ[u]2 +

γ

2
µ[(δxu)2] − γδx(µ[u]δxµ[u]), δ[u]

〉
.Hene,

∇H2(m,m′) = (1 − δ2
x)−1

(1

2
µ[u2] + µ[u]2 +

γ

2
µ[(δxu)2] − γδx(µ[u]δxµ[u])

)
, (29)7



or
∇H2(m,m′) =

1

4
(1 − δ2

x)−1
(
2u2 + 2u′2 + 2uu′ + γ((δxu)2 + (δxu′)2)

− γδx

(
(u + u′)(δxu + δxu′)

))
. (30)Note that, if we take µ equals to the identity in (27) and (29) (so that the produt ruleholds exatly) and replae the disrete spatial derivative δx by its ontinuous ounterpart

∂x, then we obtain δH1

δm and δH2

δm , respetively and in this way we hek the onsistenyof the approximation.Let us now ompute the mean value disrete gradient, whih we now denote∇m
Hj(m,m′)(for j = 1, 2), as given by (20), that is,

∇
m

Hj(m,m′) =

∫ 1

0
∇Hj((1 − ζ)m + ζm′)dζ. (31)Here the gradient ∇H is de�ned with respet to the disrete salar produt (22) and wehave, for all m̃,

〈∇H1(m), m̃〉 =
ddε

∣∣∣
ε=0

H1(m + εm̃)

= ∆x
n−1∑

i=0

(uiũi + δxuiδxũi) = ∆x
n−1∑

i=0

(ui(ũi − δ2
xũi) = 〈u, m̃〉 ,after one summation by part, so that

∇H1(m) = u. (32)In the same way, we obtain
〈∇H2(m), m̃〉 =

ddε

∣∣∣
ε=0

H2(m + εm̃)

=
∆x

2

n−1∑

i=0

(3u2
i ũi + γũi(δxui)

2 + 2γuiδxuiδxũi)so that
∇H2(m) = (1 − δ2

x)−1
(

3

2
u2 +

γ

2
(δxu)2 − γδx(uδxu)

) (33)(the multipliations are meant omponentwise). From (31) and (32), we get
∇

m
H1(m,m′) =

∫ 1

0
((1 − ζ)u + ζu′)dζ =

u + u′

2

8



and the mean value disrete gradient oinides with the disrete gradient omputed earlierin (28). For the seond Hamiltonian, from (31) and (33), we obtain
∇

m
H2(m,m′) = (1 − δ2

x)−1
( ∫ 1

0

(
3

2

(
(1 − ζ)u + ζu′)2

+
γ

2

(
δx((1 − ζ)u + ζu′)

)2

− γδx

(
((1 − ζ)u + ζu′)(δx(1 − ζ)u + ζu′)

))dζ
)

= (1 − δ2
x)−1

(
1

2

(
u2 + uu′ + u′2) +

γ

6

(
(δxu)2 + δxuδxu′ + (δxu′)2

)

−
γ

3
δx

(
uδxu +

1

2
uδxu′ + 1

2
u′δxu + u′δxu′)) (34)whih di�ers from the disrete gradient omputed earlier in (30). It remains to disretisethe operators D1 and D2. We use the following approximations:

D1(m)(v) = −((u − γδ2
xu)δxv) − δx((u − γδ2

xu)v) (35)and
D2(m)(v) = −δx(1 − δ2

x)(v). (36)Using the summation by part rule (26), it an be heked that the disrete operators D1and D2 are antisymmetri for the disrete salar produt (22). The disrete gradients(28), (30) and (34) are symmetri in m and m′, that is, ∇H(m,m′) = ∇H(m′,m) forany m and m′. For the extensions of the operators D1 and D2, we take
D̃1(m,m′,∆t)(v) = −((

1

2
(u+u′)− γ

2
δ2
x(u+u′))δxv)−δx((

1

2
(u+u′)− γ

2
δ2
x(u+u′))v) (37)and

D̃2(m,m′,∆t) = D2(m), (38)respetively. With these speial hoies, both operators are symmetri in time, that is,
D̃j(m,m′,∆t) = D̃j(m

′,m,−∆t) (39)for j = 1, 2 and for all m, m′, ∆t. Finally, we obtain three shemes whih all preserveone of the Hamiltonians, see (21). The �rst sheme is given by
mj+1 − mj

∆t
= D̃1(m

j+1,mj ,∆t)∇H1(m
j+1,mj)or, more expliitely,

uj+1 = uj −
∆t

4
(1 − δ2

x)−1

((
uj+1 + uj − γδ2

x(uj+1 + uj)
)
δx(uj+1 + uj)

+ δx

((
uj+1 + uj − γδ2

x(uj+1 + uj)
)
(uj+1 + uj)

))
. (40)It preserves the disrete energy H1. The seond sheme is given by

mj+1 − mj

∆t
= D2(m

j)∇H2(m
j+1,mj)9



or, more expliitely,
uj+1 = uj −

∆t

4
δx(1 − δ2

x)−1
(
2
(
(uj+1)2 + uj+1uj + (uj)2

)

+ γ((δxuj+1)2 + (δxuj)2)

− γδx

(
uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + ujδxuj

))
. (41)The third sheme is given by

mj+1 − mj

∆t
= D2(m

j)∇
m

H2(m
j+1,mj)or more expliitely

uj+1 = uj −
∆t

4
δx(1 − δ2

x)−1
(
2
(
(uj+1)2 + uj+1uj + (uj)2

)

+
2γ

3

(
(δxuj+1)2 + δxuj+1δxuj + (δxuj)2

)

−
2γ

3
δx

(
2uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + 2ujδxuj

))
. (42)The shemes (41) and (42) preserve the disrete Hamiltonian H2. The three shemes areseond-order in time sine they are symmetri in time by equation (39), see [33℄. For theCamassa�Holm equation and the BBM equation, the shemes orresponding to (40) are

uj+1 = uj −
∆t

4
(1 − δ2

x)−1

((
(1 − δx)2(uj+1 + uj) + κ

)
δx(uj+1 + uj)

+ δx

((
(1 − δ2

x)(uj+1 + uj)
)
(uj+1 + uj)

))and
uj+1 = uj −

∆t

6
(1 − δ2

x)−1
((

(uj+1 + uj)δx(uj+1 + uj)
)

+ δx

(
(uj+1)2 + (uj)2 + 2uj+1uj + 3uj+1 + 3uj

))
,respetively. For any salar funtion, and in partiular G, the disrete gradient is uniqueas we have ∇G(u, u′) =

G(u′) − G(u)

u′ − u
. For the generalised hyperelasti-rod wave equation,the shemes (41) and (42) rewrites

uj+1 = uj −
∆t

4
δx(1 − δ2

x)−1
(
2∇G(uj+1, uj)

+ γ((δxuj+1)2 + (δxuj)2)

− γδx

(
uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + ujδxuj

))

10



and
uj+1 = uj −

∆t

4
δx(1 − δ2

x)−1
(
2∇G(uj+1, uj)

+
2γ

3

(
(δxuj+1)2 + δxuj+1δxuj + (δxuj)2

)

−
2γ

3
δx

(
2uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + 2ujδxuj

))
.In the partiular ases of the Camassa�Holm equation and the BBM equation, we have

∇G(u, u′) = κ(u + u′) + u2 + u′2 + uu′and
∇G(u, u′) = u + u′ + 1

3
(u2 + u′2 + uu′),respetively.4 Multi-sympleti integratorsWe begin this setion by reviewing the onept of multi-sympletiity in a general on-text, for more details, see e.g. [2, 3, 34℄. A partial di�erential equation of the form

F (u, ut, ux, utx, . . .) = 0 is said to be multi-sympleti if it an be written as a system of�rst order equations:
M zt + K zx = ∇zS(z), (43)with z ∈ R

d a vetor of state variables, typially onsisting of the original variable u asone of its omponents. The matries M and K are skew-symmetri d × d-matries, and
S is a smooth salar funtion depending on z. Equation (43) is not neessarily uniqueand the dimension d of the state vetor may di�er from one expression to another. Akey observation for the multi-sympleti formulation (43) is that the matries M and Kde�ne sympleti strutures on subspaes of R

d,
ω = dz ∧ Mdz, κ = dz ∧ Kdz.Considering any pair of solutions to the variational equation assoiated with (43), wehave, see [3℄, that the following multi-sympleti onservation law applies

∂tω + ∂xκ = 0. (44)With the two skew-symmetri matries M and K, one an also de�ne the densityfuntions
Ẽ(z) = S(z) −

1

2
zT
x Kz , F̃ (z) =

1

2
zT
t Kz,

G̃(z) = S(z) −
1

2
zT
t Mz , Ĩ(z) =

1

2
zT
x Mz,whih immediately yield the loal onservation laws

∂tẼ(z) + ∂xF̃ (z) = 0 and ∂tĨ(z) + ∂xG̃(z) = 0,11



for any solution to (43). Thus, under the usual assumption on vanishing boundary termsfor the funtions F̃ (z) and G̃(z) one obtains the globally onserved quantities of (energyand momentum)
E(z) =

∫
Ẽ(z)dx and I(z) =

∫
Ĩ(z)dx.Sine the multi-sympleti onservation law (44) is a loal onservation law, the multi-sympleti formulation of a partial di�erential equation may lead to numerial shemeswhih render well the loal properties of the equation. To derive multi-sympleti inte-grators, we follow the approah given in [2℄ (see also [3℄) and write the partial di�erentialequation as a system of �rst order equations (43) and then disretise it. For an alternativeonstrution of multi-sympleti integrators see for example [31℄.The main philosophy behind the use of sympleti integrators for Hamiltonian di�er-ential equation is that the shemes are designed to preserve the sympleti form of theequation at eah time step. For multi-sympleti partial di�erential equations, the ideaof Bridges and Reih [3℄ was to develop integrators whih satisfy a disretised version ofthe multi-sympleti onservation law (44). For this purpose, they onsidered a diretdisretisation of (43), replaing the derivatives with divided di�erenes, and the ontin-uous funtion z(x, t) by a disrete version zn,i ≈ z(xn, ti) on a uniform retangular grid.We set ∆x = xn+1 − xn, n ∈ Z, and ∆t = ti+1 − ti, i ≥ 0 as in Setion 3.Following their notation, we write

M∂n,i
t zn,i + K∂n,i

x zn,i = ∇zS(zn,i), (45)where ∂n,i
t and ∂n,i

x are disretisations of the partial derivatives ∂t and ∂x, respetively.A natural way of inferring multi-sympletiity on the disrete level is to demand that forany pairs (Un,i, V n,i) of solutions to the orresponding variational equation of (45), onehas
∂n,i

t ωn,i + ∂n,i
x κn,i = 0,where

ωn,i(U
n,i, V n,i) = 〈MUn,i, V n,i〉, κn,i(U

n,i, V n,i) = 〈KUn,i, V n,i〉,with the Eulidean salar produt 〈·, ·〉 on R
d.As for the Camassa-Holm equation, see [10℄, setting z = [u, φ,w, v, ν]T , we derive thefollowing multi-sympleti formulation (43) for the generalised hyperelasti-rod wave (1):
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0 0 0 0 0
0 0 0 0 0

1/2 0 0 0 0




zt +




0 0 0 −1 0
0 0 1 0 0
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1 0 0 0 0
0 0 0 0 0




zx =




−w −
1

2
g(u) − γ

ν2

2
0
−u
ν

−γuν + v




,(46)12



with the salar funtion S(z) = −wu −
1

2
G(u) − γu

ν2

2
+ vν, realling G(u) :=

∫
g(u).We now turn to the alulation of the global invariants (energy and momentum) de�nedabove. For the hyperelasti-rod wave, an integration of the onservation law ∂tĨ(z) +

∂xG̃(z) = 0 leads to:
1

4

ddt

∫ (
−uxφ + u2

x + u2 − uuxx

)dx +
[
G̃(z)

]
= 0,where the brakets stand for the di�erene of the funtion evaluated at the upper andlower limit of the integral. As in [10℄, after an integration by parts on the �rst and lastterm, using periodi (or vanishing at in�nity) boundary onditions of u (i.e. [u] = [ux] =

[uxx] = [φt] = 0), we obtain the following global invariant for the hyperelasti-rod wave:
I =

1

2

∫
(u2 + u2

x)dx.Similarly, the seond onservation law ∂tẼ(z) + ∂xF̃ (z) = 0 leads to
E = −

1

2

∫
(u3 + γuu2

x)dx.We remark that these two onserved quantities are (up to a multipliative onstant) theHamiltonian funtionals given in (9)-(10).The Euler box sheme. By taking the splitting M = M+ +M− with M+ = M− =
1

2
M(and similarly for K) we obtain the Euler-box sheme, a multi-sympleti integrator forthe generalised hyperelasti-rod wave, expressed in terms of u (see [10℄ and [34℄):

− 4∆x2un,i+1 +
(
un+2,i+1 − 2un,i+1 + un−2,i+1

)
=

8 ∆x2∆t
{
−

1

2∆t
un,i−1 −

1

2∆x

(
−

1

2
g(un+1,i) +

1

2
g(un−1,i) −

γ

8∆x2
(un+2,i − un,i)2

+
γ

8∆x2
(un,i − un−2,i)2 +

1

4∆x∆t
(−un+2,i−1 + 2un,i−1 − un−2,i−1)

+
γ

4∆x2
(un+2,i(un+3,i − un+1,i) − 2un,i(un+1,i − un−1,i) + un−2,i(un−1,i − un−3,i))

)}
.Equation (1) an be rewritten in the form

ut − uxxt +
(1

2
g(u) +

γ

2
u2

x

)
x
− γ(uux)xx = 0 (47)and the orresponding Euler-box sheme is given in a more ompat form by

δtu
n,i − δ2

xδtu
n,i + δx

(1

2
g(un,i) +

γ

2
(δxun,i)2

)
− γδ2

x(un,iδxun,i) = 0, (48)realling from Setion 3 the de�nitions of the entered di�erenes δx =
1

2
(δ+

x + δ−x ) and,similarly in time, δt =
1

2
(δ+

t + δ−t ). Note that this sheme is only linearly impliit.13



5 Numerial experimentsIn this setion, we present some numerial experiments for the hyperelasti-rod waveequation (3). We onsider two types of initials onditions: A smooth traveling wave anda single peakon. They are obtained in the following way (see [19, 29℄ for a derivation ofall the traveling wave of (3)). Looking at the �Hamiltonian-like� formulation of (3) with(9), we de�ne
v = u − γuxxso that m =

γ − 1

γ
u +

v

γ
and the partial di�erential equation beomes

1

γ
((γ − 1)ut + vt) + (vu)x + vux = 0. (49)For a traveling wave with speed c, we have

u(t, x) = U(x − ct) and v(t, x) = V (x − ct)and (49) yields
−

c

γ
((γ − 1)U ′ + V ′) + V ′U + 2V U ′ = 0.Thus,

(U −
c

γ
)V ′ + 2U ′(V −

c

2γ
(γ − 1)) = 0. (50)After multiplying both sides of (50) by (u −

c

γ
), we get

(U −
c

γ
)2V ′ + 2U ′(U −

c

γ
)(V −

c

2γ
(γ − 1)) = 0whih an be integrated and gives

(V −
c

2γ
(γ − 1))(U −

c

γ
)2 = α (51)for some onstant α. Using the fat that V = U − γU ′′, we an rewrite (51) and obtain

U ′′ = −
c(γ − 1)

2γ2
+

1

γ
U −

αγ

(γU − c)2
(52)whih is a seond order equation for the traveling wave U . After multiplying (52) by Uxand integrating one more time we reover the equations given in [19, 29℄. However, (52)may be easier to implement numerially. We do not obtain smooth traveling waves for allthe values of the parameters α, c and γ. For c = α = 3, we solve numerially (52) withinitial data U(0) = 1 and Ux(0) = 0. The results are presented in Figure 1 for di�erentvalues of γ.Taking α = 0 in (52), we obtain the peakons. Indeed, on the line, the general solutionof this seond order di�erential equation is given by

U(ζ) =
c(γ − 1)

2γ
+ Ae−ζ/

√
γ + Beζ/

√
γ ,14
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γ = 1γ = 0.8Figure 1: Smooth traveling waves for the hyperelasti rod equation for di�erent values of
γ.for some onstants A and B. As it is noted in [29℄, a traveling wave an only have apoint of disontinuity ζ0 when U reahes the value c

γ , that is, U(ζ0) =
c

γ
. For a singlepeakon, there is only one point of disontinuity ζ0 (the top of the peak) and we impose

ζ0 = 0. To obtain vanishing at in�nity boundary onditions, we must have A = B andthus
U(ζ) =

c

γ

(γ − 1

2
+ (1 −

γ − 1

2
)e−|ζ|/√γ

)so that, on the line, the peakon-solution of the hyperelasti-rod wave is then given by
u(x, t) =

c

2γ

(
γ − 1 + (3 − γ)e−|x−ct|/√γ

)
.Still for α = 0, by hoosing the points of disontinuity at −T/2 and T/2, we obtain theperiodi peakon. On the interval [−T/2, T/2], this gives

U(ζ) =
c

2γ

(
γ − 1 +

(3 − γ)

cosh(T/(2
√

γ))
cosh(

ζ
√

γ
)
)
,so that the periodi peakon is

u(x, t) =
c

2γ

(
γ − 1 +

(3 − γ)

cosh(T/(2
√

γ))
cosh

(
d(x − ct)

√
γ

))
, (53)for d(x) = x̄ − T

2 where x̄ is the unique element of [0, T ) for whih there exists k ∈ Zsuh that x̄ = x + T
2 + kT .Before we proeed with the numerial experiments, let us give some remarks onerningimplementation issues. For the multi-sympleti sheme (48) applied to equation (3),the �rst needed step for the iteration will be omputed along the exat solution of theproblem. The integrals in the Hamiltonians given in (9) and (10) will be disretised bythe trapezoidal rule and the derivatives appearing in these quantities by the symmetriderivative δx. Thus, these disretisations will give us the onserved quantities (24), resp.(25) from the energy-preserving shemes (40), (41) and (42).15
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Figure 2: L1-error of the shemes (40), (41), (42) and (48) at time Tend = 2 for thesmooth solution (left) and for the peakon (right). The dashed lines have slopestwo, resp. one.All the numerial experiments will be done for the hyperelasti-rode wave with theonstant γ = 0.8. The smooth traveling wave onsidered will be the solution of (52) with
c = α = 3. In this ase we obtain a period T ≈ 3.8609 for the traveling wave. For thesingle peakon (53), we take T = 40 and c = 1.We �rst onsider the temporal rate of onvergene of our shemes. We vary the timestep ∆t and set the spae step to ∆x = 0.9 ∆x/c. One an see from Figure 2 that theorder of onvergene is two for the smooth solution and one for non-smooth one, and thisholds for all the shemes.Similar behaviours are also observed for the spatial rate of onvergene of the numerialmethods: order one for the non-smooth solution and order two for the smooth one. Theresults are however not displayed.We next plot the disretisations (24) and (25) of the Hamiltonian funtionals of ourproblem. For the smooth solution, the grid parameters are ∆x = 0.04 and ∆t = 0.01.For the single peakon solution, they are given by ∆x = 0.27 and ∆t = 0.01. Theintegrations are done over the time interval [0, 5]. Figures 3 and 4 display the resultsfor the disretisation of the Hamiltonians given by (24) and (25), respetively. We havenoted that, when taking smaller time step size, the results given by the multi-sympletisheme tends to those of the energy-preserving shemes (41) and (42).Let us onlude this paper by two remarks. First, from our numerial experiments, wean see that all the shemes perform in a omparable manner, and in partiular it is notlear if one an take advantage of the global or loal nature of the shemes (global for theshemes (40), (41), (42) as they preserve one of the Hamiltonians, or loal for the multi-sympleti sheme (48)). The seond remark is about the degree of freedom we have whenderiving the shemes that have been presented. We already saw that the disrete gradient16
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Figure 3: The Hamiltonian (24) along the numerial solutions given by the shemes (40),(41), (42) and (48) for the smooth (left) and non-smooth (right) solution.
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of a funtion is not unique and presented two ways of omputing it. In addition, whendisretising the Hamiltonian funtionals H1 and H2 and the antisymmetri operators D1and D2, we used systematially the symmetri disrete derivative δ. We ould have usedinstead left and right disrete derivatives and obtain shemes with the same preservingproperty. For example, instead of (35), we an take
D1(m)(v) = −((u − γδ2

xu)δ−x v) − δ+
x ((u − γδ2

xu)v). (54)By using the disrete summation by part rule (23), we an hek that this operatoris antisymmetri and, in the same way as we derived from (35) the numerial sheme(40), we an obtain from (54) a numerial sheme that exatly preserves the disreteHamiltonian H1. We have implemented this partiular sheme and observed that it maybe very unstable, for example in the ase of a smooth wave (traveling from left to right)as initial data. This bad behaviour is due to the disrete di�erene operator δ+
x in (54),whih models the transport of the momentum u− γuxx at a speed u. In the ase we arelooking at, the �information� is traveling in the same diretion as the wave, from left toright, but the right disrete derivative δ+
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