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Abstract We propose a fully discretised numerical scheme for the hyperelas-
tic rod wave equation on the line. The convergence of the method is established.
Moreover, the scheme can handle the blow-up of the derivative which naturally
occurs for this equation. By using a time splitting integrator which preserves
the invariants of the problem, we can also show that the scheme preserves the
positivity of the energy density.
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1 Introduction

We consider the compressible hyperelastic rod wave equation

ut − uxxt + 3uux − γ(2uxuxx + uuxxx) = 0, u|t=0 = u0. (1)

This equation is obtained by Dai in [13] as a model equation for an infinitely
long rod composed of a general compressible hyperelastic material. The author
considers a far-field, finite length, finite amplitude approximation for a ma-
terial where the first order dispersive terms vanish. The function u = u(t, x)
represents the radial stretch relative to a prestressed state. The parameter
γ ∈ R is a constant which depends on the material and the prestress of the
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rod, whose physical values lie between −29.4760 and 3.4174. For materials
where first order dispersive terms cannot be neglected, the KdV equation

ut + uux + uxxx = 0

applies and only smooth solitary waves exist. In contrast, the hyperelastic rod
equation (1) admits sharp crested solitary waves.

The Cauchy problems of the hyperelastic rod wave equation on the line
and on the circle are studied in [12] and [25], respectively. The stability of a
class of solitary waves for the hyperelastic rod wave equation on the line is
investigated in [12]. In [21], Lenells provides a classification of all traveling
waves. In [12,25], the authors establish, for a special class of initial data, the
global existence in time of strong solutions. However, in the same papers,
they also present conditions on the initial data for which the solutions blow
up and, in that case, global classical solutions no longer exist. The way the
solution blows up is known: In the case γ > 0, there is a point x ∈ R and
a blow-up time T for which limt→T ux(t, x) = −∞ for (for γ < 0, we have
limt→T ux(t, x) = ∞).

To handle the blow-up, weak solutions have to be considered but they are
no longer unique. For smooth solutions, the energy

∫

R
(u2+u2

x) dx is preserved
and H1(R) is a natural space for studying the solutions. After blow-up, there
exist two consistent ways to prolong the solutions, which lead to dissipative
and conservative solutions. In the first case, the energy which is concentrated
at the blow-up point is dissipated while, in the second case, the same energy is
restored. The global existence of dissipative solution is established in [6]. In the
present article, we consider the conservative solutions, whose global existence
is established in [18].

For γ = 1, the hyperelastic rod wave equation yields the Camassa–Holm
equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0.

There is by now an important literature on the numerical discretisation of
the Camassa–Holm equation. Let us review some of these works. In [4] and
[5], a particle method was presented and convergence, as the number of par-
ticles tends to infinity, is proved for smooth solutions. In [17,19], numerical
schemes relying on a discretisation based on multipeakons are proved to con-
verge for non-smooth solutions. Note that these schemes depend on a special
type of solutions, the multipeakons, which do not exist for the hyperelastic rod
equation. An adaptive finite volume method was derived in [1] for peakon-type
solutions. Still related to the spatial discretisation of the Camassa–Holm equa-
tion, are the works [20] and [24], where a collocation method, respectively a
local discontinuous Galerkin method, are presented and spatial convergence is
proved for smooth solutions. Following a more geometrical approach, the first
multi-symplectic schemes for the Camassa–Holm equation were presented in
[10], however without proofs of convergence. A convergent finite difference
scheme is studied in [16] for a special class of initial datas whose properties
are preserved by the equation. For non-smooth solutions, beside of [19], the
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only schemes with proof of convergence are given by [7] and [9], where finite
difference schemes are used. But these schemes converge to the dissipative
solutions of the Camassa–Holm equation.

In comparison with the Camassa–Holm equation, there are only a few works
in the literature which are concerned with numerical methods for the hyper-
elastic rod wave equation. In [22], the authors consider a Galerkin approxi-
mation which preserves a discretisation of the energy. In [11], a Hamiltonian-
preserving numerical method and a multisymplectic scheme are derived. In
both works, no convergence proofs are provided and the schemes cannot han-
dle the natural blow-up of the solution. The present paper fills these lack.

In this paper, we propose a fully discretised numerical scheme which can
compute the solution on any finite time interval. In particular, it approximates
solutions which have locally unbounded derivatives (the condition ux ∈ L2(R)
allows for an unbounded derivative in L∞(R)). A standard spatial discretisa-
tion of (1) cannot give us global solutions and the proofs of convergence for
such schemes become highly nontrivial when the solution approaches blow-
up time. The main achievement of this paper is the full convergence proof
(both with respect to time and space) of the scheme. To compute the global
solutions, we follow the framework given in [18]. With a coordinate transfor-
mation into Lagrangian coordinates, we first rewrite the problem as a system
of ordinary differential equations in a Banach space (Sections 2 and 3). We
establish new decay estimates (Section 4) which allow us to consider solutions
defined on the whole real line. We discretise the system of equations in space
(Section 5) and time (Section 7) and study the convergence of the numerical
solution in Section 8. In Section 6, we explain how to define a converging se-
quence of initial data. This construction can be applied to any initial data in
H1(R). Finally, in Section 9, numerical experiments demonstrate the validity
of our theoretical results. Moreover, the time splitting discretisation enables
the scheme to preserve invariants and we can use this property to prove that
the scheme preserves the positivity of a discretisation of the energy density
u2 + u2

x dx, see Theorem 17. A Lagrangian formalism is also used in [5,17,19]
to derive numerical schemes for the Camassa–Holm equation. However they
rely on a particular class of solutions, the multipeakons, which is not available
for the hyperelastic rod wave equation, that is when γ 6= 1.

The main difficulty in the numerical simulation of the hyperelastic rod
wave equation is to find an appropriate spatial discretisation which can handle
the discontinuities in the first derivative and the loss of regularity. This is
reflected in the papers [5,8,17,16,20,24] where the focus is clearly set on the
spatial discretisation and the integration in time is done by standard numerical
schemes. The spatial discretisation we propose is radically different from those
proposed previously as it is based on a reformulation of the problem.

We want to emphasize that other schemes (based on more standard spatial
discretisations as, for example finite differences) will inevitably experience diffi-
culties when the solution becomes irregular and they will not be able to handle
a peakon-antipeakon collision, as described in Section 9.3. This is illustrated
in the peakon and cuspon traveling solutions presented in Figures 3 and 5.
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These solutions are irregular in the sense that they have a discontinuous (in
the case of the peakon) and unbounded (in the case of the cuspon) derivative
at the peak. A direct spatial discretisation of the partial differential equation
(1) naturally induces numerical dissipation. Indeed, when discretising in space,
there is an upper bound on the frequencies that a finite discrete space step can
represent and the frequencies above this bound are simply ignored. For our
scheme, by using a reformulation of the equation as an ordinary differential
equation in a Banach space, the cut-off of high frequencies becomes harm-
less and we observe indeed very little numerical dissipation. We implemented
the upwind scheme presented in [1] - without the mesh refinement - to com-
pare our results. In [24], a local discontinuous Galerkin method is derived and
analysed. The spatial discretisation is suited for solutions with discontinuities
and the peakon solution are indeed well approximated. However, there is no
proof of convergence and the scheme cannot handle collisions, as for example
a peakon-antipeakon collision.

The results of this paper are also valid for the generalised hyperelastic rod
wave equation

ut − uxxt +
1

2
g(u)x − γ(2uxuxx + uuxxx) = 0, u|t=0 = u0. (2)

However, for simplicity only the numerical discretisation of equation (1) will
be analysed. Equation (2) was first introduced in [6]; it defines a whole class of
equations, depending on the choice of the (locally uniformly Lipschitz) function
g and the value of the parameter γ, which contains several well-known non-
linear dispersive equations. Taking γ = 1 and g(u) = 2κu+ 3u2 (with κ ≥ 0),
equation (2) reduces to the Camassa–Holm equation [3]; For g(u) = 3u2, equa-
tion (2) becomes the hyperelastic rod wave equation (1); For g(u) = 2u + u2

and for γ = 0, equation (2) leads to the Benjamin-Bona-Mahony (BBM) equa-
tion (or regularised long wave) [2].

2 The Semigroup of Conservative Solutions

The purpose of this section is to recall the main results of [18] about the
conservative solutions of the hyperelastic rod wave equation (1). The total
energy for the hyperelastic rod wave equation is given by the H1 norm, which
is preserved in time for smooth solutions. An important feature of this equation
is that it allows for the concentration of the energy density (u2 + u2

x) dx on
sets of zero measure. To construct a semigroup of conservative solution, it is
necessary to keep track of the energy when it concentrates. This justifies the
introduction of the set D defined as follows.

Definition 1 The set D is composed of all pairs (u, µ) such that u belongs
to H1(R) and µ is a positive finite Radon measure whose absolute continuous
part, µac, satisfies

µac = (u2 + u2
x) dx.
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The measure µ represents the energy density and the set D allows µ to have a
singular part. The solutions of (1) are constructed via a change of coordinates,
from Eulerian to Lagrangian coordinates. An extra variable which account for
the energy is necessary. Let us sketch this construction. We apply the inverse
Helmholtz operator (Id− ∂xx)

−1 to (1) and obtain the system of equations

ut + γuux + Px = 0 (3a)

P − Pxx =
3− γ

2
u2 +

γ

2
u2
x. (3b)

By using the Green function of the Helmholtz operator, we can write P in an
explicit form, i.e.,

P (t, x) =
1

2

∫

R

e−|x−z|(3− γ

2
u2 +

γ

2
u2
x

)

(t, z) dz. (4)

We also define

Q(t, x) := Px(t, x) = −1

2

∫

R

sgn(x− z)e−|x−z|(3− γ

2
u2 +

γ

2
u2
x

)

(t, z) dz. (5)

Next, we introduce the characteristics y(t, ξ) defined as the solutions of

yt(t, ξ) = γu(t, y(t, ξ))

with y(0, ξ) given. The variable y(t, ξ) corresponds to the trajectory of a par-
ticle in the velocity field γu. However, the Lagrangian velocity will be defined
as

U(t, ξ) = u(t, y(t, ξ))

and the cumulative energy H(t, ξ) as

H(t, ξ) :=

∫ y(t,ξ)

−∞
(u2 + u2

x) dx.

We next express (4) and (5) in terms of the new variables X = (y, U,H) (see
[18] for the details) and we obtain

P (t, ξ) =
1

2

∫

R

e− sgn(ξ−η)(y(ξ)−y(η))
(

3− 2γ

2
U2yξ +

γ

2
Hξ

)

(η) dη,

Q(t, ξ) = −1

2

∫

R

sgn(ξ − η)e− sgn(ξ−η)(y(ξ)−y(η))
(

3− 2γ

2
U2yξ +

γ

2
Hξ

)

(η) dη.

Finally, we obtain the following system of differential equations

yt = γU (6a)

Ut = −Q (6b)

Ht = U3 − 2PU, (6c)

which we rewrite in the compact form

Xt = F (X).
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The mapping F is a mapping from E to E, where E is a Banach space
that we now define. We denote by V the space defined as

V = {f ∈ Cb(R) | fξ ∈ L2(R)},
where Cb(R) = C(R) ∩ L∞(R). The space V is a Banach space for the norm
‖f‖V := ‖f‖L∞ + ‖fξ‖L2 . The Banach space E is then defined as

E = V ×H1 × V

with norm ‖f‖E := ‖f‖V + ‖f‖H1 + ‖f‖V . In [18], the existence of short-time
solutions of (6) is established by a standard contraction argument in E. The
solutions of (6) are not in general global in time but for initial data (ζ0, U0, H0)
which belongs to the set F , which we now define, they are.

Definition 2 The set F consists of all (ζ, U,H) ∈ E such that

(ζ, U,H) ∈
[

W 1,∞(R)
]3

and lim
ξ→−∞

H(ξ) = 0 (7a)

yξ ≥ 0, Hξ ≥ 0, yξ +Hξ ≥ c almost everywhere, for some constant c > 0
(7b)

yξHξ = y2ξU
2 + U2

ξ almost everywhere. (7c)

The set F is preserved by the flow, that is, if X(0) ∈ F andX(t) is the solution
to (6) corresponding to this initial value, then X(t) ∈ F for all time t. The
properties of the set F can then be used to establish apriori estimates on the
solutions and show that they exit globally in time, see [18] for more details.
We denote by St the semigroup of solutions in F given by the solutions of (6).

Given an initial data (u, µ) ∈ D, we have to find the corresponding initial
data in F ; we have to define a mapping between Eulerian and Lagrangian
variables. To do so, we set

y(ξ) = sup {y | µ((−∞, y)) + y < ξ} , (8a)

H(ξ) = ξ − y(ξ), (8b)

U(ξ) = u ◦ y(ξ). (8c)

We define X = L(u, µ) and L maps Eulerian to Lagrangian variables. When
µ = µac (no energy is concentrated), equation (8a) simplifies and we get

y(ξ) +

∫ y(ξ)

−∞
(u2 + u2

x)(x) dx = ξ.

Reciprocally, we define the mapping M from Lagrangian to Eulerian variables:
Given X = (y, U,H) ∈ F , we recover (u, µ) = M(X) ∈ D by setting

u(x) = U(ξ) for any ξ such that x = y(ξ), (9a)

µ = y#(Hξ dξ). (9b)

Here, y#(Hξ dξ) denotes the push-forward of the measure Hξ dξ by the map-
ping y.

Finally, we recall the following main result from [18].
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Theorem 1 The mapping T : D × R+ → D, where D is defined by Defini-
tion 1, defines a continuous semigroup of conservative solutions of the hy-
perelastic rod wave equation (1), that is, given (ū, µ̄) ∈ D, if we denote by
t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory, then u is a weak solu-
tion of the hyperelastic rod wave equation (3).

The function y(t, ξ) gives the trajectory of a particle which evolves in the
velocity field given by γu(t, x). If u is smooth, then it is Lipschitz in the second
variable and the mapping ξ → y(t, ξ) remains a diffeomorphism. We denote
its inverse by x → y−1(t, x). In this case, the density ρ(t, x) is given by

ρ(t, x) =
1

yξ(t, y−1(t, x))
. (10)

We can also recover the energy density as

(u2 + u2
x)(t, x) =

Hξ

yξ
(t, y−1(t, x))). (11)

In the following sections, we design numerical schemes which preserve the
positivity of the particle and energy densities as defined in (10) and (11).

3 Equivalent System of ODEs in a Banach space

In this section, we reformulate the hyperelastic rod wave equation (3) as a
system of ordinary differential equations in a Banach space as this was done
in [18] but where we decouple the functions y, U and H and their derivatives
yξ, Uξ and Hξ. Thus, after differentiating (6), we obtain

ζξt = γUξ (or yξt = γUξ), (12a)

Uξt =
γ

2
Hξ +

(

3− 2γ

2
U2 − P

)

yξ, (12b)

Hξt = −2QUyξ +
(

3U2 − 2P
)

Uξ, (12c)

where we set ζ(t, ξ) := y(t, ξ)− ξ. The system (12) is quasilinear with respect
to the first derivative (ζξ, Uξ, Hξ). This is an essential feature which leads to
the stability of the solutions. Convergence proofs of numerical schemes rely
generally on stability results and this is also the case here. It explains why the
scheme we propose here is constructed upon the first derivatives. Let

q = yξ, w = Uξ, h = Hξ and v = q − 1 (13)
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then (6) and (12) rewrite

ζt = yt = γU, (14a)

Ut = −Q, (14b)

Ht = U3 − 2PU, (14c)

vt = qt = γw, (14d)

wt =
γ

2
h+

(3− 2γ

2
U2 − P

)

q, (14e)

ht = −2QUq +
(

3U2 − 2P
)

w, (14f)

where P and Q are given by

P =
1

2

∫

R

e− sgn(ξ−η)(y(ξ)−y(η))
(

3− 2γ

2
U2q +

γ

2
h
)

(η) dη (15)

and

Q = −1

2

∫

R

sgn(ξ − η)e− sgn(ξ−η)(y(ξ)−y(η))
(

3− 2γ

2
U2q +

γ

2
h
)

(η) dη. (16)

The main variables among the new variables (y, U,H, q, w, h) are the derivative
variables q, w and h with respect to which the system is linear. The remain-
ing variables, that is, y, U and H as well as the coefficients P and Q can be
seen as integrals depending on q, w and h. Thus, the system (14d)-(14f) can be
considered as a system of integro partial differential equations (where the inte-
grals are space integrals and the derivatives are time derivative). However, for
accuracy, we compute the variables y, U and H through their time evolution,
as given by the first three equations in (14), instead of computing them as
integrals. In this way we can also prove the convergence of the scheme, which
is the main goal of this article.

Since the terms P and Q have similar structure, in the remaining of the
paper most of the proofs will be established just for one of them. Now, we
do not require (13) to hold any longer and, setting Y := (ζ, U,H, v, w, h), we
obtain the system of differential equations

Yt(t) = G(Y (t)),

where G is defined by (14). In the remaining, we will sometimes abuse the no-
tation and write Y = (y, U,H, q, w, h) instead of Y = (ζ, U,H, v, w, h). Then,
we implicitly assume the relations y(ξ) = ζ(ξ)+ ξ and q = v+1. The variables
y and q are the physical ones but do not have the proper decay/boundedness
properties at infinity and this is why ζ and v have to be introduced. The
system (14) is defined in the Banach space F , where F is given by

F := L∞(R)×
(

L∞(R) ∩ L2(R)
)

× L∞(R)× L2(R)× L2(R)× L2(R).

For any Y = (ζ, U,H, v, w, h) ∈ F we use the following norm on F :

‖Y ‖F = ‖ζ‖L∞ + ‖U‖L2 + ‖U‖L∞ + ‖H‖L∞ + ‖v‖L2 + ‖w‖L2 + ‖h‖L2 .

The following proposition holds.
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Proposition 1 The mappings P : F → H1(R) and Q : F → H1(R) belongs
to C1(F,H1(R)) and G : F → F belongs to C1(F, F ). Moreover, given M > 0,
let

BM = {X ∈ F | ‖X‖F ≤ M}.
There exists a constant C(M) which only depends on M such that

‖P (Y )‖H1 + ‖Q(Y )‖H1 +

∥

∥

∥

∥

∂P

∂Y
(Y )

∥

∥

∥

∥

L(F,H1)

+

∥

∥

∥

∥

∂Q

∂Y
(Y )

∥

∥

∥

∥

L(F,H1)

≤ C(M) (17)

and

‖G(Y )‖F +

∥

∥

∥

∥

∂G

∂Y
(Y )

∥

∥

∥

∥

L(F,F )

≤ C(M) (18)

for all Y ∈ BM .

Here, abusing slightly the notations, we denote by the same letter P the
function P (t, ξ) and the mapping Y 7→ P . The same holds for Q. The norms
L(F,H1(R)) and L(F, F ) are the operator norms.

Proof First we prove that the mappings Y 7→ P and Y 7→ Q as given by (15)
and (16) belong to C1(F,L∞(R) ∩ L2(R)). We rewrite Q as

Q(X)(ξ) = − e−ζ(ξ)

2

∫

R

χ{η<ξ}(η)e
−(ξ−η)eζ(η)

×
(

3− 2γ

2
U2q +

γ

2
h
)

(η) dη

+
eζ(ξ)

2

∫

R

χ{η>ξ}(η)e
(ξ−η)e−ζ(η)

×
(

3− 2γ

2
U2q +

γ

2
h
)

(η) dη, (19)

where χB denotes the indicator function of a given set B. We decompose Q
into the sum Q1+Q2, where Q1 and Q2 are the operators corresponding to the
two terms in the sum on the right-hand side of (19). Let h(ξ) = χ{ξ>0}(ξ)e

−ξ

and A be the map defined by A : v 7→ h ⋆ v. Then, Q1 can be rewritten as

Q1 = − e−ζ(ξ)

2
A ◦R(Y )(ξ), (20)

where R is the operator from F to L2(R) given by

R(Y )(ξ) = eζ(ξ)
(

3− 2γ

2
U2(1 + v) +

γ

2
h
)

(ξ).

The mapping A is a continuous linear mapping from L2(R) into L2(R)∩L∞(R)
as, from Young inequalities, we have

‖h ⋆ v‖L2 ≤ ‖h‖L1 ‖v‖L2 and ‖h ⋆ v‖L∞ ≤ ‖h‖L2 ‖v‖L2 . (21)

For any Y ∈ BM , we have

‖Q1‖L2∩L∞ ≤ C(M) ‖A ◦R‖L2∩L∞ ≤ C(M) ‖R‖L2 ≤ C(M)
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for some constant C(M) which depends only on M . From now on, we denote
generically by C(M) such constant even if its value may change from line to
line. The same result holds for Q and P . Since R is composed of sums and
products of C1 maps, the fact that R : F → L2 is C1 follows directly from the
following short lemma whose proof is essentially the same as the proof of the
product rule for derivatives in R.

Lemma 1 Let 1 ≤ p ≤ ∞. If K1 ∈ C1(F,L∞(R)) and K2 ∈ C1(F,Lp(R)),
then the product K1K2 belongs to C1(F,Lp(R)) and

∂(K1K2)

∂Y
(Y )[Ȳ ] = K1(Y )

∂K2

∂Y
(Y )[Ȳ ] +K2(Y )

∂K1

∂Y
(Y )[Ȳ ].

With this lemma in hands, we thus obtain that

∂R

∂Y
(Y )[Ȳ ] = eζ

(

3− 2γ

2

(

ζ̄U2(1 + v) + 2UŪ(1 + v) + U2v̄
)

+
ζ̄γ

2
h+

γ

2
h̄

)

and
∥

∥

∥

∥

∂R

∂Y
(Y )

∥

∥

∥

∥

L(F,L2)

≤ C(M).

Then, Q1 is in C1(F,L2(R) ∩ L∞(R)),

∂Q1

∂Y
(Y )[Ȳ ] =

e−ζ

2
(ζ̄A(R(Y ))−A(

∂R

∂Y
(Y )[Ȳ ]))

and
∥

∥

∥

∥

∂Q1

∂Y
(Y )

∥

∥

∥

∥

L(F,L2∩L∞)

≤ C(M).

We obtain the same result for Q2, Q and P . We differentiate Q and get

Qξ =
γ

2
h+

3− 2γ

2
U2q − Pq. (22)

Hence, the mapping Y 7→ Qξ is differentiable,

∂Qξ

∂Y
(Y )[Ȳ ] =

γ

2
h̄+

3− 2γ

2
(2UŪ + U2q̄)− ∂P

∂Y
(Y )[Ȳ ]q − P q̄,

and
∥

∥

∥

∥

∂Qξ

∂Y
(Y )

∥

∥

∥

∥

L(F,L2)

≤ C(M).

It follows that Q belongs to C1(F,H1(R)) and
∥

∥

∥

∂Q
∂Y

∥

∥

∥

L(F,H1)
≤ C(M). The

same result holds for P and (17) is proved. By using Lemma 1, we get that
G ∈ C1(F, F ) and this proves (18). ⊓⊔

By using Proposition 1 and the standard contraction argument, we prove
the existence of short-time solutions to (14):
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Theorem 2 For any initial values Y0 = (ζ0, U0, H0, v0, w0, h0) ∈ F , there
exists a time T , only depending on the norm of the initial values, such that the
system of differential equations (14) admits a unique solution in C1([0, T ], F ).
Moreover, for any two solutions Y1 and Y2 such that supt∈[0,T ] ‖Y1(t)‖F ≤ M
and supt∈[0,T ] ‖Y2(t)‖F ≤ M , then

sup
t∈[0,T ]

‖Y1(t)− Y2(t)‖F ≤ C(M) ‖Y1(0)− Y2(0)‖F , (23)

where the constant C(M) depends only on M .

Proof The stability result (23) is a direct application of Proposition 1 and
Gronwall’s Lemma. ⊓⊔
The system of differential equations (14) in the Banach space F has an in-
teresting geometric property: it possesses an invariant. In fact, the following
quantity

I(Y ) := U2q2 + w2 − qh

is conserved along the exact solution of the problem as we show now. For any
Y (t) solution of (14), we have

d

dt
I(Y (t)) = 2UUtq

2 + 2U2qqt + 2wwt − qth− qht = −2UQq2 + 2U2qγw

+ 2w
(

γ

2
h+

(3− 2γ

2
U2 − P

)

q
)

− γwh− q
(

−2QUq + (3U2 − 2P )
)

= 0.

(24)
Additionally, we have

Lemma 2 The following properties are preserved (independently one of each
other) by the governing equations (14)

(i) q, w, h belongs to L∞(R).
(ii) qh = U2q2 + w2 (or I(Y ) = 0).
(iii) qh = U2q2 + w2 (or I(Y ) = 0) and q ≥ 0, h ≥ 0, q + h ≥ c almost

everywhere for some constant c > 0.
(iv) The functions y, U and H are differentiable and yξ = q, Uξ = w and

Hξ = h.

The proof of Lemma 2 follows the lines of [18, Lemma 2.7]. Having a closer
look at Lemma 2, we now define the following set.

Definition 3 The set G consists of the elements (y, U,H, q, w, h) ∈ F which
satisfy the conditions (i), (iii) and (iv).

As a consequence of Lemma 2, the set G is preserved by the system. For
any initial data in G, the solution of (14) coincide with the solutions that are
obtained in [18]. In particular, we prove in the same way as in [18] that

Theorem 3 For initial data in G, the solutions to (14) are global in time.

We denote by St the semigroup of solutions to (14) in G. Note that global
existence can only be established for initial data in G and do not hold in
general for initial data in F .
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4 Decay at infinity

The terms P and Q, as given by (15) and (16) which appear in the governing
equations (14), are global in the sense that they are not compactly supported
even if Y is. Consequently the set of compactly supported functions is not
preserved by the system. However, we identify in this section decay proper-
ties which are preserved by the system. These are new results which allow
us to compute solutions on the full real line. In comparison, most numerical
schemes for the Camassa–Holm equation ([1,10,11,16,20,22,24]) consider pe-
riodic solutions. In [7,9], the case of the real line is considered but a grid of
infinite length is used. In the present article, by using the decay estimate of
this section, we prove the convergence of the scheme for a grid of finite length.

We denote by F exp, the subspace of F of functions with exponential decay
defined as

F exp = {Y ∈ F | q, w, h ∈ L∞(R), e|ξ|U, e|ξ|w ∈ L2(R), e|ξ|h ∈ L1(R)}.

We define the following norm on F exp

‖Y ‖F exp = ‖Y ‖F + ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞

+ ‖e
|ξ|
2 U‖L2 + ‖e

|ξ|
2 w‖L2 +

∥

∥

∥e|ξ|h
∥

∥

∥

L1
.

Given α > 1, we denote by Fα, the subspace of F of functions with polynomial
decay defined as

Fα = {Y ∈ F | q, w, h ∈ L∞(R), (1 + |ξ|)α
2 U, (1 + |ξ|)α

2 w ∈ L2(R),

(1 + |ξ|)αh ∈ L1(R)}.

We define the following norm on Fα

‖Y ‖Fα = ‖Y ‖F + ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞

+ ‖(1 + |ξ|)α
2 U‖L2 + ‖(1 + |ξ|)α

2 w‖L2 + ‖(1 + |ξ|)αh‖L1.

Theorem 4 The spaces F exp and Fα are preserved by the flow of (14). Con-
sidering the short-time solutions given by Theorem 2, we have that

(i) If Y0 ∈ F exp, then supt∈[0,T ] ‖Y (t, ·)‖F exp ≤ C,

(ii) If Y0 ∈ Fα, then supt∈[0,T ] ‖Y (t, ·)‖Fα ≤ C,

for a constant C which only depends on T and ‖Y0‖F exp (case (i)) or T and
‖Y0‖Fα (case (ii)).

Proof Let us prove the case (i). First, we establish L1 bounds on the solutions.
By applying the Cauchy–Schwartz inequality, we get

∫

R

|U0(ξ)| dξ =

∫

R

e
−
∣

∣

∣

∣

∣

ξ

2

∣

∣

∣

∣

∣

e

∣

∣

∣

∣

∣

ξ

2

∣

∣

∣

∣

∣ |U0(ξ)| dξ ≤
√
2
∥

∥

∥e|ξ|U2
0 (ξ)

∥

∥

∥

1

2
L1

,
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which implies that U0 ∈ L1(R) and ‖U0‖L1 ≤ C for some constant C which de-
pends only on

∥

∥e|ξ|U2
0 (ξ)

∥

∥

L1 . Similarly we get that w0 ∈ L1(R) and ‖w0‖L1 ≤
C for some constant C which depends only on

∥

∥e|ξ|w2
0(ξ)

∥

∥

L1 . We denote gener-
ically by C such a constant, which depends only on T and ‖Y0‖F exp . From
Theorem 2 and Lemma 2, we get that

‖q(t, ·)‖L∞ + ‖w(t, ·)‖L∞ + ‖h(t, ·)‖L∞ ≤ C.

By following the same argument as in the proof of Proposition 1, from (20)
to (21), but, instead, using the Young inequality ‖κ ⋆ r‖L1 ≤ ‖κ‖L1 ‖r‖L1 , we
obtain that

‖Q(t, ·)‖L1 ≤ C(‖h(t, ·)‖L1 + 1) (25)

for a constant C which depends only on ‖Y (t)‖F exp and, therefore, only on
‖Y0‖F exp and T . The same estimate holds for P , that is,

‖P (t, ·)‖L1 ≤ C(‖h(t, ·)‖L1 + 1). (26)

Let us denote

J(t) := ‖U(t, ·)‖L1 + ‖w(t, ·)‖L1 + ‖h(t, ·)‖L1 .

From the governing equations (14), after using (25) and (26), we get

J(t) ≤ J(0) + C + C

∫ t

0

J(τ) dτ.

Hence, by applying Gronwall’s Lemma, we get that, for t ∈ [0, T ],

J(t) = ‖U(t, ·)‖L1 + ‖w(t, ·)‖L1 + ‖h(t, ·)‖L1 ≤ C (27)

for another constant C. Let L(t) denotes

L(t) =
∥

∥

∥e|ξ|U2(t, ·)
∥

∥

∥

L1
+
∥

∥

∥e|ξ|w2(t, ·)
∥

∥

∥

L1
+
∥

∥

∥e|ξ|h(t, ·)
∥

∥

∥

L1
. (28)

From the definition of Q, we get that

Q(t, ξ) ≤ C

∫

R

e−|ξ−η|(U2 + h)(t, η) dη (29)

so that

e|ξ|Q(t, ξ) ≤ C

∫

R

e|ξ|e−|ξ−η|e−|η|e|η|(U2 + h)(t, η) dη

≤ CL(t)

because |ξ| − |η| ≤ |ξ − η| and therefore
∥

∥

∥
e|ξ|Q(t, ·)

∥

∥

∥

L∞
≤ CL(t). (30)

Similarly, we get that
∥

∥

∥
e|ξ|P (t, ·)

∥

∥

∥

L∞
≤ CL(t). (31)
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From the governing equations (14), we get that

∥

∥

∥
e|ξ|U2(t, ξ)

∥

∥

∥

L1
≤
∥

∥

∥
e|ξ|U2

0

∥

∥

∥

L1
+

∫ t

0

∥

∥

∥
2e|ξ|QU(τ, ·)

∥

∥

∥

L1
dτ

≤
∥

∥

∥e|ξ|U2
0

∥

∥

∥

L1
+ 2

∫ t

0

∥

∥

∥e|ξ|Q(τ, ·)
∥

∥

∥

L∞
‖U(τ, ·)‖L1 dτ

≤
∥

∥

∥e|ξ|U2
0

∥

∥

∥

L1
+ C

∫ t

0

I(τ) dτ, (32)

by using the L1 apriori estimates (27) and (30). From (14), we also obtain that

∥

∥

∥e|ξ|h(t, ξ)
∥

∥

∥

L1
≤
∥

∥

∥e|ξ|h0

∥

∥

∥

L1
+

∫ t

0

(2
∥

∥

∥e|ξ|Q(τ, ·)
∥

∥

∥

L∞
‖U(τ, ·)‖L1) dτ+

∫ t

0

(C
∥

∥

∥e|ξ|U2(τ, ·)
∥

∥

∥

L1
+
∥

∥

∥e|ξ|P (τ, ·)
∥

∥

∥

L∞
‖w(τ, ·)‖L1) dτ

which, after using the L1 estimates (27), (30) and (31), yields

∥

∥

∥
e|ξ|h(t, ξ)

∥

∥

∥

L1
≤
∥

∥

∥
e|ξ|h0

∥

∥

∥

L1
+ C + C

∫ t

0

I(τ) dτ. (33)

Similarly we get that

∥

∥

∥e|ξ|w2(t, ξ)
∥

∥

∥

L1
≤
∥

∥

∥e|ξ|w2
0

∥

∥

∥

L1
+

∫ t

0

γ

2

∥

∥

∥e|ξ|h(τ, ξ)
∥

∥

∥

L1
dτ

+

∫ t

0

(C
∥

∥

∥e|ξ|U2(τ, ·)
∥

∥

∥

L1
+ C

∥

∥

∥e|ξ|P (τ, ·)
∥

∥

∥

L∞
‖w(τ, ·)‖L1) dτ.

≤
∥

∥

∥
e|ξ|w2

0

∥

∥

∥

L1
+ C + C

∫ t

0

I(τ) dτ. (34)

After summing (32), (33) and (34), we get L(t) ≤ L(0)+C+C
∫ t

0
L(τ) dτ and

the result follows by applying Gronwall’s inequality. We now turn to case (ii).
We introduce the quantity

K(t) = ‖(1 + |ξ|)αU2(t, ·)‖L1 + ‖(1 + |ξ|)αw2(t, ·)‖L1 + ‖(1 + |ξ|)αh(t, ·)‖L1 .

From (29), we get

(1 + |ξ|)αQ ≤ C

∫

R

(1 + |ξ|)αe−|ξ−η|(1 + |η|)−α(1 + |η|)α(U2q + h) dη. (35)

Since |ξ| ≤ |ξ − η| + |η| ≤ (1 + |ξ − η|)(1 + |η|), we have (1 + |ξ|) ≤ 2(1 +
|ξ − η|)(1 + |η|) and

(1 + |ξ|)α ≤ 2α(1 + |ξ − η|)α(1 + |η|)α. (36)
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Then, it follows from (35) that

(1 + |ξ|)αQ ≤ C

∫

R

e−|ξ−η|(1 + |ξ − η|)α(1 + |η|)α(U2q + h) dη

≤ C
∥

∥e−z(1 + |z|)α
∥

∥

L∞ K(t) ≤ CK(t) (37)

so that ‖(1 + |ξ|)αQ‖L∞ ≤ CK(t). We have to estimate ‖(1 + |ξ|)αQ‖L1 . We
have

‖(1 + |ξ|)αQ‖L1 ≤
∫

R2

(1 + |ξ|)αe−|ξ−η|(1 + |η|)−α(1 + |η|)α(U2q + h) dηdξ

=

∫

R2

(1 + |η + z|)αe−|z|(1 + |η|)−α(1 + |η|)α(U2q + h) dηdz

≤ 2α
∫

R2

(1 + |z|)αe−|z|(1 + |η|)α(U2q + h) dηdz (by (36))

≤ C

∫

R

(1 + |z|)αe−|z| dz

∫

R

(1 + |η|)α(U2 + h) dη

≤ CK(t). (38)

Hence,

‖(1 + |ξ|)αQ‖L1∩L∞ ≤ CK(t) (39)

and the same bound holds for P . From the governing equations, we obtain

∥

∥(1 + |ξ|)αU2(t, ξ)
∥

∥

L1 ≤
∥

∥(1 + |ξ|)αU2
0

∥

∥

L1 +

∫ t

0

‖2(1 + |ξ|)αQU(τ, ·)‖L1 dτ

≤
∥

∥(1 + |ξ|)αU2
0

∥

∥

L1 + 2

∫ t

0

∥

∥(1 + |ξ|)αQ2(τ, ·)
∥

∥

L1 dτ

+ 2

∫ t

0

∥

∥(1 + |ξ|)αU2(τ, ·)
∥

∥

L1 dτ

≤
∥

∥(1 + |ξ|)αU2
0

∥

∥

L1 + C

∫ t

0

K(τ) dτ,

by (39), as ‖Q‖L∞ ≤ C, see (17). In a similar way, one proves that

∥

∥(1 + |ξ|)αw2(t, ξ)
∥

∥

L1 ≤
∥

∥(1 + |ξ|)αw2
0

∥

∥

L1 + C

∫ t

0

K(τ) dτ

and

‖(1 + |ξ|)αh(t, ξ)‖L1 ≤ ‖(1 + |ξ|)αh0‖L1 + C

∫ t

0

K(τ) dτ

so that

K(t) ≤ K(0) + C

∫ t

0

K(τ) dτ

and the result follows from Gronwall’s Lemma. ⊓⊔
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For later use, we note that, in this proof, we have established that
∥

∥

∥
e|ξ|Q

∥

∥

∥

L∞
+
∥

∥

∥
e|ξ|P

∥

∥

∥

L∞
≤ C(‖Y ‖F exp) (40)

and
‖(1 + |ξ|)αQ‖L∞∩L1 + ‖(1 + |ξ|)αP‖L∞∩L1 ≤ C(‖Y ‖Fα) (41)

for some given increasing function C, see (30), (31) and (39).

5 Semi-Discretisation in space

The first step towards a discretisation of (14) is to consider step-functions. We
consider an equally-spaced grid on the real line defined by the points

ξi = i∆ξ,

where ∆ξ is the grid step and i = 0,±1,±2, . . .. We introduce the space

F∆ξ = {Y ∈ F : each component of Y consists of

piecewise constant functions in each intervals [ξi, ξi+1)}.

The system (14) does not preserve the set F∆ξ of piecewise constant function.
Thus, we define

P∆ξ(Y )(ξ) =
∞
∑

i=−∞
P (Y )(ξi)χ[ξi,ξi+1)(ξ), (42)

Q∆ξ(Y )(ξ) =

∞
∑

i=−∞
Q(Y )(ξi)χ[ξi,ξi+1)(ξ) (43)

and consider a second system of differential equations

ζt = γU

Ut = −Q∆ξ

Ht = U3 − 2P∆ξU

qt = γw

wt =
γ

2
h+

(3− 2γ

2
U2 − P∆ξ

)

q

ht = −2Q∆ξUq +
(

3U2 − 2P∆ξ

)

w,

(44)

or, shortly,
Yt(t) = G∆ξ(Y (t)).

Like in the preceding section, we show that this system of differential equations
possesses a short-time solution, an invariant and that it solution converges to
the solution of (14) as ∆ξ → 0. In the next theorem we prove, by a contraction
argument, the short-time existence of solutions to (44).
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Theorem 5 For any initial value Y0 = (y0, U0, H0, q0, w0, h0) ∈ F , there ex-
ists a time T , only depending on ‖Y0‖F , such that the system of differential
equations (44) admits a unique solution in C1([0, T ], F ).

This theorem is a consequence of point (i) in the following lemma.

Lemma 3 The following statements hold

(i) The mapping G∆ξ : F → F belongs to C1(F, F ) and

‖G∆ξ(Y )‖F +

∥

∥

∥

∥

∂G∆ξ

∂Y
(Y )

∥

∥

∥

∥

L(F,F )

≤ C(M), (45)

for any Y ∈ BM .
(ii) For any Y ∈ F , we have

‖G(Y )−G∆ξ(Y )‖F ≤ C
√

∆ξ (46)

for some constant C which only depends on ‖Y ‖F .

Proof For any function f ∈ H1(R), let P(f) be the function defined as

P(f)(ξ) =
∞
∑

i=−∞
f(ξi)χ[ξi,ξi+1)(ξ). Thus, we can rewrite Q∆ξ(Y ) and P∆ξ(Y )

as
Q∆ξ(Y ) = P[Q(Y )] and P∆ξ(Y ) = P[P (Y )].

Let us prove that P is a continuous mapping from H1(R) to L∞(R) ∩ L2(R).
By using the Sobolev embedding theorem of H1(R) into L∞(R), we get

‖P(f)‖L∞ ≤ ‖f‖L∞ ≤ C ‖f‖H1

for some constant C, so that P is continuous from H1(R) into L∞(R). The L2

norm of P(f) is given by

‖P(f)‖2L2 =

∞
∑

i=−∞
∆ξf(ξi)

2.

We have, for all ξ ∈ [ξi, ξi+1), that

f(ξi)
2 = f(ξ)2 − 2

∫ ξ

ξi

f(η)fξ(η) dη

≤ f(ξ)2 +

∫ ξi+1

ξi

f2(η) dη +

∫ ξi+1

ξi

f2
ξ (η) dη

which, after integration over [ξi, ξi+1), yields

∆ξf(ξi)
2 ≤

∫ ξi+1

ξi

f(η)2 dη +∆ξ
(

∫ ξi+1

ξi

f2(η) dη +

∫ ξi+1

ξi

f2
ξ (η) dη

)

.

Hence,
‖P(f)‖2L2 ≤ (1 +∆ξ) ‖f‖2L2 +∆ξ ‖fξ‖2L2
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and the mapping P is continuous from H1(R) to L2(R). Since Q∆ξ and P∆ξ

are compositions of a continuous linear map P and a C1 map, they are also
C1 and

∂P∆ξ

∂Y
(Ȳ ) = P(

∂P

∂Y
(Y )[Ȳ ])

for all Ȳ ∈ F . The same holds for Q so that (45) follows from Lemma 1. Let
us prove point (ii). First we note that (46) follows directly from the definitions
of G, G∆ξ and the estimate

‖Q(Y )−Q∆ξ(Y )‖L2∩L∞ + ‖P (Y )− P∆ξ(Y )‖L2∩L∞ ≤ C
√

∆ξ. (47)

Let us prove (47). We estimate ‖Id−P‖L(H1,L∞∩L2), where the norm here is

the operator norm from H1(R) to L∞(R)∩L2(R). Let us consider f ∈ H1(R),
we have

‖f −P(f)‖L∞ ≤ sup
i

‖f(ξ)− f(ξi)‖L∞([ξi,ξi+1])
.

For any ξ ∈ [ξi, ξi+1), we have |f(ξ)− f(ξi)| ≤
√
∆ξ ‖fξ‖L2 , by the Cauchy–

Schwartz inequality. Hence,

‖f −P(f)‖L∞ ≤
√

∆ξ ‖fξ‖L2 ≤
√

∆ξ ‖f‖H1 .

We have

∫ ξi+1

ξi

|f(ξ)−P(f)(ξ)|2 dξ =

∫ ξi+1

ξi

∣

∣

∣

∣

∣

∫ ξ

ξi

fξ(η) dη

∣

∣

∣

∣

∣

2

dξ

≤
∫ ξi+1

ξi

((ξ − ξi)

∫ ξ

ξi

f2
ξ (η) dη) dξ

≤
∫ ξi+1

ξi

f2
ξ (η) dη

∫ ξi+1

ξi

(ξ − ξi) dξ

=
(∆ξ)2

2

∫ ξi+1

ξi

f2
ξ (η) dη.

Hence,

‖f −P(f)‖L2 ≤ ∆ξ
√

2
‖f‖H1 (48)

and we have proved that ‖Id−P‖L2∩L∞ ≤ C
√
∆ξ for some constant C. Then,

we have

‖Q(Y )−Q∆ξ(Y )‖L2∩L∞ ≤ C
√

∆ξ ‖Q(Y )‖H1 ≤ C′√∆ξ

for another constant C′ which depends only on ‖Y ‖F . One proves in the same
way the same estimate for P and thus we obtain (47). ⊓⊔
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Concerning our new system of equations (44), it is not difficult to show in
the same way as in (24) that

I∆ξ(Y ) := U2q2 + w2 − qh

is also a conserved quantity along the exact solution of our problem. The
system (44) is introduced because it allows for a spatial discretisation of the
original system (14). Indeed, the set of piecewise constant functions is pre-
served:

Lemma 4 The set F∆ξ is preserved, that is, if Y0 ∈ F∆ξ and Y (t) is the
solution of (44) with initial data Y0, then Y (t) ∈ F∆ξ for all t ∈ [0, T ].

The proof of this lemma is straightforward. We can now compare solutions of
(44) and of the original system (14).

Theorem 6 Given M > 0 and Y0, Y0,∆ξ ∈ F . Let Y (t) be the short-time
solution of (14) with initial data Y0 and Y∆ξ(t) be the short-time solution of
(44) with initial data Y0,∆ξ in the interval [0, T ]. If we have

‖Y (t)‖F ≤ M and ‖Y∆ξ(t)‖F ≤ M for all t ∈ [0, T ],

then we also have

‖Y (t)− Y∆ξ(t)‖F ≤
(

‖Y0 − Y0,∆ξ‖+ CT
√

∆ξ
)

eCT for all t ∈ [0, T ] (49)

with some constant C which depends only on M .

Proof The proof of this theorem is a consequence of Lemma 3 and of Gronwall’s
Lemma. We have

Y (t)− Y∆ξ(t) = Y0 − Y0,∆ξ +

∫ t

0

(

G(Y (τ)) −G∆ξ(Y∆ξ(τ))
)

dτ

= Y0 − Y0,∆ξ +

∫ t

0

(

G(Y (τ)) −G(Y∆ξ(τ)) +G(Y∆ξ(τ)) −G∆ξ(Y∆ξ(τ))
)

dτ

which yields, after using Proposition 1 and Lemma 3,

‖Y (t)− Y∆ξ(t)‖F ≤ ‖Y0 − Y0,∆ξ‖F + C

∫ t

0

‖Y (τ) − Y∆ξ(τ)‖F dτ + CT
√

∆ξ,

for some constant C which depends only on M . Then, (49) follows from Gron-
wall’s Lemma. ⊓⊔

Lemma 2 and Theorem 4 show that there exist properties of the initial data
that are preserved by the system (14). The same results - with the exception
of property (iv) in Lemma 2 - hold for the system (44). This is the content of
the following theorem.

Theorem 7 We consider an initial datum Y0 ∈ F and the corresponding short
time solution Y (t) of (44) given by Theorem 5.
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(i) If q0, w0, h0 belongs to L∞(R) then

sup
t∈[0,T ]

(‖q(t, ·)‖L∞ + ‖w(t, ·)‖L∞ + ‖h(t, ·)‖L∞) ≤ C

for some constant C which depends only on T and ‖Y0‖F exp .
(ii) If we have qh = U2q2 + w2 for t = 0 (or I(Y0) = 0) then this holds for all

t ∈ [0, T ].
(iii) If we have qh = U2q2 + w2 (or I(Y ) = 0) and q ≥ 0, h ≥ 0, q + h ≥ c

almost everywhere for some constant c > 0, then the same relations holds
for all t ∈ [0, T ].

(iv) If Y0 ∈ F exp, then

sup
t∈[0,T ]

‖Y (t, ·)‖F exp ≤ C, (50)

if Y0 ∈ Fα, then

sup
t∈[0,T ]

‖Y (t, ·)‖Fα ≤ C, (51)

where the constant C depends only on T and ‖Y0‖F exp , and T and ‖Y0‖Fα ,
respectively.

Proof The system (44) is obtained from (14) by simply replacing P and Q by
P∆ξ and Q∆ξ as defined in (42) and (43). Therefore, the proofs of points (i),
(ii) and (iii) in Lemma 2, which do not require any special properties of P and
Q, apply directly to (44). After introspection of the proof of Theorem 4, we
can see that in order to prove (50), we need to prove that the estimates (25),
(26), (30), (31), which hold for P and Q, also hold for P∆ξ and Q∆ξ, namely,

‖Q∆ξ(t, ·)‖L1 ≤ C(‖h(t, ·)‖L1 + 1), ‖P∆ξ(t, ·)‖L1 ≤ C(‖h(t, ·)‖L1 + 1) (52)

and
∥

∥

∥e|ξ|Q∆ξ(t, ·)
∥

∥

∥

L∞
≤ CL(t),

∥

∥

∥e|ξ|P∆ξ(t, ·)
∥

∥

∥

L∞
≤ CL(t), (53)

where L(t) is defined in (28) and C is a constant which depends only on T and
‖Y0‖F exp . We denote generically by C such constant. In the same way that we
obtained (48), we now get that, for any f ∈ W 1,1(R),

∫ ξi+1

ξi

|f(ξ)−P(f)(ξ)| dξ =

∫ ξi+1

ξi

∣

∣

∣

∣

∣

∫ ξ

ξi

fξ(η) dη

∣

∣

∣

∣

∣

dξ

≤ ∆ξ

∫ ξi+1

ξi

|fξ(η)| dη

and therefore

‖f −P(f)‖L1 ≤ ∆ξ ‖fξ‖L1 . (54)
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We obtain, after using successively (54), (25), (22) and (26), that

‖Q∆ξ‖L1 ≤ ‖Q∆ξ −Q‖L1 + ‖Q‖L1

≤ ∆ξ ‖Qξ‖L1 + C(‖h‖L1 + 1)

= ∆ξ
∥

∥

∥

γ

2
h+

3− 2γ

2
U2q − Pq

∥

∥

∥

L1
+ C(‖h‖L1 + 1)

≤ C ‖P‖L1 + C(‖h‖L1 + 1)

≤ C(‖h‖L1 + 1).

We handle in the same way ‖P∆ξ‖L1 and this concludes the proof of (52). For
any ξ ∈ R, we have ξ ∈ [ξi, ξi+1) for some i. Then,

e|ξ|Q∆ξ(t, ξ) = e|ξ|−|ξi|e|ξi|Q(t, ξi) ≤ e∆ξ
∥

∥eξQ(t, ξ)
∥

∥

L∞ ≤ CL(t)

by (30) and, therefore,
∥

∥e|ξ|Q∆ξ(t, ·)
∥

∥

L∞ ≤ CL(t). Similarly, we obtain the
corresponding result for P∆ξ so that (53) is proved. Again, after introspection
of the proof of Theorem 4, we can check that, in order to prove (51), we need
to prove that

‖(1 + |ξ|)αQ∆ξ(t, ·)‖L∞∩L1 + ‖(1 + |ξ|)αP∆ξ(t, ·)‖L∞∩L1 ≤ CK(t). (55)

We have

‖(1 + |ξ|)αQ∆ξ(t, ·)‖L∞ ≤ ‖(1 + |ξ|)αQ(t, ·)‖L∞ ≤ CK(t)

by (37). Since eξ−η ≤ e∆ξeξi−η for any (ξ, η) ∈ [ξi, ξi+1]
2, we get

‖(1 + |ξ|)αQ∆ξ(t, ·)‖L1 ≤
∞
∑

i=−∞

∫ ξi+1

ξi

∫

R

(1 + |ξ|)αe−|ξi−η|(U2q + h) dηdξ

≤ e∆ξ
∞
∑

i=−∞

∫ ξi+1

ξi

∫

R

(1 + |ξ|)αe−|ξ−η|(U2q + h) dηdξ

= e∆ξ

∫

R

∫

R

(1 + |ξ|)αe−|ξ−η|(U2q + h) dηdξ ≤ CK(t),

by (38). The corresponding results for P are established in the same way and
this concludes the poof of (55). ⊓⊔

In order to complete the discretisation in space, we have to consider a finite
subspace of F∆ξ. Given any integer N , we denote R = N∆ξ and we introduce
the subset FR of F defined as

FR = {Y ∈ F :

U(ξ) = q(ξ) = w(ξ) = h(ξ) = 0, for all ξ ∈ (−∞,−R) ∪ [R,∞),

ζ(ξ) = ζ∞, H(ξ) = H∞, for all ξ ∈ [R,∞),

ζ(ξ) = ζ−∞, H(ξ) = 0 for all ξ ∈ (−∞,−R),

where ζ±∞ and H∞ are constants}.
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The set FR basically corresponds to functions with compact support (U , q, w
and h vanish outside a compact set). We do not require that the functions ζ
and H have compact support (ζ and H belongs to L∞ with no extra decay
condition) but we impose that they are constant outside the compact interval
[−R,R]. We denote F{∆ξ,R} = FR ∩ F∆ξ. The set F{∆ξ,R} is not preserved
by the flow of (44) because, as mentioned earlier, P and Q do not preserve
compactly supported functions. That is why we introduce the cut-off versions
of P and Q given by

P{∆ξ,R}(Y )(ξ) =

N−1
∑

i=−N

P (Y )(ξi)χ[ξi,ξi+1)(ξ),

Q{∆ξ,R}(Y )(ξ) =

N−1
∑

i=−N

Q(Y )(ξi)χ[ξi,ξi+1)(ξ)

and define a third system of differential equations

ζt = γU,

Ut = −Q{∆ξ,R},

Ht = U3 − 2P{∆ξ,R}U,

qt = γw,

wt =
γ

2
h+

(3− 2γ

2
U2 − P{∆ξ,R}

)

q,

ht = −2Q{∆ξ,R}Uq +
(

3U2 − 2P{∆ξ,R}
)

w,

(56)

or, shortly,
Yt = G{∆ξ,R}(Y ).

It is clear from the definition that the system (56) preserves F{∆ξ,R} and
therefore, since F{∆ξ,R} is of finite dimension, the system (56) is a spatial
discretisation of (14) which allows for numerical computations. To emphasize
that we are now working in finite dimension, we denote

Yi(t) = Y{∆ξ,R}(t, ξi),

ζi = ζ{∆ξ,R}(t, ξi), Ui = U{∆ξ,R}(t, ξi) and so on for Hi, qi, wi, hi, Pi and Qi

for i = {−N, . . . , N − 1}. We have

Y{∆ξ,R}(t, ξ) =
N−1
∑

i=−N

Yi(t)χ[ξi,ξi+1)(ξ).

Again, we can show that

Ii{∆ξ,R}(Y ) := U2
i q

2
i + w2

i − qihi (57)

are conserved quantities along the exact solution of problem (56). Finally, note
that F{∆ξ,R} is contained in F exp and Fα. Concerning the exact solution of
(56), we have the following theorem.
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Theorem 8 For an initial values Y0 = (y0, U0, H0, q0, w0, h0) ∈ F , there ex-
ists a time T , only depending on the norm of the initial values, such that the
system of differential equations (56) admits a unique solution in C1([0, T ], F ).

This theorem is a consequence of point (i) in the following lemma.

Lemma 5 The following statements holds

(i) The mapping G{∆ξ,R} : F → F belongs to C1(F, F ) and

∥

∥G{∆ξ,R}(Y )
∥

∥

F
+

∥

∥

∥

∥

∂G{∆ξ,R}
∂Y

(Y )

∥

∥

∥

∥

L(F,F )

≤ C(M), (58)

for any Y ∈ BM .
(ii) For any Y ∈ F exp, we have

∥

∥G{∆ξ,R}(Y )−G∆ξ(Y )
∥

∥

F
≤ Ce−R, (59)

for some constant C which only depends on ‖Y ‖F exp .
(iii) For any Y ∈ Fα, we have

∥

∥G{∆ξ,R}(Y )−G∆ξ(Y )
∥

∥

F
≤ C(

√

∆ξ +
1

Rα/2
), (60)

for some constant C which only depends on ‖Y ‖Fα .

Note that for Y (t) solution of (56), we have

sup
t∈[0,T ]

‖Y (t, ·)‖F exp ≤ C and sup
t∈[0,T ]

‖Y (t, ·)‖Fα ≤ C,

where C depends on ‖Y0‖F exp and ‖Y0‖Fα , respectively. This follows from (50),
(51), (59) and (60).

Proof (Proof of Lemma 5) For any function f ∈ L∞(R) ∩ L2(R), let PR(f)
be the function defined as PR(f)(ξ) = f(ξ)χ[−R,R). Thus, we can rewrite
Q{∆ξ,R}(Y ) and P{∆ξ,R}(Y ) as

Q{∆ξ,R}(Y ) = PR[Q∆ξ(Y )] and P{∆ξ,R}(Y ) = PR[P∆ξ(Y )].

The operator PR is a projection from L∞(R)∩L2(R) into itself and therefore
its norm is smaller than one. Hence, (58) follows from (45). Let us prove (ii).
We consider Y ∈ F exp. We have to prove
∥

∥Q{∆ξ,R}(Y )−Q∆ξ(Y )
∥

∥

L2∩L∞ +
∥

∥P{∆ξ,R}(Y )− P∆ξ(Y )
∥

∥

L2∩L∞ ≤ Ce−R.
(61)

By (40), we have
∥

∥e|ξ|Q
∥

∥

L∞ +
∥

∥e|ξ|P
∥

∥

L∞ ≤ C. Hence,

∥

∥Q{∆ξ,R} −Q∆ξ

∥

∥

L∞ = sup
|ξi|≥R

|Q(ξi)| ≤ C sup
|ξi|≥R

e−|ξi| = Ce−R.

We have
∥

∥Q{∆ξ,R} −Q∆ξ

∥

∥

2

L2 = ∆ξ
∑

|ξi|≥R

Q(ξi)
2 ≤ C∆ξ

∑

|i∆ξ|≥R

e−2|i∆ξ| ≤ C
2∆ξ

1− e−2∆ξ
e−2R



24 David Cohen, Xavier Raynaud

and therefore
∥

∥Q{∆ξ,R} −Q∆ξ

∥

∥

L2
≤ Ce−R. We prove in the same way the

corresponding result for P and it concludes the proof of (61). The estimate
(59) follows from (61). Let us prove (iii). We consider Y ∈ Fα. We have to
prove that

∥

∥Q{∆ξ,R}(Y )−Q∆ξ(Y )
∥

∥

L2∩L∞

+
∥

∥P{∆ξ,R}(Y )− P∆ξ(Y )
∥

∥

L2∩L∞ ≤ C(
√

∆ξ +
1

Rα/2
). (62)

By (41), we have ‖(1 + |ξ|)αQ‖L∞ + ‖(1 + |ξ|)αP‖L∞ ≤ C. Hence,
∥

∥Q{∆ξ,R} −Q∆ξ

∥

∥

L∞ = sup
|ξi|≥R

|Q(ξi)| ≤ C sup
|ξi|≥R

(1 + |ξi|)−α = C(1 +R)−α.

(63)
We have

∥

∥Q{∆ξ,R} −Q∆ξ

∥

∥

L2(R)
= ‖Q∆ξ‖L2(R\[−R,R])

≤ ‖Q∆ξ −Q‖L2(R\[−R,R]) + ‖Q‖L2(R\[−R,R])

≤ C(
√

∆ξ + ‖Q‖L2(R\[−R,R])), (64)

from (47). Since

‖Q‖2L2(R\[−R,R]) ≤ (1 + |R|)−α

∫

R\[−R,R]

(1 + |ξ|)αQ2 dξ

≤ C(1 +R)−α, by (41),

the estimate (62) follows from (63) and (64). ⊓⊔
Again, the system (56) preserves properties of the initial data:

Theorem 9 We consider an initial datum Y0 ∈ F and the corresponding short
time solution Y (t) of (56) given by Theorem 8. Then, Y (t) satisfy points (i)-
(iv) as given in Theorem 7.

Finally, for any initial datum in Y0 ∈ F exp, resp. Y0 ∈ Fα, we obtain the
following error estimate for bounded solutions.

Theorem 10 Given Y0 and Y0,∆ξ,R in F exp, let Y (t) and Y{∆ξ,R}(t) be the
short-time solutions of (14) and (56), respectively, with initial datum Y0 and
Y0,∆ξ,R, respectively. If we have

‖Y (t)‖F exp ≤ M and
∥

∥Y{∆ξ,R}(t)
∥

∥

F
≤ M for all t ∈ [0, T ],

then we have

sup
t∈[0,T ]

∥

∥Y (t, ·)− Y{∆ξ,R}(t, ·)
∥

∥

F
≤ C

(

‖Y0 − Y0,∆ξ,R‖F +
√

∆ξ + e−R
)

, (65)

where the constant C depends only on M . For Y0 and Y0,∆ξ,R in Fα, we have
that if

‖Y (t)‖Fα ≤ M and
∥

∥Y{∆ξ,R}(t)
∥

∥

F
≤ M for all t ∈ [0, T ],
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then

sup
t∈[0,T ]

∥

∥Y (t, ·)− Y{∆ξ,R}(t, ·)
∥

∥

F
≤ C

(

‖Y0 − Y0,∆ξ,R‖F +
√

∆ξ+
1

Rα/2

)

. (66)

Proof We have

∥

∥Y (t, ·)− Y{∆ξ,R}(t, ·)
∥

∥

F
≤ ‖Y0 − Y0,∆ξ,R‖F +

∫ t

0

∥

∥G(Y (τ, ·)) −G{∆ξ,R}(Y{∆ξ,R}(τ, ·))
∥

∥

F
dτ. (67)

By Proposition 1 and Lemmas 3 and 5, we get

‖G(Y (τ, ·))−G{∆ξ,R}(Y{∆ξ,R}(τ, ·))‖F
≤ ‖G(Y (τ, ·))−G∆ξ(Y (τ, ·))‖F
+
∥

∥G∆ξ(Y (τ, ·)) −G{∆ξ,R}(Y (τ, ·))
∥

∥

F

+
∥

∥G{∆ξ,R}(Y (τ, ·)) −G{∆ξ,R}(Y{∆ξ,R}(τ, ·))
∥

∥

F

≤ C
(

(∆ξ)

1

2 + e−R +
∥

∥Y (τ, ·)− Y{∆ξ,R}(τ, ·)
∥

∥

F

)

for a constant C which depends only on M . Hence, (65) follows from (67) after
applying Gronwall’s Lemma. The proof of (66) is similar. ⊓⊔

6 Approximation of the initial data and Convergence of the
Semi-Discrete solutions

6.1 Approximation of the initial data

The construction of the initial data Y0,∆ξ,R for (56) is done in two steps. First,
we change variable from Eulerian to Lagrangian, that is, we compute Y0 ∈ G
such that X = (y0, U0, H0) ∈ F satisfies

U0 = u0 ◦ y0. (68)

In the new set of variables, we can solve (14) or, rather, its discretisation (56).
Note that, given u0 ∈ H1(R), there exists several Y0 ∈ G such that (68) holds
(this is a consequence of relabeling invariance, see [18] and this fact will be
used in the numerical examples of Section 9). Here, we present a framework
valid for general initial data in H1(R). In Section 2, we defined the mapping
L from D to F . For (u0, µ0) ∈ D, i.e. for u0 ∈ H1(R) and µ0 = (u2

0 + u2
0,x) dx

absolutely continuous, this mapping simplifies and reads

y0(ξ) +

∫ y0(ξ)

−∞
(u2

0 + u2
0,x) dx = ξ, (69a)

U0 = u0 ◦ y and H0 = Id− y0. (69b)
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Then, we set

q0 = y0,ξ, w = U0,ξ, h = H0,ξ. (69c)

As earlier, we denote v0 = 1− q0 and ζ0 = Id− y0. We have

h0q0 = q20U
2
0 +w2

0, q0+h0 = 1, q0 > 0, h0 ≥ 0 for almost every ξ ∈ R.
(70)

The element Y0 = (y0, U0, H0, q0, w0, h0) belongs to G. The second step consists
of computing an approximation of Y0 in F{∆ξ,R}. In the following theorem, we
show how the change of variable given by (69) deal with the decay conditions.
For simplicity, we drop the subscript zero in the notation. Let us introduce the
Banach spaces H1,exp and H1,α as the subspaces of H1 with respective norms

‖u‖2H1,exp =
∥

∥

∥
e| ξ2 |u

∥

∥

∥

2

L2
+
∥

∥

∥
e| ξ2 |ux

∥

∥

∥

2

L2

and

‖u‖2H1,α =
∥

∥(1 + |ξ|)α
2 u
∥

∥

2

L2 +
∥

∥(1 + |ξ|)α
2 ux

∥

∥

2

L2 .

Theorem 11 Given u and Y as given by (69), we have

(i) u ∈ H1,exp if and only if Y ∈ F exp,
(ii) u ∈ H1,α if and only if Y ∈ Fα.

Proof Let us assume that u ∈ H1,exp. By definition, we have h = (u2+u2
x)◦yyξ.

Hence,

∫

R

e|ξ|h(ξ) dξ =

∫

R

e|ξ|(u2 + u2
x) ◦ y(ξ)yξ(ξ) dξ

=

∫

R

e|y−1(x)|(u2 + u2
x)(x) dx

=

∫

R

e|y−1(x)−x|e|x|(u2 + u2
x)(x) dx

≤ e‖y(ξ)−ξ‖L∞

∫

R

e|x|(u2 + u2
x)(x) dx < ∞.

Using (70), we get

∫

R

e|ξ|w2(ξ) dξ ≤ ‖q‖L∞

∫

R

e|ξ|h(ξ) dξ < ∞.

In order to prove that
∫

R
e|ξ|U2 dξ is finite, we decompose the integral as

follows:

∫

R

e|ξ|U2 dξ =

∫

{ξ∈R|q< 1
2
}
e|ξ|U2 dξ +

∫

{ξ∈R|q> 1
2
}
e|ξ|U2 dξ.
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We have
∫

{ξ∈R|q< 1
2
}
e|ξ|U2 dξ ≤ ‖U‖2L∞

∫

{ξ∈R|q< 1
2
}
e|ξ| dξ

≤ ‖U‖2L∞

∫

{ξ∈R|h> 1
2
}
e|ξ| dξ, as q + h = 1,

≤ 2 ‖U‖2L∞

∫

{ξ∈R|h> 1
2
}
he|ξ| dξ ≤ C

∫

R

e|ξ|h dξ < ∞

and
∫

{ξ∈R|q> 1
2
}
e|ξ|U2 dξ ≤ 2

∫

{ξ∈R|q> 1
2
}
e|ξ|

U2

q
dξ

≤ 2

∫

{ξ∈R|q> 1
2
}
e|ξ|qh dξ, as U2 ≤ qh by (70),

< ∞.

Hence,
∫

R
e|ξ|U2 dξ < ∞. Let us now assume that Y ∈ F exp. Then,

∫

R

e|x|(u2 + u2
x)(x) dx =

∫

R

e|y(ξ)|(u2 + u2
x)(y(ξ))yξ(ξ) dξ

=

∫

R

e|y(ξ)|h(ξ) dξ

≤
∫

R

e|y(ξ)−ξ|e|ξ|h(ξ) dξ

≤ e(‖y(ξ)−ξ‖L∞)

∫

R

e|ξ|h(ξ) dξ < ∞

and u0 ∈ H1,exp. The case (ii) is proved in the same way. ⊓⊔

As a consequence of this theorem and Theorem 4, we obtain

Theorem 12 The spaces H1,exp and H1,α are preserved by the hyperelastic
rod equation: If u0 ∈ H1,exp, then u(t, ·) ∈ H1,exp for all positive time and,
similarly, if u0 ∈ H1,α, then u(t, ·) ∈ H1,α for all positive time.

To the best of our knowledge, these decay results are new, even for the
Camassa-Holm equation (case γ = 1). They have to be compared with [15]
where it is established that the only solution which has compact support for all
positive time is the zero solution, i.e., the compactness of the support (which
is a kind of decay condition) is not preserved by the equation.

Let us now construct the approximating sequence for the initial data. From
(70), we get that

0 ≤ q ≤ 1, 0 ≤ h ≤ 1

and

Uξ = w ≤
√

hq ≤ 1

2
(h+ q) =

1

2
. (71)
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Given an integer n, we consider ∆ξ and R such that 1
n = 1

R +∆ξ = 1
R + R

N
so that n → ∞ if and only if ∆ξ → 0 and R → ∞. We introduce the map-
ping I∆ξ : L2 → L2 which approximates L2 functions by piecewise constant
functions, that is, given f ∈ L2, let

f̄i =
1

∆ξ

∫ ξi+1

ξi

f(ξ) dξ

and set

I∆ξ(f)(ξ) =

∞
∑

i=−∞
f̄i · χ[ξi,ξi+1)(ξ).

We define Yn = (yn, Un, Hn, qn, wn, hn) as follows. Let

vn(ξ) = PRI∆ξ(v), wn(ξ) = PRI∆ξ(w), hn(ξ) = PRI∆ξ(h).

As usual, we denote q = 1 + v and qn = 1 + vn. Moreover, let us define the
weighted integrals

Ui,n =

∫ ξi+1

ξi
q2nUn dξ

∫ ξi+1

ξi
q2n dξ

.

We set

Un(ξ) =

N−1
∑

i=−N

Ui,n · χ[ξi,ξi+1)(ξ), for i = −N, . . . , N − 1.

We define

Hn(ξ) = P

(

∫ ξ

−∞
hn dη

)

if ξ ∈ [−R,R]

and Hn(ξ) =
∫ −R

−∞ hn dη if ξ ∈ (−∞,−R), Hn(ξ) =
∫∞
R

hn dη if ξ ∈ (R,∞).
For yn, we set

yn(ξ) = ξ −Hn(ξ) if ξ ∈ [−R,R]

and yn(ξ) = ξ −Hn(−R) if ξ ∈ (−∞,−R), yn(ξ) = ξ −Hn(R) if ξ ∈ (R,∞).
The definition of P is given in the proof of Lemma 3. The following theorem
states that Yn approximates Y in F{∆ξ,R} and satisfies additional properties
which will be useful in Theorem 17, where we prove that the positivity of the
energy is preserved by the numerical scheme.

Theorem 13 Given Y ∈ G, there exist a sequence Yn ∈ F{∆ξ,R} such that

lim
n→∞

‖Yn − Y ‖F = 0, (72a)

and

qnhn ≥ U2
nq

2
n + w2

n, qn + hn = 1, for all n ≥ 0 and for all ξ. (72b)

Moreover, we have

‖Yn‖F exp ≤ C ‖Y ‖F exp and ‖Yn‖Fα ≤ C ‖Y ‖Fα (72c)

for Y ∈ F exp, resp. Y ∈ Fα, and where the constant C which does not depend
on Y and n.
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Proof Let us first prove (72b). Since q+h = 1 (see (70)), we obtain qn+hn = 1
from the definitions of vn (recall that qn = 1 + vn) and hn. We consider a fix
given interval I = [ξi, ξi+1] and, for convenience, denote by an integral without

boundary the weighted integral
∫

f(ξ) dξ = 1
∆ξ

∫ ξi+1

ξi
f(ξ) dξ so that, for ξ ∈ I,

qn =
∫

q dξ, wn =
∫

w dξ and hn =
∫

h dξ. Using Jensen’s inequality, we get
that

q2n + U2
nq

2
n + w2

n =
(

∫

q dξ
)2

+ U2
n

(

∫

q dξ
)2

+
(

∫

w dξ
)2

≤
∫

q2 dξ + U2
n

∫

q2 dξ +

∫

w2 dξ

=

∫

q2 dξ + U2
n

∫

q2 dξ +

∫

(

q(1 − q)− q2U2
)

dξ

= qn + U2
n

∫

q2 dξ −
∫

(q2U2) dξ. (73)

Using the Cauchy-Schwarz inequality and the definition of Un, we obtain

U2
n

∫

q2 dξ =
(
∫

q2U)2 dξ
∫

q2 dξ
≤
∫

q2 dξ
∫

q2U2 dξ
∫

q2 dξ
=

∫

q2U2 dξ.

Hence, (73) yields

q2n + U2
nq

2
n + w2

n ≤ qn

which, as qn + hn = 1, is equivalent to qnhn ≥ U2
nq

2
n + w2

n. Let us now prove
(72a). A direct computation shows that

‖PRI∆ξ(f)‖L2 ≤ ‖f‖L2 , (74)

for any f ∈ L2(R) and any n. Since limn→∞ ‖PRI∆ξ(f)− f‖L2 = 0 for any
smooth function f with compact support, we obtain, by density and (74), that
the same result holds for any f ∈ L2(R). Hence,

lim
n→∞

‖qn − q‖L2 = 0, lim
n→∞

‖wn − w‖L2 = 0 and lim
n→∞

‖hn − h‖L2 = 0.

On the interval I = [ξi, ξi+1], we have

|Un(ξ)− U(ξ)| =
∣

∣

∣

∣

∫

q2(η)(U(η) − U(ξ)) dη
∫

q2 dη

∣

∣

∣

∣

≤ ∆ξ

2

as |Uξ| ≤ 1
2 , see (71). Hence, ‖Un − U‖L∞(−R,R) ≤ ∆ξ

2 and

‖Un − U‖L∞ ≤ ‖Un − U‖L∞(−R,R) + ‖U‖L∞((−∞,−R)∪(R,∞))

≤ ∆ξ

2
+ ‖U‖L∞((−∞,−R)∪(R,∞)) . (75)
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Since U ∈ H1(R), limξ→±∞ Un = 0 and (75) yields limn→∞ ‖Un − U‖L∞ = 0.
We have

‖Un −PR(U)‖2L2 =

N−1
∑

i=−N

∫ ξi+1

ξi





∫ ξi+1

ξi
q2U dη

∫ ξi+1

ξi
q2 dη

− U(ξ)





2

dξ

≤
N−1
∑

i=−N

1
∫ ξi+1

ξi
q2 dη

∫ ξi+1

ξi

∫ ξi+1

ξi

q2(η)(U(ξ) − U(η))2 dξdη,

(76)

after applying Cauchy-Schwarz. For ξ, η ∈ I, we have

(

U(ξ)− U(η)
)2

=
(

∫ ξ

η

Uξ(η̄) dη̄
)2 ≤ ∆ξ

∫ ξ

η

Uξ(η̄)
2 dη̄ ≤ ∆ξ

∫ ξi+1

ξi

U2
ξ dη̄.

Hence, (76) yields

‖Un −PR(U)‖2L2 ≤
N−1
∑

i=−N

(∆ξ)2
∫ ξi+1

ξi
q2 dη

∫ ξi+1

ξi

q2 dη

∫ ξi+1

ξi

U2
ξ dη̄ ≤ (∆ξ)2 ‖Uξ‖2L2 .

It follows that

‖Un − U‖L2 ≤ ‖Un −PR(U)‖L2 + ‖U −PR(U)‖L2

≤ ∆ξ ‖Uξ‖L2 + ‖U‖L2((−∞,−R)∪(R,∞))

and therefore limn→∞ ‖Un − U‖L2 = 0. The function h belongs to L1(R) be-
cause h = h2 + U2q2 + w2, by (70). A direct computation shows that

‖PRI∆ξ(f)‖L1 ≤ ‖f‖L1 , (77)

for any f ∈ L1(R) and any n. Since limn→∞ ‖PRI∆ξ(f)− f‖L1 = 0 for any
smooth function f with compact support, we obtain, by density and (77), that
the same result holds for any f ∈ L1(R). Hence, limn→∞ ‖hn − h‖L1 = 0 and
therefore

lim
n→∞

‖Hn −H‖L∞ = 0.

Since yn = ξ −Hn and y = ξ −H , we get also that limn→∞ ‖yn − y‖L∞ = 0.
Let us look at the bounds on the decay of Y . We assume Y ∈ F e. We have

∫

R

e|ξ| |hn| dξ =
1

∆ξ

N+1
∑

i=−N

∫ ξi+1

ξi

∫ ξi+1

ξi

e|ξ| |h(η)| dηdξ

=
1

∆ξ

N+1
∑

i=−N

∫ ξi+1

ξi

∫ ξi+1

ξi

e|ξ|e−|η|e|η| |h(η)| dηdξ

≤ 1

∆ξ

N+1
∑

i=−N

∫ ξi+1

ξi

∫ ξi+1

ξi

e|ξ−η|e|η| |h(η)| dηdξ

≤ e∆ξ
N+1
∑

i=−N

∫ ξi+1

ξi

e|η| |h(η)| dη ≤ 3 ‖Y ‖F exp ,
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after assuming, without loss of generality, that ∆ξ ≤ 1. Similarly one proves
that

∫

R
e|ξ|w2 dξ ≤ C ‖Y ‖F exp . It remains to estimate

∫

R
U2
ne

|ξ| dξ. For any
η, ξ ∈ [ξi, ξi+1], we have

U2(η) = U2(ξ) + 2

∫ η

ξ

UUξ(ξ̄) dξ̄

≤ U2(ξ) +

∫ ξi+1

ξi

(U2 + (Uξ)
2)(ξ̄) dξ̄ = U2(ξ) +

∫ ξi+1

ξi

(U2 + w2)(ξ̄) dξ̄.

Hence,

U2
i,n =





∫ ξi+1

ξi
q2(η)U(η) dη

∫ ξi+1

ξi
q2(η) dη





2

≤
∫ ξi+1

ξi
q2(η)U2(η) dη

∫ ξi+1

ξi
q2(η) dη

(by Cauchy-Schwarz)

≤ U2(ξ) +

∫ ξi+1

ξi

(U2 + w2)(ξ̄) dξ̄

for any ξ ∈ [ξi, ξi+1]. Then,

∫

R

e|ξ|U2
n dξ =

N−1
∑

i=−N

∫ ξi+1

ξi

e|ξ|U2
i,n dξ

≤
N−1
∑

i=−N

∫ ξi+1

ξi

(

e|ξ|
(

U2(ξ) +

∫ ξi+1

ξi

(U2 + w2)(ξ̄) dξ̄
))

dξ

≤
∫

R

e|ξ|U2(ξ) dξ +

N−1
∑

i=−N

∫ ξi+1

ξi

∫ ξi+1

ξi

(U2 + w2)(ξ̄)e|ξ| dξdξ̄

≤ ‖Y ‖F exp +
N−1
∑

i=−N

e∆ξ

∫ ξi+1

ξi

∫ ξi+1

ξi

(U2 + w2)(ξ̄)e|ξ̄| dξdξ̄

≤ (1 + 2∆ξe∆ξ) ‖Y ‖F exp ≤ (1 + 2e) ‖Y ‖F exp .

Thus we have proved that ‖Yn‖F exp ≤ C ‖Y ‖Fα for a constant C which does
not depend on Y and n. One proves in the same way that ‖Yn‖Fα ≤ C ‖Y ‖Fα .

⊓⊔

6.2 Convergence of the Semi-Discrete solutions

Let Y (t) and Y{∆ξ,R}(t) be respectively the solution of (14) with initial data
Y0 and the solution of (56) with initial data Y0,∆ξ,R. We assume Y0 ∈ F exp.
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Given T > 0, we consider the fixed time interval [0, T ]. Since Y0 ∈ G, the
solution Y (t) exists globally and

sup
t∈[0,T ]

‖Y (t, ·)‖F exp ≤ M

for a constant M which depends only on T and ‖Y0‖F exp , see Theorems 3 and
4. The solution Y{∆ξ,R} does not necessarily exist globally in time. However,
we claim that there exists n > 0 such that for any ∆ξ and R such that
∆ξ + 1

R ≤ 1
n , we have

sup
t∈[0,T ]

∥

∥Y{∆ξ,R}(t, ·)
∥

∥ < 2M. (78)

It implies in particular that the solution Y{∆ξ,R} is defined on [0, T ]. Let us
assume the opposite. Then, there exists a sequence ∆ξk, Rk and tk < T such
that limk→∞ ∆ξk = 0, limk→∞ Rk = ∞,

sup
t∈[0,tk]

∥

∥Y{∆ξ,R}(t, ·)
∥

∥ = 2M.

From (65), we get

sup
t∈[0,tk]

∥

∥Y (t, ·)− Y{∆ξk,Rk}(t, ·)
∥

∥

F
≤ C(M)

(

‖Y0 − Y0,∆ξk,Rk
‖F+

√

∆ξ+e−Rk
)

.

(79)
The constant C(M) depends on M but not on ∆ξk and Rk. Thus, we have

2M = sup
t∈[0,tk]

∥

∥Y{∆ξk,Rk}(t, ·)
∥

∥ ≤ ‖Y (tk, ·)‖+
∥

∥Y (tk, ·)− Y{∆ξk,Rk}(tk, ·)
∥

∥

≤ M + C
(

‖Y0 − Y0,∆ξ,R‖F +
√

∆ξk + e−Rk
)

which leads to a contradiction as the right-hand side in the last inequality
above tends to M when k tends to infinity. Once (78) is established, Theorem
14 follows from (65). The same estimates can be obtained for Y0 ∈ Fα. With-
out loss of generality, we assume that the approximating sequence satisfies

‖Y0 − Y0,∆ξ,R‖F ≤ C(M)
2M where C(M) is given in (79), so that Y{∆ξ,R} exists

on [0, T ]. Then, we have the following theorem.

Theorem 14 Given Y0 ∈ F exp, for any T > 0, there exists a constant n > 0
such that, for all ∆ξ and R such that ∆ξ + 1

R ≤ 1
n , we have

sup
t∈[0,T ]

∥

∥Y (t, ·)− Y{∆ξ,R}(t, ·)
∥

∥

F
≤ C

(

‖Y0 − Y0,∆ξ,R‖F +
√

∆ξ + e−R
)

.

The constant C depends only on ‖Y0‖F exp and T . Correspondingly, given Y0 ∈
Fα, we have

sup
t∈[0,T ]

∥

∥Y (t, ·)− Y{∆ξ,R}(t, ·)
∥

∥

F
≤ C

(

‖Y0 − Y0,∆ξ,R‖F +
√

∆ξ +
1

Rα/2

)

and C depends only on ‖Y0‖Fα and T .
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7 Discretisation in time

In this section, we deal with the numerical integration in time of the system
of differential equations (56) which corresponds to the semi-discretisation in
space of system (14). The flow of this system of differential equations has
some geometric properties and it is of interest to derive numerical schemes
that preserve these properties. Such integrators are called geometric numerical
schemes, see for example the monograph [14]. Thus we will look for numerical
schemes preserving the invariants (57) of our system of differential equations.
Moreover, this last property will enable us to show that the numerical schemes
preserve the positivity of the energy density. These invariants are quartic func-
tions of Y and we are not aware of schemes preserving quartic polynomials,
this is why we first split the system of equations (56) into two pieces. Each
sub-system will then have quadratic invariants and we can use a numerical
scheme preserving these invariants. The following sub-systems read

ζi,t = 0

Ui,t = 0

Hi,t = 0

qi,t = γwi i = −N, . . . , N − 1 (80)

wi,t =
γ

2
hi +

(3− 2γ

2
U2
i − Pi

)

qi

hi,t =
(

3U2
i − 2Pi

)

wi,

or shortly

Ȳt = Ḡ1(Ȳ ),

where Ȳ (t) =
(

Y{∆ξ,R}(t, ξi)
)N−1

i=−N
and similarly for Ḡ1. We also define the

system of differential equations

ζi,t = γUi

Ui,t = −Qi

Hi,t = U3
i − 2PiUi

qi,t = 0 i = −N, . . . , N − 1 (81)

wi,t = 0

hi,t = −2QiUiqi,

or shortly

Ȳt = Ḡ2(Ȳ ).

The space F{∆ξ,R} is finite dimensional. We denote F̄ = R
2N×6. The mapping

from F̄ to F{∆ξ,R}

{

Ȳi = (ζ̄i, Ūi, H̄i, q̄i, w̄i, h̄i)
}N−1

i=−N
7→ Y = (ζ, U,H, q, w, h)



34 David Cohen, Xavier Raynaud

is a bijection, where we define

ζ(ξ) =

N−1
∑

i=−N

(

ζ̄iχ[ξi,ξi+1)(ξ)
)

+ ζ̄−Nχ(−∞,−R](ξ) + ζ̄Nχ[R,∞](ξ)

and similar definitions for the other components of Y . This mapping is in
addition an isometry if we consider the norm

∥

∥Ȳ
∥

∥

F̄
=
∥

∥ζ̄
∥

∥

l∞(R2N )
+
∥

∥Ū
∥

∥

l2(R2N )
+
∥

∥Ū
∥

∥

l∞(R2N )
+
∥

∥H̄
∥

∥

l∞(R2N )

+ ‖v̄‖l2(R2N ) + ‖w̄‖l2(R2N ) +
∥

∥h̄
∥

∥

l2(R2N )
, (82)

where

‖z̄‖l2(R2N ) = (∆ξ

N−1
∑

i=−N

z̄2i )
1
2

for any z̄ ∈ R
2N . In the remaining, we will always consider the norm given by

(82) for F̄ so that the bounds found in the previous sections directly apply. In
particular, we have the following lemma, which is a consequence of Proposition
1 and the same arguments that lead to Lemmas 3 and 5.

Lemma 6 The mappings Ḡ1 : F̄ → F̄ and Ḡ2 : F̄ → F̄ belong to C1(F̄ , F̄ )
and

∥

∥Ḡ1(Ȳ )
∥

∥

F̄
+

∥

∥

∥

∥

∂Ḡ1

∂Ȳ
(Ȳ )

∥

∥

∥

∥

L(F̄ ,F̄ )

≤ C(M),

and
∥

∥Ḡ2(Ȳ )
∥

∥

F̄
+

∥

∥

∥

∥

∂Ḡ2

∂Ȳ
(Ȳ )

∥

∥

∥

∥

L(F̄ ,F̄ )

≤ C(M),

for any Ȳ ∈ B̄M , where

B̄M = {Ȳ ∈ F̄ |
∥

∥Ȳ
∥

∥

F̄
≤ M}.

As this was done in the last sections, one can show that both systems posses
Īi(Y ) = U2

i q
2
i +w2

i − qihi, see (57), as first integrals. That is Ī ′i(Y )Ḡk(Y ) = 0
for all Y , for k = 1, 2 and for i = −N, . . . , N−1. In particular, this implies that
every solutions of (80) or (81) satisfy Īi(Ȳ (t)) = Īi(Ȳ (0)) for i = −N, . . . , N−1
and t ≥ 0. Having a closer look at the differential equations (80) and (81), one
sees that the invariants are now quadratic functions (Ū is constant for (80) and
q̄ is constant for (81)) and we therefore use a numerical scheme that preserves
quadratic invariants.

Proposition 2 Let us apply a Runge-Kutta scheme with coefficients satisfying

biaij + bjaji = bibj for all i, j = 1, . . . , s (83)

to the system (80), then it conserves exactly the invariants Īi(Y ) = U2
i q

2
i +

w2
i − qihi for i = −N, . . . , N − 1. The same holds if we apply the scheme to

(81).
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Proof The proof of this proposition is a simple adaptation of the proof of
Theorem 2.2 from [14, Chapter IV]. Let us start with system (80). Dropping
the indexes and the bars for ease of notations, we first write the invariant I(Y )
as

I(Y ) = Y TD(Y )Y + d(Y )TY

with Y = (ζ, U,H, q, w, h), D(Y ) =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 U2 0 −1/2
0 0 0 0 1 0
0 0 0 −1/2 0 0

















and d(Y ) = 0T .

For the Runge-Kutta method, we write Y1 = Y0 + h
∑s

j=1 bjKj with Ki =

G1(Y0 + h
∑s

j=1 aijKj). From the definition of the method, of the matrix
D(Y ) and of the vector d(Y ), it follows that

I(Y1) = Y T
1 D(Y1)Y1 + d(Y1)

TY1 = (Y0 + h

s
∑

i=1

biKi)
TD(Y0)(Y0 + h

s
∑

j=1

bjKj)

= Y T
0 D(Y0)Y0 + h

s
∑

i=1

biK
T
i D(Y0)Y0 + h

s
∑

j=1

bjY
T
0 D(Y0)Kj

+ h2
s
∑

i,j=1

bibjK
T
i D(Y0)Kj .

Writing Ki = G1(Ỹi) with Ỹi = Y0 + h
∑s

j=1 aijKj , we obtain that

I(Y1) = Y T
0 D(Y0)Y0 + 2h

s
∑

i=1

biỸ
T
i D(Y0)G1(Ỹi)

+ h2
s
∑

i,j=1

(bibj − biaij − bjaji)K
T
i D(Y0)Kj .

The last term in the above equation vanishes due to condition (83). By def-
inition of the problem and of the matrix D(Y ), we have D(Y0) = D(Ỹi)
because U is preserved and since I(Y ) is a first integral for (80), we get
Ỹ T
i D(Ỹi)G1(Ỹi) = 0. It thus follows

I(Y1) = Y T
0 D(Y0)Y0 + 0 = I(Y0)

and the Runge-Kutta scheme applied to (80) conserves the invariant I(Y ).

The proof for system (81) is similar, take D(Y ) =

















0 0 0 0 0 0
0 q2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

















and

d(Y ) = (0, 0, 0, 0, 0,−q)T . ⊓⊔



36 David Cohen, Xavier Raynaud

Let us consider the following differential equation yt(t) = f(y(t)). The implicit
midpoint rule

y1 = y0 +∆tf(
y1 + y0

2
)

satisfies the condition (83) and thus preserves quadratic invariants. The im-
plicit midpoint rule will be the building block for the construction of the
schemes we will use for the numerical experiments in Section 9. For other
schemes preserving quadratic invariants, we refer to [14] for example.

As a direct consequence of Proposition 2, we have the following result.

Theorem 15 Let us apply a Runge-Kutta scheme Φ1
∆t, resp. Φ

2
∆t, with coef-

ficients satisfying (83) to the system (80), resp. (81), with time step size ∆t.
Then the Lie-Trotter splitting

Φ∆t := Φ2
∆t ◦ Φ1

∆t

has order of convergence one and preserves all the invariants Īi for i =
−N, . . . , N − 1. The Strang splitting

Φ∆t := Φ1
∆t/2 ◦ Φ2

∆t ◦ Φ1
∆t/2

is symmetric, has thus order of convergence two and preserves all the invari-
ants Īi for i = −N, . . . , N − 1.

If we take for Φi
∆t, i = 1, 2, the implicit midpoint rule, we obtain a first order

splitting scheme for (56) that preserves exactly the invariants (a second order
scheme is obtained using the Strang splitting). This will be the schemes that
we will consider in the numerical experiments of Section 9.

8 Full discretisation

Our concern is now to combine the results from the last two sections and to
show that our numerical schemes converge to the exact solution of the system
of equations (14). We integrate Ȳ (t) on the time interval [0, T ] and obtain Ȳj

for the time steps j∆t, j = 0, . . . , NT where ∆t = T
NT

. We have the following
convergence result.

Theorem 16 Given initial values Y0 in F exp and Ȳ0 ∈ FR, for the Lie-Trotter
splitting we have

max
j∈{0,...,NT }

∥

∥Sj∆t(Y0)− Φj∆t(Ȳ0)
∥

∥

F
≤ C

(∥

∥Y0 − Ȳ0

∥

∥

F
+
√

∆ξ + e−R +∆t
)

,

(84)
where we recall that St stands for the semigroup of solutions to (14) and, where
the constant C depends only on ‖Y0‖F exp ,

∥

∥Ȳ0

∥

∥

F exp and T . Correspondingly,

given initial values Y0 in Fα and Ȳ0 ∈ FR, we have

max
j∈{0,...,NT }

∥

∥Sj∆t(Y0)− Φj∆t(Ȳ0)
∥

∥

F
≤ C

(∥

∥Y0 − Ȳ0

∥

∥

F
+
√

∆ξ +
1

Rα/2
+∆t

)

,

(85)
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where the constant C depends only on ‖Y0‖Fα ,
∥

∥Ȳ0

∥

∥

Fα and T . The same
results hold for the Strang splitting with second order accuracy in time, that
is, when we replace ∆t with ∆t2 in (84).

Let us denote Y (t) = St(Y0) and

Φt(Ȳ0) =
((j + 1)∆t− t)Φj∆t(Ȳ0) + (t− j∆t)Φ(j+1)∆t(Ȳ0)

∆t

for t ∈ [j∆t, (j + 1)∆t]. We can rewrite (84) as

max
t∈[0,T ]

∥

∥St(Y0)− Φt(Ȳ0)
∥

∥

F
≤ C

(∥

∥Y0 − Ȳ0

∥

∥

F
+
√

∆ξ + e−R +∆t
)

.

Proof (Proof of Theorem 16) To estimate the total error

∥

∥Sj∆t(Y0)− Φj∆t(Ȳ0)
∥

∥

F

we split it in time and in space. Let us start with the error in time. The
proof follows basically the steps of the standard proof of the convergence of
numerical scheme for ordinary differential equations. The crucial point is that
we guarantee here that the convergence rate in time is independent of the
discretisation step in space. Let us first prove the following claim: Given M >
0, for any Ȳ ∈ B̄M and Z̄ ∈ B̄M , we have

Φ∆t(Ȳ )− ϕ∆t(Z̄) = Ȳ − Z̄

+∆t
(

Ḡ1(Ȳ )− Ḡ1(Z̄) + Ḡ2(Ȳ )− Ḡ2(Z̄)
)

+O(∆t2), (86)

where ϕ∆t(Z̄) stands for the exact flow of (56) at time ∆t with starting values
Z̄. Here, and in the following, the O-notation stands for an element in F̄
satisfying

‖O(ε)‖F̄ ≤ C(M)ε

for all ε > 0, where the constant C(M) depends on M but is independent on
R and on the space grid size ∆ξ. We first show that the midpoint rule

Φj
∆t(Ȳ ) = Ȳ +∆tḠj

(

Φj
∆t(Ȳ ) + Ȳ

2

)

,

applied to equation (80), resp. (81), is at least first order accurate. To do this,
let us introduce the mapping K : F̄ × F̄ → F̄ given by

K(Z̄, Ȳ ) = Z̄ − Ȳ −∆tḠ1

( Z̄ + Ȳ

2

)

.

We have K(Φ1
∆t(Ȳ ), Ȳ ) = 0. Since

∂K

∂Z̄
(Ȳ ) = Id− ∆t

2

∂Ḡ1

∂Ȳ

( Z̄ + Ȳ

2

)
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and
∥

∥

∥

∂Ḡ1

∂Ȳ
(Ȳ )
∥

∥

∥

F̄
≤ C(M) (by Lemma 6), there exist C(M) such that, for ∆t ≤

1
C(M) , we have that ∂K

∂Z̄
(Ȳ ) is invertible. By the implicit function Theorem,

we get that Φ1
∆t(Ȳ ) is well-defined. Moreover, also following from the implicit

function Theorem, we get that

∥

∥Φ1
∆t(Ȳ )

∥

∥

F̄
≤ C(M).

Then,

Φ1
∆t(Ȳ ) = Ȳ +∆tḠ1

(

Ȳ +
∆t

2
Ḡ1

(

Φ1
∆t(Ȳ ) + Ȳ

2

))

= Ȳ +∆tḠ1(Ȳ ) +O(∆t2)

by Lemma 6. Using Lemma 6 again, we obtain for the exact flow of (80) that

ϕ1
∆t(Z̄) = Z̄ +∆tḠ1(Z̄) +O(∆t2).

Following the same arguments, we obtain that

Φ2
∆t(Φ

1
∆t(Ȳ )) = Φ1

∆t(Ȳ ) +∆tḠ2(Φ
1
∆t(Ȳ )) +O(∆t2)

and for the composition of the exact flows

ϕ2
∆t(ϕ

1
∆t(Z̄)) = ϕ1

∆t(Z̄) +∆tḠ2(ϕ
1
∆t(Z̄)) +O(∆t2).

Hence,

Φ2
∆t(Φ

1
∆t(Ȳ ))− ϕ2

∆t(ϕ
1
∆t(Z̄))

= Φ1
∆t(Ȳ ) +∆tḠ2(Φ

1
∆t(Ȳ ))− ϕ1

∆t(Z̄)−∆tḠ2(ϕ
1
∆t(Z̄)) +O(∆t2)

= Ȳ − Z̄ +∆t(Ḡ1(Ȳ )− Ḡ1(Z̄))

+∆t
(

Ḡ2(Ȳ +∆tḠ1(Ȳ ) +O(∆t2))− Ḡ2(Z̄ +∆tḠ1(Z̄) +O(∆t2))
)

+O(∆t2)

= Ȳ − Z̄ +∆t
(

Ḡ1(Ȳ )− Ḡ1(Z̄) + Ḡ2(Ȳ )− Ḡ2(Z̄)
)

+O(∆t2). (87)

We consider now the splitting error. We have

ϕ∆t(Z̄)− Z̄ = ∆tḠ(Z̄) +O(∆t2)

and

ϕ1
∆t(Z̄)− Z̄ = ∆tḠ1(Z̄) +O(∆t2)

and thus

ϕ2
∆t(ϕ

1
∆t(Z̄)) = ϕ1

∆t(Z̄) +∆tḠ2(ϕ
1
∆t(Z̄)) +O(∆t2).
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Hence,

ϕ2
∆t(ϕ

1
∆t(Z̄))− ϕ∆t(Z̄) = ∆tḠ(Z̄)−∆tḠ1(Z̄)

−∆tḠ2(Z̄ +∆tḠ1(Z̄) +O(∆t2)) +O(∆t2)

= ∆t(Ḡ(Z̄)− Ḡ1(Z̄)− Ḡ2(Z̄)) +O(∆t2)

= O(∆t2), (88)

as Ḡ = Ḡ1 + Ḡ2. Combining (88) and (87), we obtain (86) and the claim is
proved. Let us now set

M = sup
t∈[0,T ]

∥

∥ϕt(Ȳ0)
∥

∥

F
.

For a given ∆t, we define

j∆t = max{j ∈ {0, . . . , NT − 1} |
∥

∥Φj̄∆t(Ȳ0)
∥

∥

F̄
≤ 2M for all j̄ ≤ j}. (89)

For j ≤ j∆t, we get from (86) that
∥

∥Φ(j+1)∆t(Ȳ0)− ϕ(j+1)∆t(Ȳ0)
∥

∥

F
≤ (1+C(M)∆t)

∥

∥Φ(j)∆t(Ȳ0)− ϕ(j)∆t(Ȳ0)
∥

∥

F
+O(∆t2).

By induction, it follows that

∥

∥Φ(j+1)∆t(Ȳ0)− ϕ(j+1)∆t(Ȳ0)
∥

∥

F
≤
∥

∥O(∆t2)
∥

∥

j
∑

k=0

(1 + C(M)∆t)k

≤
∥

∥O(∆t2)
∥

∥

1

C(M)∆t

and therefore
Φ(j+1)∆t(Ȳ0) = ϕ(j+1)∆t(Ȳ0) +O(∆t). (90)

We claim that there exists a constant C(M) such that for all ∆t ≤ 1
C(M) ,

we have j∆t = NT − 1 and therefore (90) holds for all j ≤ NT − 1. Let us
assume the opposite. Then, there exists ∆tk such that limk→∞ ∆tk = 0 and

j∆tk < NT − 1. By definition (89), we have
∥

∥

∥Φ(j∆tk
+1)∆tk(Ȳ0)

∥

∥

∥

F̄
> 2M . Then,

(90) implies

2M ≤
∥

∥

∥Φ(j∆tk
+1)∆tk(Ȳ0)− ϕ(j∆tk

+1)∆tk(Ȳ0)
∥

∥

∥

F
+
∥

∥

∥ϕ(j∆tk
+1)∆tk(Ȳ0)

∥

∥

∥

F

≤ O(∆tk) +M

which leads to a contradiction when k tends to ∞. Finally, for the total error
in space and time, we have:
∥

∥Sj∆t(Y0)− Φj∆t(Ȳ0)
∥

∥

F
≤
∥

∥Sj∆t(Y0)− ϕj∆t(Ȳ0)
∥

∥

F
+
∥

∥ϕj∆t(Ȳ0)− Φj∆t(Ȳ0)
∥

∥

F
,

where all the functions are evaluated at time j∆t for j ≤ NT . The first term
can be estimated using Theorem 14 and we thus obtain

max
j∈{0,...,NT }

∥

∥Sj∆t(Y0)− ϕj∆t(Ȳ0)
∥

∥

F
≤ C

(∥

∥Y0 − Ȳ0

∥

∥

F
+
√

∆ξ + e−R
)

.
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For the second one we use (90) and this concludes the proof of the theorem for
the Lie-Trotter splitting. If we had taken the Strang splitting instead, we would
have obtained an error in time of order two since this scheme is symmetric.
The proof for initial data in Fα is the same. ⊓⊔

Our next task will be to show that our schemes preserve the positivity of
the particle density and of the energy density as does the exact solution of
(14) with initial data given by Theorem 13. In order to prove this result, we
introduce F∞ defined as

F∞ = {Y = (y, U,H, q, w, h) ∈ F | ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞ < ∞}

with the norm

‖Y ‖F∞ = ‖Y ‖F + ‖q‖L∞ + ‖w‖L∞ + ‖h‖L∞ .

We know that the space F∞ is preserved by the governing equations (14), see
Lemma 2. Using the semilinear structure of (14d)-(14f) with respect to q, w,
h, one can show in the same way that (18) was shown, that, for a given M > 0,

‖G(Y )‖F∞ +

∥

∥

∥

∥

∂G

∂Y
(Y )

∥

∥

∥

∥

L(F∞,F∞)

≤ C(M) (91)

for any Y ∈ B∞
M = {Y ∈ F∞ | ‖Y ‖F∞ ≤ M}. The same result holds for the

mappings G∆ξ, G∆ξ,R, Ḡ1 and Ḡ2. In particular we can prove, as in Theorem
16 for the proof of (86), that

Φ∆t(Ȳ )− ϕ∆t(Z̄) = Ȳ − Z̄

+∆t
(

Ḡ1(Ȳ )− Ḡ1(Z̄) + Ḡ2(Ȳ )− Ḡ2(Z̄)
)

+O(∆t2),

where the definition of O(·) is replaced by

‖O(ε)‖F̄∞ ≤ C(M)ε.

Here, F̄∞ = F̄ = R
2N×6 but equipped with the norm derived from ‖·‖F∞ , see

(82).

Theorem 17 We consider an initial datum which satisfy

q0i h
0
i ≥ (U0

i q
0
i )

2 + (w0
i )

2, q0i ≥ 0, h0
i ≥ 0 and q0i + h0

i ≥ c

for all i = −N, . . . , N − 1, for some constant c > 0. Then, given T > 0,
there exists n > 0, which depends only on c,

∥

∥Ȳ 0
∥

∥

F∞ and T , such that, if

∆ξ + 1
R +∆t < 1

n ,the positivity of the particle density 1/q and of the energy
density h are preserved by our numerical discretisation, that is,

qji ≥ 0 and hj
i ≥ 0,

for i = −N, . . . , N − 1 and j = 1, . . . , NT .
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Proof The main idea of the proof is to control the growth of 1/(qki + hk
i ). To

do so we adapt the proof of Lemma 2 to this discrete situation. Let M =
2 sup
t∈[0,T ]

∥

∥ϕt(Ȳ0)
∥

∥

F∞ . As in the proof of Theorem 16, we can prove that for ∆t

small enough (the bound depending only on M), we have
∥

∥Φk∆t(Ȳ0)
∥

∥

F∞ ≤ 2M

for all k = 0, . . . , NT . For k < NT , we have, by definition of our scheme, that

1

qk+1
i + hk+1

i

− 1

qki + hk
i

= − qk+1
i − qki + hk+1

i − hk
i

(qk+1
i + hk+1

i )(qki + hk
i )

= −∆t
(

γwk
i − 2Q(Y k)Uk

i q
k
i + (3(Uk

i )
2 − 2P (Y k))wk

i

)

+O(∆t2)

(qk+1
i + hk+1

i )(qki + hk
i )

.

Hence, using the bounds (91), we get
∣

∣

∣

∣

∣

1

qk+1
i + hk+1

i

− 1

qki + hk
i

∣

∣

∣

∣

∣

≤ ∆tC(M)
∣

∣qk+1
i + hk+1

i

∣

∣

(
∣

∣wk
i

∣

∣+
∣

∣qki
∣

∣+∆t
∣

∣qki + hk
i

∣

∣

)

. (92)

Let us prove by induction that, for ∆t small enough (depending only M),

1

qki + hk
i

≤ 1

c
e2C(M)T + 1, qki ≥ 0 and hk

i ≥ 0 (93)

for i = −N, . . . , N−1, all k = 0, . . . , NT and where C(M) is the constant given
in (92). By definition of our initial data, these assumptions hold for k = 0.
We assume now that (93) holds for k = 0, . . . , j and we want to prove that it
also holds for j + 1. We set M̄ = 1

c e
2C(M)T + 1. Since the numerical schemes

preserve the invariant qki h
k
i = (Uk

i q
k
i )

2 + (wk
i )

2, we obtain in particular that

qki h
k
i ≥ (Uk

i q
k
i )

2 + (wk
i )

2 (94)

for all k = 0, . . . , NT . From this, it follows that
∣

∣wk
i

∣

∣ ≤ 1√
2
(qki + hk

i ) as q
k
i ≥ 0

and hk
i ≥ 0. For k ≤ j, we get from (92) and our induction hypothesis that
∣

∣

∣

∣

∣

1

qk+1
i + hk+1

i

− 1

qki + hk
i

∣

∣

∣

∣

∣

≤ ∆tC(M)
∣

∣qk+1
i + hk+1

i

∣

∣

(

1 +
1√
2
+ M̄∆t

)

. (95)

From the above equation, we get
∣

∣

∣

∣

∣

1

qk+1
i + hk+1

i

∣

∣

∣

∣

∣

≤ 1

1− 2C(M)∆t− M̄C(M)∆t2

∣

∣

∣

∣

1

qki + hk
i

∣

∣

∣

∣

and therefore
∣

∣

∣

∣

∣

1

qj+1
i + hj+1

i

∣

∣

∣

∣

∣

≤ 1

(1− 2C(M)∆t− M̄C(M)∆t2)j

∣

∣

∣

∣

1

q0i + h0
i

∣

∣

∣

∣

≤ 1

c(1− 2C(M)∆t− M̄C(M)∆t2)
T
∆t

.
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We have

lim
∆t→0

1

c(1− 2C(M)∆t− M̄C(M)∆t2)
T
∆t

=
1

c
e2C(M)T < M̄.

Therefore, by taking ∆t small enough, depending only on the value of M and
not on the number of induction steps j, we get

∣

∣

∣

∣

∣

1

qj+1
i + hj+1

i

∣

∣

∣

∣

∣

≤ M̄.

Using the above inequality and (95), we obtain

− 1

qj+1
i + hj+1

i

+
1

qji + hj
i

≤ M̄∆tC(M)

(

1 +
1√
2
+ M̄∆t

)

so that 1

qj+1

i +hj+1

i

≥ 0 for a sufficiently small ∆t. By (94), we have that

qj+1
i hj+1

i ≥ 0 and therefore

qj+1
i ≥ 0 and hj+1

i ≥ 0,

which concludes our proof by induction. ⊓⊔

Now we go back to the original set of coordinates. Given an initial datum
u0 ∈ H1,exp(R) or H1,α(R), we construct the initial datum Y0 as given by (69).
Then the function u(t, x) defined as

u(t, x) = U(t, ξ) for y(t, ξ) = x (96)

is well-defined, is a weak solution to (3) which corresponds to the global con-
servative solution. The definition (96) of u(t, x) means that for any given time
t the set of points

(y(t, ξ), U(t, ξ)) ∈ R
2 for ξ ∈ R

is the graph of u(t, x). Let 1
n = ∆ξ + 1

R + ∆t so that n tends to infinity
if and only if ∆ξ, ∆t tend to zero and R tends to infinity. We consider an
approximating sequence Y0,n which satisfies the conditions (72a) and (72c) of
the sequence of initial values which is constructed in Section 6. Let Yn(t) =
Φ(Y0,n). From Theorem 16, we obtain the following convergence theorem.

Theorem 18 The full discretised scheme provide us with points which con-
verge to the graph of the exact conservative solution u(t, x). Indeed, if u0 ∈
H1,exp(R), we have

max
i=−N,...,N−1
j=0,...,NT

|(yn(tj , ξi), Un(tj , ξi))− (y(tj , ξi), U(tj , ξi))|

≤ C
(∥

∥Y0 − Ȳ0

∥

∥

F
+
√

∆ξ + e−R +∆t
)

,
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where the constant C depends only on ‖u0‖H1,exp and, if u0 ∈ H1,α(R),

max
i=−N,...,N−1
j=0,...,NT

|(yn(tj , ξi), Un(tj , ξi))− (y(tj , ξi), U(tj , ξi))|

≤ C
(∥

∥Y0 − Ȳ0

∥

∥

F
+
√

∆ξ +
1

Rα/2
+∆t

)

, (97)

where the constant C depends only on ‖u0‖H1,α .

Since

|y(t, ξi+1)− y(t, ξi)| =
∣

∣

∣

∣

∣

∫ ξi+1

ξi

q(t, ξ) dξ

∣

∣

∣

∣

∣

≤ C∆ξ,

where C depends only on ‖Y0‖F∞ , we have an apriori upper bound on the
density of points of the graph of u we can approximate by our scheme.

In the case where u0 does not belong to H1,α(R), we can approximate u0

by functions u0,k ∈ H1,α(R), which converge to u0 in H1(R). From [18], we
know that the change of variable (69) produces sequences Y0,k and Y0 such that
limk→0 ‖Y0,k − Y0‖F = 0. In this way, by using the results done for functions
in Fα, we can approximate the exact solution Y (t) and prove convergence.
However, since ‖Y0,k‖Fα is not uniformly bounded with respect to k, we lose
the control on the error rate (the term 1

Rα/2 ) which is given by (97).

9 Numerical experiments

In this section, we present some numerical experiments for the hyperelastic
rod wave equation (1). In order to demonstrate the efficiency of our schemes,
we will numerically compute three types of traveling waves with decay, see
Figure 1. The derivation of the cusped (γ > 1), resp. smooth (γ < 1), solutions
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Fig. 1 Traveling waves with decay with speed c = 1: smooth (γ = 0.2), peakon (γ = 1),
cuspon (γ = 5).

follows the lines of [21]. We refer for example to [23] for a thorough discussion
on the peakon case (i.e. γ = 1).

Let us first start by giving some details related to the implementation of
our numerical schemes.



44 David Cohen, Xavier Raynaud

9.1 Algorithm flowchart

• Let us consider a space interval [−R,R] together with an equidistant grid
of mesh size ∆ξ. Let ∆t denote the time step of our numerical integrator.

• Given u0 ∈ H1(R) an initial value for the hyperelastic rod wave equation
(1), we use (69) to compute the initial values

Y0,∆ξ,R = (y0,∆ξ,R, U0,∆ξ,R, H0,∆ξ,R, q0,∆ξ,R, w0,∆ξ,R, h0,∆ξ,R)

for the discretised system (56).
• We solve (80), and (81) by using an implicit midpoint rule defined as follows

Ȳt+∆t := Φi
∆t(Ȳt) = Ȳt +∆tḠi

( Ȳt+∆t + Ȳt

2

)

(98)

for i = 1, 2. We use fixed point iterations to solve the nonlinear system of
equations given by (98).

• We finally obtain a symmetric and second-order accurate Strang splitting,

Φ1
∆t/2 ◦ Φ2

∆t ◦ Φ1
∆t/2,

for (56). This numerical integrator preserves all the invariants (57).

9.2 Smooth traveling waves with decay (γ < 1)

According to the classification presented in [21], for a fixed γ 6= 0, traveling
waves u(x− ct) are parametrised by three parameters, M , m and the speed c.
Moreover, they are solutions of the following differential equation

u2
x = F (u) =

(M − u)(u−m)(u − z)

c− γu
. (99)

For positive values of γ, a smooth traveling wave with decay with m =
infx∈R u(x) and M = maxx∈R u(x) is obtained if z = m < M < c/γ, where
z := c−M −m. For our purpose, we have to set m = 0 so that the solution
decays at infinity. This gives us the conditions c = M and γ < 1. We thereby
obtain the initial values for our system of differential equations (56) by solv-
ing (99) numerically. To do this, some care has to be taken as u 7→

√

F (u)
is not Lipschitz. We instead solve uxx = F ′(u)/2. Once this is appropriately
done we get the initial values U0 = u, w0 = ux. We then set y0 = ξ, q0 = 1,
h0 = U2

0 + w2
0 and H0 =

∫ y0

−∞ h0. These initial values do not correspond to
the ones defined by (69) but they are equivalent via relabeling and therefore
can be used for computation, see [18] for details on the relabeling. We have
implemented an upwind scheme based on the original formulation of the equa-
tion (1), as in [1] but without adaptivity. Figure 2 displays the exact solution
together with the numerical solutions given by the upwind scheme, the ODE45
solver from Matlab, the explicit Euler scheme, the Lie-Trotter and the Strang
splitting schemes at time T = 7. We plot the points

(y(t, ξi), U(t, ξi)), for i = −N, . . . , N − 1,
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which approximate the graph of the exact solution u(t, x) for t = T . The initial
value is a smooth traveling wave with parameters γ = 0.2,m = 0,M = c = 1,
see Figure 1. We took relatively large discretisation parameters ∆ξ = 0.25
and ∆t = 0.1. For the upwind scheme, we compute the solution u(t, x) in the
original space coordinate x. In this experiment and the others that follow,
we consider for this scheme a space discretisation step ∆x which is ten times
smaller than∆ξ and we set∆t = ∆x/(2max(u0)). We observe that the explicit
Euler scheme gives a less accurate solution than the other schemes and that
dissipation occurs for the scheme using the formulation (1). We also observe
that, even for these large discretisation parameters, the splitting schemes have
the same high as the exact solution, thus following it at the same speed.
We do not observe any dissipation. Since both splitting schemes give relative
similar results, in what follows, we will only display the results given by the
Strang splitting scheme. We finally note that all schemes preserve the positivity
of the particle density but only the splitting schemes conserve exactly the
invariants from Section 7 (these results are not displayed). Let us conclude
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Fig. 2 Exact and numerical solutions of a smooth traveling wave with decay. Solid
line=exact, dashed line=Upwind scheme, dashdotted line=ODE45, stars=Explicit Euler,
square=Lie-Trotter, diamond=Strang.

this subsection with a loglog plot of the temporal order of convergence of the
numerical schemes. One can see from Figure 3 that the order of convergence
for the explicit Euler scheme and for the Lie-Trotter splitting scheme is one
and the one for the Strang splitting scheme is two, as predicted by Theorem 18.
The parameters for this simulation are the same as above, except that T = 1
and ∆ξ = 0.04.

We finally want to mention that for negative values of γ, smooth traveling
waves with decay also exist. They are obtained if c/γ < m = M < z.

9.3 Peakon (γ = 1)

The Camassa–Holm equation, i.e. equation (1) with γ = 1, possesses solutions
with a particular shape: the peakons. A single peakon is a traveling wave which
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Fig. 3 Error in the infinity norm of the explicit Euler scheme (stars), the Lie-Trotter
scheme (square) and the Strang scheme (diamond) at time T = 1 for the smooth solution.
The dashed lines have slopes one, resp. two.

is given by
u(t, x) = c e−|x−ct|.

We note, that at the peak, the derivative of this particular solution is discon-
tinuous. We set the initial values as

y0(ξ) = ξ, U0(ξ) = u(0, ξ), w0(ξ) = ux(0, ξ),

q0 = 1, h0 = U2
0 + w2

0 , H0 =

∫ ξ

−∞
h0(η) dη.

In Figure 4, we display the numerical solutions given by the scheme from [1],
the explicit Euler scheme and the Strang splitting for a single peakon traveling
from left to right with speed c = 1, see Figure 1. For readability reason, we
do not display the solution given by the ODE45 solver, but we note that this
numerical solution is very similar to the one given by the splitting scheme.
Due to the discontinuity of the derivative, we have to take smaller (in space)
discretisation parameters: ∆ξ = 0.05 and ∆t = 0.2. We note more grid-points
before the peak and very few just after it, but the speed of the wave is still
relatively close to the exact one. This is not the case for schemes based on the
Eulerian formulation (1), as illustrated by the numerical solution given by the
scheme from [1]. As in the preceding case, only the splitting schemes preserve
exactly the invariants of our problem.

The benefit of computing the solutions via an equivalent system in La-
grangian variables becomes clear when comparing the upwind scheme (applied
to the original equation (1)) and an explicit Euler scheme (applied to the sys-
tem in Lagrangian variables). We compare these two methods as they have the
same order of convergence. Then, we observe that the explicit Euler scheme -
even with a time and space discretisation step which is ten times larger - gives
much better results than the upwind scheme. This has to be balanced with
the fact that the system in Lagrangian variables consist of 6 variables instead
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Fig. 4 Exact and numerical solutions at time T = 5 for a peakon. Solid line=exact, dashed
line=Upwind scheme, stars=Explicit Euler, diamond=Strang.

of one for the original equation. However this disadvantage becomes marginal
as the solution becomes more irregular, as we can see for the cusped traveling
wave below.

We would also like to note, that the order of convergence of the numerical
schemes are the same as for the smooth solution, see Figure 3. The results are
however not displayed.

9.4 Cusped traveling waves with decay (γ > 1)

Let us now turn our attention to cusped traveling waves. For γ > 0, according
to the classification given in [21], cusped solutions with c/γ = maxx∈R u(x)
and m = infx∈R u(x) are obtained if z = m = 0 < c/γ < M . This gives us the
condition c = M and thus γ > 1. The cuspon u(x) satisfies (99), which yields
for the indicated values of the parameters

ux = −
√

F (u) = −
(

M − u

c− γu

)
1
2

u (100)

for x ≥ 0 and with the boundary value at zero given by u(0) = c
γ . For such

boundary value, the differential equation (100) is not well-posed and the slope
at the top of the cuspon (that is x = 0) is indeed equal to infinity. However,
we can find a triplet X = (y, U,H) in F which corresponds to this curve, that
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is, such that (u, u2 + u2
x dx) = M(X), see (9) for the definition of the map M .

The representation of the curve (x, u(x)) is not unique: For any diffeomorphism
(ϕ(ξ), u(ϕ(ξ))), we obtain an other parameterization of the same curve. Here,
we look for a smooth ϕ(ξ) (and we set y(ξ) = ϕ(ξ)) such that U = u(ϕ(ξ)) =
u(y(ξ)) is smooth, even if u is not. We introduce the function

g(u) = −
∫ u

c
γ

dz
√

F (z)
.

Since dx
du = − 1√

F (u)
, by (100), if we choose

U(ξ) =
c

γ
− ξ, y(ξ) = g(U(ξ))

then we get, at least for ξ ∈ [0, c
γ ], a triplet for which U(ξ) = u(y(ξ)). We set

the energy density by using (7c) and get

Hξ = U2yξ +
U2
ξ

yξ
.

However, in this case,

yξ = g′(U)Uξ =

(

c− γU

M − U

)
1
2 1

U

so that Hξ(0) = ∞ and it is incompatible with the requirement that all the
derivatives in Lagrangian coordinates are bounded in L∞(R), see (7a). Thus,
we take

U(ξ) =
c

γ
− ξ2, y(ξ) = g(U(ξ)), Hξ = U2yξ +

U2
ξ

yξ
.

In this case, we have

yξ(ξ) = g′(U)Uξ =
2

U(ξ)

(

c− γU(ξ)

M − U(ξ)

)
1
2

ξ =
2
√
γ

U(ξ)(M − U(ξ))
1
2

ξ2

and

Hξ(0) =
2c

γ2
(Mγ − c)

1
2

is finite. The problem we face now is that the functions are given only on the
interval [0, c

γ ) and limξ→ c
γ
y(ξ) = ∞. We know that the tail of the cuspon

behaves as u(x) ≈ c
γ e

−
√

M
c x as x tends to ∞, see [21]. Since we require that

y(ξ)− ξ remains bounded, we would like to have U(ξ) ≈ c
γ e

−
√

M
c ξ for large ξ.

Therefore we introduce the following partitions functions χ1 and χ2 defined
as

χ1(ξ) =











1 if ξ < a

− 1
b−a (ξ − b) for ξ ∈ [a, b]

0 if x > b
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and χ2(ξ) = 1− χ1, where a < b are two parameters. We finally set

U(ξ) = χ1(ξ)(
c

γ
− ξ2) + χ2(ξ)

c

γ
e−

√
M
c ξ

and

y(ξ) = g(U(ξ)), Hξ = U2yξ +
U2
ξ

yξ
.

By a proper choice of the parameters a and b, we can guarantee that yξ(ξ) ≥ 0
for all ξ ≥ 0. We extend X(ξ) = (y(ξ), U(ξ), H(ξ)) on the whole axis by
parity and we obtain an element in F such that (9) is satisfied. Figure 5
displays y(ξ) and U(ξ). Figure 6 displays the exact solution together with the
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Fig. 5 The function y(ξ) (left picture) and the function U(ξ). Note that these functions
are smooth while u0(x) is not Lipschitz, see Figure 1.

numerical solutions given by the upwind scheme, the explicit Euler scheme
and the Strang splitting scheme at time T = 6. As before, we note that the
numerical solution given by the ODE45 solver is very similar to the one given
by our splitting scheme. The initial value is a cusped traveling wave with
parameters γ = 5,m = 0,M = c = 1, see Figure 1. For the discretisation
parameters, we take ∆ξ = 0.1 and ∆t = 0.1. We see that, even for initial
data with infinite derivative ux(0) = ±∞, the spatial discretisation converges.
For the time discretisation, as expected, explicit Euler is less accurate than the
other schemes. Note that he oscillation that appears on the left of the peak will
disappear as the mesh get finer. We also remark that only the splitting schemes
preserve the positivity of the particle density and conserve the invariants.
The upwind scheme performs badly because the solution is not regular. The
schemes based on the reformulation in Lagrangian variables do not suffer of
that. We also observe that the order of convergence of the numerical schemes
are the same as for the smooth solution, see Figure 3. The results are however
not displayed.

We finally note that, for negative values of γ, an anticusped traveling wave
with c/γ = minx∈R u(x) and m = supx∈R

u(x) is obtained if c/γ < m = M <
z.
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Fig. 6 Exact and numerical solutions of a cusped traveling wave with decay. Solid
line=exact, dashed line=Upwind scheme, stars=Explicit Euler, diamond=Strang.

9.5 Peakon-antipeakon collisions

In Figure 7 we display a collision between a peakon and an antipeakon for
γ = 1. For this problem, the initial value is given by

u(0, x) = e−|x| − e−|x−1|.

The numerical solutions are computed with grid parameters ∆ξ = 0.1 and
∆t = 0.1 until time T = 8. Once again we notice that the spatial discretisation
converges. Let us now see what happens for a peakon-antipeakon collision with
γ 6= 1. In Figure 8 we present a similar experiment as the above one, but where
we use γ = 5 and T = 2. Here, we plot the graph given by the points

(y(t, ξi),
h

q
(t, ξi)), for i = −N, . . . , N − 1

for t = T . From the right part of Figure 8 we see that only the splitting
schemes preserve the positivity of the energy density. As always, only the
splitting schemes conserve exactly the invariants.

9.6 Collision of smooth traveling waves

We want now to study the behaviour of the numerical schemes when dealing
with a collision of smooth traveling waves, as this in an important feature of
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Fig. 7 Peakon-antipeakon collision for γ = 1. Stars=Explicit Euler, diamond=Strang.
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Fig. 8 Peakon-antipeakon collision for γ = 5 at time T = 2 (left) and energy density
(right) at the first time, where the numerical solution given by ODE45 is not positive
(q = −1.7394e − 05). Dashdotted line=ODE45, stars=Explicit Euler, diamond=Strang.

our numerical scheme to be able to handle such configuration. To do so, we
consider the following initial value

u(0, x) = −xe−x2/2.

Figure 9 displays the exact solution (i.e. the numerical solution with very small
discretisation parameters) for γ = 0.8. It is remarkable to see that even for such
solution, our scheme performs very well. In order to get a better understanding
of this problem, we look at the evolution of the waves with time. Figure 10
shows this evolution together with a zoom close to the collision time. We
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Fig. 9 Collision of smooth traveling waves: Initial datum (left) and exact solution at time
T = 11.
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Fig. 10 Collision of smooth traveling waves: Evolution in time (left) and zoom of the
evolution close to the collision.

now present the results given by the numerical schemes with grid parameters
∆ξ = 0.25 and ∆t = 0.1 in Figure 11. We have also checked that only the
splitting schemes preserve the positivity of the particle density and conserve
the invariants of our problem. Finally, in Figure 12 we display, with the same
parameter values as above, the evolution in time of the energy density along
the numerical solution given by the Strang splitting scheme. We can observe
the concentration of the energy and then its separation in two parts, following
the waves. With all these numerical observations, we can conclude that the
proposed spatial discretisation is robust and qualitatively correct. The time
integrators are relatively comparable but only the splitting schemes have the
additional properties of maintaining the positivity of the energy density and
conserve exactly the invariants of our partial differential equation.
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