UNIVERSITE DE GENEVE FACULTE DES SCIENCES
Section de mathématiques Professeur E. Hairer

Analysis and Numerical Treatment of
Highly Oscillatory Differential Equations

THESE

présentée a la Faculté des sciences
de I’Université de Genéve
pour obtenir le grade de Docteur és sciences,
mention mathématiques

par

David COHEN
de
Gontenschwil (AG)

Thése N° 3524

Genéve
Atelier de reproduction de la Section de physique
2004






En équilibre instable entre le royaume des abstractions
et celui de la matiére,

il essayait désespérément de se raccrocher a

quelque chose.

(David Brin 1995, Rédemption)






Remerciements

Je tiens a remercier chaleureusement les personnes qui ont contribué & 1’élaboration de ce
travail ; en particulier

e Ma famille pour son soutien et la patience qu’elle a eue. Merci “petit frére”, c’est toi
I’exemple.

e Ernst Hairer, directeur de thése, pour sa disponibilité et surtout sa patience, ce n’était
pas tous les jours faciles avec moi. .. Ce fut un honneur de travailler avec un BOSS pareil !

e Gerhard “Papa Noé€l” Wanner, les membres du GANG et les invités du séminaire d’analyse
numérique.

e Arieh Iserles et Christian Lubich, membres du jury, pour l'intérét qu’ils ont porté a ce
travail.

e En vrac, pour tout ce qu’ils ont fait: Eugenio Rodriguez, Jeremy Blanc et sa dame de
coeur, Luc “homme qui parlait plus vite que son ombre” Guyot et la French Connec-
tion, le “petit” Nicolas Bartholdi, Harald Wendler, Sonja Hairer, Paola Argentin, Christian
Wuthrich, Emmanuel Zabey, les étudiants de la section, NTM, Google et les trois petits
points.

e Les enseignants de la section de mathématiques pour la qualité de leurs cours.

e Les bibliothécaires et le personnel administratif de la section pour leur disponibilité, leur
compétence et leur gentillesse.

e Je l'oublie toujours : ............... (+ écris ton nom).

When worst come to worst
my peoples come first.

(Dilated Peoples, Worst Comes To Worst)






Contents

Introduction

1 The problem and some results

1.1 Description of the problem . . . . . . . .. . ... ...
1.2 Theoretical results . . . . . . ... oL
1.3 Numerical methods . . . . . . . . .. .o oo
1.4 Trigonometric methods . . . . . . . . . ... oL
1.5 Other methods . . . . . . . . . . . ..

Highly oscillatory differential equation

2.1 Introduction . . . . . . . . . . ..
2.2 The modulated Fourier expansion . . . . . . . . ... ... .. .. .....
2.2.1 Recurrence relations for the coefficient functions . . . . . . . . . ..
2.2.2 Estimates for the functions Fj; and ij ................
2.3 Exponentially small error estimates . . . . . . . .. ... ...
2.3.1 Initial values for the modulated Fourier expansion . . . . . . . . ..
2.3.2 Estimation of the defect . . . . . ... ... ... ... .......
2.4 The Hamiltoniancase . . . . . . . . . . . . . . . . . . ..
2.4.1 Hamiltonian of the modulated Fourier expansion . . . . . . .. . ..
2.4.2  An almost-invariant close to the oscillatory energy . . . . . . . . ..
2.4.3 Proof of Theorem 2.1.1 . . . . . . . . . ... ... ... . ......
Numerical methods
3.1 The general method . . . . . . . . ... oo
3.2 Numerical properties . . . . . . . ... Lo L
3.2.1 Symmetry . . . ... L
3.2.2 preversibility . . . . ..o o
3.3 Four numerical methods . . . . . ... ... ... .. ... ... ...
3.3.1 Method 1 . . . . . .. . . ...
332 Method2 . .. .. .. ...
3.3.3 Method3 . . ... . . .. ...
3.34 Method4 . ... . . . ...
3.4 Examples . . . . ..

vii

—_
— O 1o W W

—

13
17
18
19
23
24
25
28
28
28
29



viil

4 Multi-frequency oscillatory differential equations
4.1 Non-resonant case . . . . . . . . . . ..o e
4.1.1 Formal analysis . . . . . . .. ...
4.1.2 Rigorous estimates . . . . . . . ... ..o L L.
4.1.3 Some nice pictures . . . . . ... ..o
42 (1,2)-Case . . . . ..
4.2.1 The dominating terms . . . . . . ... Lo oL
4.2.2 Bounds for the modulation functions . . . .. ... ... ... ...
4.2.3 Nearinvariants . . . . . . . . . ..o Lo Lo
43 (ag,a3)-Case . . . . ...
4.3.1 Some more pictures . . . . . ... ... oo e
4.4 (ag,az,...,a,)-Case . . . . ..
4.5 Numerical solution . . . . .. . .. . ... ... o

5 Another type of oscillatory Hamiltonian systems

5.1 Introduction . . . . . . . . . . ...
5.2 Expansion of the exact solution . . . . . ... ... ... ... ... ....
5.3 Two almost-invariants of the modulated Fourier expansion . ... ... ..
5.4 Numerical methods . . . . . . . . ... .. ...

5.4.1 New Trigonometric Methods (NTM) . . . ... ... ... .....

5.4.2 Numerical properties . . . . . . . . .. ... o ..

5.4.3 Numerical examples . . . . .. .. ... .00,
5.5 Expansion of the numerical solution . . . . . . . .. . ... ... .. ...
5.6 Almost-invariants of the numerical method . . . . . . . ... ... ... ..

A Résumé de la thése en francais
A1 Imtroduction . . . . . . . . ...
A.2 Equations différentielles a grandes oscillations . . . . . ... ... ... ..
A.3 Méthodes numériques . . . . . . . ..o
A4 Multi-fréquences . . . . . . L Lo e
A.5 Une nouvelle classe d’Hamiltonien hautement oscillatoire . . . . . . . . ..

Bibliography

49
49
ol
04
62
64
64
66
67
68
70
71
72

75
75
7
80
83
83
84
86
38
94

99
99
103
104
105
107

113



Introduction

“By carefully tracing the dependence on N of the constants in the O(w V)-terms, near-
conservation of I over exponentially long time intervals can be shown also within the present
framework of modulated Fourier expansions” [HLWO02, p.443|, it is with this sentence that
all began ...

But what exactly ?

The study of highly oscillatory second-order differential equations and numerical meth-
ods to solve them.

What stands these words for ?

Basically, an ordinary differential equation (ODE) is an equation involving an unknown
function and its derivatives, we say that it has order 2 when the second derivative (at
most) of this function appears in this relation. They are often met in Physics, but those
that are our subject appear in Molecular Dynamics (MD). The definition of the term
“highly oscillatory” is difficult to give: “[...] it does not seem possible to give a precise
mathematical definition which would include most of the problems that scientists, engineers
and numerical analysts have described as highly oscillatory” [PJY97, p.438|. However, we
hope that this term would be clear after reading this work. The ODE studied in this thesis
is a mathematical model for MD problems, as a simple example of an application, we can
describe the motion of a linear diatomic molecule (see Figure 1) with this model. The bond
length between the two atoms can be modelled with the help of a stiff spring (with a large
stiffness constant). This makes the molecule vibrate very rapidly, with high frequency.

@ @

stiff spring

Figure 1: A linear diatomic molecule.



9 Introduction

We can also describe the planar motion of such a molecule, but it’s a little bit more
complicated (see Chapter 5) ...

What can we expect for those systems ?

For some physical or MD systems described by the so called Hamiltonian equations, we
know that the total energy (we sometimes call this quantity the Hamiltonian) is conserved.
But, systems that we are looking at have another near-preserved quantity: the oscillatory
energy, denoted by [ in the first sentence. For our simple diatomic problem, this adiabatic
invariant correspond to the energy of the stiff spring. The tool we use to explain the
behaviour of the solution of the second-order oscillatory differential equation studied here
is called the modulated Fourier erpansion. This expansion was developed in the paper
|[HLOO], it expresses the solution of the ODE as an expansion involving smooth functions.

And how do you solve this kind of problems ¢

Analytically it’s impossible. This is why we develop numerical methods. They are
designed to solve ODEs on a computer. Basically, starting with an initial value, a numerical
method gives a sequence of points, sometimes after horrible calculations ...each point
approximating the solution at a certain time. We finally just have to plot the desired
results with the help of this sequence.

Moreover, numerical methods allow us to carry out simulations under extreme tem-
perature, pressure or other quantities such as they would not be possible in a laboratory.
For example, on a computer you can recreate the weather in Mars, this is (nowadays) not
possible in a laboratory.

Because the solution of the oscillatory differential equations studied have special prop-
erties (like the oscillations, the preservation of some quantities, ...), we would like our
numerical methods to preserve these properties too. Beside these requirements, to avoid
lots of computations, we want that the product of the step size of the numerical method
with the highest frequency of the system is not small.

Hum ... It seems interesting. Where can I read more about this subject?

I suggest you, beside all the papers present in the Bibliography, the document that you
hold in your hand. This thesis is organized as follows: in the first chapter, we will explain
in more details the kind of problems studied, recall the methods used to solve them and
review theoretical results obtained so far. Chapter 2 is devoted to a rigorous proof of the
near-conservation of the oscillatory energy on exponentially long time intervals. To do this,
we use the so-called modulated Fourier erpansion. In the third chapter, we will develop
numerical methods to solve these kinds of problems. Chapter 4 will be a generalization of
Chapter 2 to the multi-frequency case. Finally, the last chapter will analyse a new class
of oscillatory differential equations (who includes those of Chapter 2) and a new kind of
numerical methods to solve these differential equations.



Chapter 1

The problem and some results

In this chapter we describe the problem considered in this work. As an example, we
analyze the modified Fermi-Pasta-Ulam (FPU) model treated in [HLWO02, Chap. XIII|. We
recall some theoretical properties of the differential equation considered and its numerical
treatement.

1.1 Description of the problem

We consider Hamiltonian problems

p = =V (p,q)
¢ = V,H(p.q), (1.1)

where the variables p and ¢ are in R? and the scalar function H(p, q) is sufficiently differ-
entiable. The formulation (1.1) is a way to describe the dynamics of general mechanical
systems with d degrees of freedom, the variables ¢ and p are called the generalized coordi-
nates and the conjugate momenta. The Hamiltonian H represents the total energy of the
system and is conserved along the solution of (1.1). This kind of problems often appears
in Molecular Dynamics (MD) or in physics (see below). In these cases, the Hamiltonian
consists of the sum of the kinetic energy T'(p,q) and the potential energy V(q).

More precisely, we are interested in highly oscillatory solutions of Hamiltonian problems.
In particular, we consider the special form of H where the kinetic and potential energies
are given by

1 - 1 1
T(p,q) = 501 M(@) "' pr+5(P2p2+- .. +05pa). V(@) = (W3 a2+ ..+ widyga) + U(a),

’ (1.2)
where M (q) is a mass matrix, ) = diag(0,wsl,...,w,[) is a square matrix with blocks
of arbitrary dimension, and w; > 1 for i = 2,...,n. We partition the variables p =
(p1,-..,pn) and ¢ = (q1,...,qn) according to the partition of the matrix 2. The vector
p; (for i = 1,...,n) is of the same dimension as its corresponding block in the matrix

3



4 Chapter 1. The problem and some results

). We suppose that the nonlinearity gradient VU (q) is analytic with derivatives bounded

independently of ws, . ..,w, and the initial values of (1.1) are assumed to satisfy

1

(PO + 1290 < P, (1.3)
where F is independent of w;, for i = 2,... n.

In Chapter 5, we will take one frequency w in (1.2). An example for such a Hamiltonian
system is the motion of the planar diatomic molecule seen in the introduction.

Sometimes the mass matrix M (q) is the identity and we write z, & instead of ¢, p and
x;, &; instead of ¢;,p;. For this kind of problems, the Hamiltonian reads (see Chapter 4
and the end of first example below)

H(z,i) = 3 (14l]° + 192]]*) + U(a). (1.4)

In the first example and in Chapter 2, we will consider the particular case of a one
frequency highly oscillatory differential equation with Hamiltonian of the form

H(z,i) = 3 (14l + 102]]?) + U(2). (1.5)

We sometimes consider the more general second-order differential equation

i+ O = g(x) with Q= ( 8 u?[ ) : (1.6)

with arbitrary nonlinear smooth function g(x) with derivatives bounded independently of
w. We remark that taking for the function g the negative gradient of a potential U, this
problem is Hamiltonian with (1.5).

For all this kind of problems, we are interested in explaining the near-conservation of
the oscillatory energy

I(x,i) = Iy(2,2) + ...+ L,(x,&), where Ij(x,:'c):%(||¢j||2+w§||xj||2>, (1.7)

over long time intervals. Moreover, we are also interested in using numerical methods that
conserve very well this quantity and the total energy H. These numerical methods should
be able to use a step size h for which the product with the highest frequency w is not small.

Example (FPU). As a first example, we consider a nonlinear mass-spring model (as in
[HLOO]). This model is a variation of the classical FPU model ([FPU55],[Wei97|,[AT87])
and consists of a chain of 2n mass points connected with alternating soft nonlinear and
stiff linear springs with fixed end points (see Figure 1.1).

For this problem, the Hamiltonian reads

n n n

2
H(q.q) = % Z(q‘SH +d3;) + % Z(QQZ' — (oi1)’ + Z((J%+1 — q2)", (1.8)

=1 =1 1=0



1.1.Description of the problem )

q2n—-1  Qon

stiff soft
harmonic nonlinear

Figure 1.1: Chain with alternating soft nonlinear and stiff linear springs. (Q[HLW02])

with ¢ = gon+1 = 0, where the variables ¢; stand for the displacements of the mass
points. This is not exactly an Hamiltonian of the form (1.5), however, using the symplectic
change of variables (which represent a scaled displacement of the stiff springs and a scaled
expansion (or compression) of the ith stiff spring)

T = (CI% + Q2i—1)/\/§7 Tpyi = (QQi - Q2z’—1)/\/§,

this Hamiltonian takes the desired form (1.5). To illustrate the conservation of the total
energy (1.5) and the near-conservation of the oscillatory energy (1.7), we use a numerical
method called DOP853 with high precision (for a definition of this method, see [HNW93|).

We plot the different energies (here, [; = %(xgj + w?z3 ;)) for the modified FPU problem
with n = 3 and w = 50.

H

I

07\ \H‘L\"iuu ! el IR
E 50 100 150

Figure 1.2: Scaled total energy and oscillatory energy using DOP853.

This shows that the oscillatory energy I (which corresponds to the total energy of the
stiff springs) is preserved up to O(w™'). We can also see the energy exchange among the
stiff spring, going from the first excited spring to the second and finally the third one.

We remark that if we consider different large elasticity constants for each stiff springs,
we obtain a Hamiltonian (1.4) with more than one high frequency.

Example (MD). In classical MD (see for example [GKZC04] and [Mic01]), the motion of
n atoms is described by Newton’s law

Mi =-VU(x),

where the vector = contains the Cartesian coordinates of the atoms. These equations are
Hamiltonian systems with Hamiltonian

H(v, &) = S#M ™3 + Ulz). (1.9)
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The potential U(z) takes the form

U(z) = ZUl(l“k) + ZU2(5%961) + Z Us(r, T, Tm) + - - -,

k<l k<l<m

with zy, z;,... € R? the coordinates of each atoms. For example, Us(zy, ;) is typically a
sum of potentials V (||xy — ;||) depending only on the distance of the atoms x; and z;,
where V' (r) may take one of the following forms

e The Coulomb electrostatical potential V' (r) = Z;Zi

stants and stand for the electric charge of the atoms and for the electrical permittivity
of space.

, where ¢, ¢ and € are given con-

e The Lennard-Jones potential V(r) = 45((%)12 — (%)6), where ¢ and o are suitable
constants depending on the atoms.

e Harmonic potential (or Hook’s law) V(r) = g(r — )2, where k is the bond constant
of the spring and ry is the reference bond length.

The first two terms are non-bonded terms, while the last one is a bonded term. If we
consider more atoms, other types of potential appear, such as torsion or angle bond. ..

We remark that if we consider a diatomic molecule with large bond stretches constant
k and for a mass matrix M = I, the Hamiltonian (1.9) gives the desired second-order
differential equation (1.6). Typically bond length constants and bond length for diatomic
molecules can be found in the following table (see [Lea96] and the web ...)

Diatomic molecules | bond length g [;1] bond constant k[kcal mol™]
cc 1.337 690
coO 1.203 T
CN 1.345 719
HO 0.9572 995
HH 0.74 436

Table 1.1: Bond length and bond constants in MD.

1.2 Theoretical results

In this section, we give some references concerning theoretical results for our class of
problems with Hamiltonian (1.5) and for two other classes of Hamiltonian systems that
are related to our problem.

Let’s first begin with the theoretical results concerning problem (1.6), using the mod-
ulated Fourier expansion, Hairer and Lubich (in [HLOO|) showed the existence of two in-
variants of the modulation functions appearing in this expansion. They are related to
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the Hamiltonian (1.5) and to the oscillatory energy (1.7). Moreover, they showed the
near-conservation of the oscillatory energy over long time intervals. These results are
also available in [HLW02, Chap. XIII]. Based on the same ideas, the oscillatory energy is
shown, in [CHLO03|, to be nearly conserved over exponentially long time intervals. Finally,
extension to the multi frequency case (1.4) is analysed in [CHL.

In [BGG87|, Benettin et al. studied the Hamiltonian problem

~

Ho(p,w,7,¢) = 5(n? +w?C%) + h(p, @) + f(p.2,7,0), (2.10)

with analytic &, f, and the function f vanishes for vanishing (. The variables 7 and ( are
in R, p and z in R™. Using an action-angle transformation and some canonical transforma-
tions, they also proved the near-conservation of the oscillatory energy over exponentially
long time intervals. We can remark that Hamiltonian problem (2.10) contains our class of
Hamiltonian problems if the second component of the Hamiltonian (1.5) is scalar.

In the second part (|[BGG89|), they considered the multi frequency Hamiltonian case

H(p,z,m,¢) = ho(m,{) + hip,z) + f(p, 7, 7,¢), (2.11)

here h, (7, (), with (7,¢) = (71,...,m,(1,--.,¢,) € R*, is the Hamiltonian of a set of
v uncoupled harmonic oscillators of angular frequency w = (wy,...,w,). fAL(p, x), with
(p,x) = (P1,- -+ Pn,T1,---,T,) € R* represents any dynamical system with n degrees of
freedom. The coupling function f is assumed to vanish for ( = 0 and to be a polynomial
of order 2 in 7. Using perturbation theory they proved similar results than those given in

|[CHLY], like for example the near-conservation of the total oscillatory energy.

1.3 Numerical methods

In this section, we recall the definition of a numerical method, give some examples and
properties of numerical methods (we refer for example to [HLWO02|). Let’s consider the
ordinary differential equation (ODE)

y=f(y), (3.12)

where the vector y is in R" and the function f : R” — R" is sufficiently differentiable. We
denote the initial value of (3.12) by y(0) = yo. We define the flow ¢; to be the mapping
which, to the point y, in the phase space, associates the value y(t¢) of the solution of the
ODE with initial value y(0) = yo.

Definition 1.3.1 A numerical one-step method &, : R" — R" is a mapping that approzx-
imates the time h flow of the differential equation (8.12). The recursion yny1 = Pp(yn)
yields an approzimation to the solution on the grid {t,} where t, = nh, for a constant step
size h.
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The simplest of all numerical methods is the method proposed by Euler,

Ynt1 = Yn + hf(yn) (313)

The implicit Fuler method reads

Yn+1 = Yn + hf(yn+1)- (314)

Here, we see that the approximation y,, is defined implicitly by relation (3.14). Thus,
one has to solve a nonlinear system of equations in each step of the numerical method.

Taking the mean of y,, and y,,1 in the argument of the function f, we obtain another
implicit method: the implicit midpoint rule

n + n
Yub1 = Yo+ hf (L), (3.15)
For partitioned systems
p = f(p.q)
. 3.16
¢ = 9 q), (3.16)

such as the Hamiltonian problem (1.1), we consider the symplectic Euler method

Pny1 = DPnt hf(pn+1a Qn)
3.17
Grt1 = Qo+ hg(Pni1,@n), (3.17)

which treats variables p, ¢ by the implicit (resp. explicit) Euler method.

A widely used numerical method in MD is the Stérmer-Verlet scheme. The one-step
formulation of this method applied to the Hamiltonian problem (1.5) reads (see for example
[PJY97],[HLWO03| or [HLWO02])

by = G — (0P, + VU (3,))
Tpt1 — Tp + h.T'n_H/g (318)
. . h
Tpt+1 = -rn+1/2 - §(Q2xn+l + VU(-rn—l—l))a

where the new positions and momenta x,,1, *,,1 at time ¢,,,, are computed from x, and
Z, in an explicit way.

By comparing the Taylor series of the Euler method (3.13) and the exact solution of
(3.12), we obtain

Pn(y) — Paly) = O(h?).
Methods satisfying this relation for all sufficiently regular problems (3.12) are said to be of

order 1. Generalizing this idea, one gets the following definition of the order of a numerical
one step method.

Definition 1.3.2 A one-step numerical method ®;, has order p, if for all sufficiently reg-
ular problems (3.12) the local error ¢, (y) — Py (y) satisfies

on(y) — Pply) = O(hPTH).
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For the numerical methods considered above, we can check (by comparing the Taylor
series as before) that the implicit Euler method and the symplectic Euler have order 1, the
midpoint scheme and the Stormer-Verlet method are of order 2.

The flow ¢, of problem (3.12) satisfies ¢~} = ¢, we want to know if this property is
also shared by a numerical method.

Definition 1.3.3 A one-step numerical method y; = ®5,(yo) is symmetric if po0d_;, = id.

We can check (by exchanging y,, <> yn+1 and h <> —h) that the midpoint and the Stérmer-
Verlet methods are symmetric.

Symmetric integrators are related to a property of the differential equation (3.12),
namely:

Definition 1.3.4 Let p be an invertible linear transformation in the phase space of problem
(8.12). The problem is p-reversible if

p(f(y)) = —=f(py)) for all y. (3.19)

As an example, we consider partitioned system (3.16) where f(—p,q) = f(p,q) and
9(—p,q) = —g(p,q). Here, the linear transformation p is given by p(p,q) = (—p,q). All
Hamiltonian system for which H(p, ¢) is an even function of p are p-reversible with respect
to this particular transformation.

For p-reversible differential equations, the exact flow satisfies

popi=p op=g; op,
this motivates the following definition.

Definition 1.3.5 A map $,,(y) is called p-reversible if

p(Pu(y)) = 0, (p(y)) for all y. (3.20)

We can show that the Stormer-Verlet method is p-reversible for partitioned system evoked
just before this definition.

We finally mention a characteristic property of Hamiltonian systems. To do this, we
first give the definition of this property and then give a theorem due to Poincaré (for a
proof, see [HLW02]).

Definition 1.3.6 A differentiable map g : U — R??, where U C R?? is an open subset, is
called symplectic if

g (.a)"Jd (p.q) = J, (3.21)

(%)

for the structural matrix
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Theorem 1.3.7 Let H(p,q) be a twice continuously differentiable function on U C R??.
Then, for each fixed t, the flow ¢, is a symplectic transformation wherever it is defined.

It is natural to extend this definition to numerical methods.

Definition 1.3.8 The numerical one-step method ®; : R* — R?? is symplectic if it
satisfies condition (3.21) whenever it is applied to a smooth Hamiltonian system.

For the numerical methods defined above, we can show that the midpoint scheme, the
Stormer-Verlet and the symplectic Euler methods are symplectic.

The Stormer-Verlet method (3.18) is commonly used in MD because of two important
geometric properties: the symplecticity and the reversiblity under the application & — —z.
However, a major disadvantage is the restriction hw < 2 on the step size. For step sizes
that do not satisfy this inequality, the numerical solution is unstable and explodes after
a few steps. Due to this restriction on the step size h, for highly oscillatory second-order
differential equations (1.6), this method is very costly (a lot of force evaluations). This
motivates to search for methods that permits bigger step sizes. In the next section, we
present the ideas that lead to the definition of trigonometric methods.

1.4 Trigonometric methods

In this section, we give a brief survey of a class of numerical methods designed for Hamil-
tonian problems (1.5).
The variation-of-constant formula gives for the exact solution of (1.6)

(50) = (oo amS) (20) + [ (k™) statonas

Taking an approximation for the integral, one is led to the following definition.

Definition 1.4.1 Trigonometric methods are given by the scheme

2
Tpy1 = cos(hQ)z, + Q Lsin(hQ)z, + h—\IJgn
hQ (4.22)
Tnp1 = —Qsin(hQ)z, + cos(hQ)x, + 5(\Iiogn + U10n11)s

where g, = g(Px,) and & = ¢(hQ2), U = p(hQ), ¥y = o(hY), V1 = 11 (hQ2) with even
real-valued functions ¢, 1, vg, Y1 with ¢(0) = ¥ (0) = 1(0) = 11(0) = 1. These functions
are called filter functions.

Depending on the choice of these filter functions, we obtain different numerical meth-
ods. For example, taking ¥(¢) = sinc?(¢), ¢(¢) = sinc((), 1y = cos(C)o((), 1 = o(¢)
(where sinc(¢) = sin(¢)/¢) one gets the mollified impulse method of Garcia-Archilla et al.
(|JGASSS98|). For other choices of the filter functions, we obtain Gautschi-type methods
(see [HL99)).
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Trigonometric methods are well analysed in [HLW02, Chap. XIII|, we just recall the
conditions on the filter functions to obtain symplectic or symmetric methods. Exchanging
n < n+ 1 and h < —h in the definition of a trigonometric method, it is seen that the
method is symmetric if and only if

Y(¢) = sinc(Q)¥i(C),  o(C) = cos(C)¥(¢). (4.23)
The method is symplectic if and only if
¥(C) = sinc(¢)(C). (4.24)

Interesting properties for these methods is nearly conservation of the total and oscillatory
energies over long time intervals under conditions on the filter functions. Moreover, a
detailed analysis of the stability of the impulse methods can be found in [GASSS98| and
one can see in [HL99| that, on intervals of length O(1) independent of w, the order of
convergence of Gautschi-types methods is two independently of how large w is.

1.5 Other methods

We finally say a few words on two other types of methods: implicit methods and methods
consisting by replacing the oscillations by constraints.

What happens when we use implicit methods, like for example the midpoint scheme,
for the problem (1.6)? Unfortunately, if we want to use these methods, we have to solve
nonlinear systems (this is usually very costly). Moreover, in [AR99a] and [AR99b]), the
authors investigate, in particular, the use of the implicit midpoint rule to highly oscillatory
problems. Beside resonance instability, other difficulties arise: one must require the step
size to be small enough or else errors in the energy and other slowly varying quantities
may grow undesirably. Or, worse, the computation may yield misleading information.

Another possibility to solve highly oscillatory differential equation is to freeze out the
system (|Lea96|). This method is widely used in chemistry because "[...| molecular bond
vibrations would occur so rapidly than an extremely short time step would be required to
solve the equations of motion." [AT87, p.84]. It consists of considering the limit w — oo
so that the high oscillations disappear and are replaced by an algebraic constraint for the
system. However, we can remark that for "|...]realistic molecular dynamics: bond length
constraints are permissible but bond angle constraints not." [AT87, p.98]. Once this is
done, one can use a numerical method designed for differential algebraic equations like
SHAKE and RATTLE, see [Lea96|, [AT87|, [PJY97] or [LRS96].

As a conclusion, we would just keep in mind a sentence appearing in [PJY97]:“The best
method to use is strongly dependent on the application.”
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Chapter 1. The problem and some results



Chapter 2

Highly oscillatory differential equation

This chapter introduces the modulated Fourier expansion, the fundamental tool to study
second-order differential equations (1.1). We also explain the near-conservation of the
oscillatory energy over exponentially long time intervals. This Chapter is identical to the
publication [CHLO03|.

2.1 Introduction

We study the system of differential equations

P40 —g(x)  with Q- ( - ) (1.1)

where w > 1 and the nonlinearity is g(z) = —VU(x), so that the problem is Hamiltonian
with ,
H(w, &) = 3 (122 + 1922°) + U (). (1.2)

An important property of such systems is the near-conservation over long times of the
oscillatory energy

1@,8) = 5 (ll2a? + o). (1.3)

Here, the vectors x = (x1, 25) and & = (&1, @) are partitioned according to the partitioning
of the matrix €2 in (1.1). A possible way of studying problems of the type (1.1) is via
averaging techniques and Lindstedt series, see for example Neishtadt |[Nei84|, Murdock
[Mur91], Pronin and Treschev [PT00]. The very problem (1.1) was thoroughly studied in
Benettin, Galgani and Giorgilli  BGG89|, Fasso [Fas90], and Bambusi and Giorgilli [BG93],
using coordinate transformations of Hamiltonian perturbation theory. In this chapter we
give a variant of their result, obtained with a completely different proof. It is based on
writing the solution of (1.1) as a modulated Fourier expansion

#(t) = y(6) + e (0) (14)

k0

13
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where y(t) and 2*(t) are smoothly varying functions (i.e., their derivatives are bounded
independently of w).

Such a representation of the solution has first been proposed by Miranker and van
Veldhuizen [MvV78], who derived a scheme for constructing the “envelopes” 2*(t). They
suggested to compute numerically these envelopes and used them for approximating the
solution z(¢). In [HLOO|] and [HLWO02, Chap. XIII| this technique of modulated Fourier
expansions has been further developed and used in the analysis of the long-time behaviour
of numerical integrators when the time step is not small compared to w™!. Standard
backward error analysis (see for example [HLWO02, Chap.IX]) requires At - w to be small
and therefore cannot be applied. In this situation, modulated Fourier expansions provide
much insight into the long-time behaviour of numerical integrators. In this chapter, they are
used to obtain rigorous long-time results for the exact solution of the differential equation.

The following result states the near-conservation of the oscillatory energy over time
intervals that are exponentially long in w. Here we assume that the initial values satisfy

1 .
L1 + [220)]?) < £, (15)
where F is independent of w. (We do not require F to be small.)

Theorem 2.1.1 Assume that g(x) = —VU(z) is analytic and bounded by M in the com-
plex neighbourbood D = {x € C"; ||z—¢&| < R for some & with H(&,0) < H(x(0),%(0))}
of the set of energetically admissible positions. Furthermore, let the initial values x(0), 2(0)
satisfy (1.5). Then there exist positive constants ~y,C, a,wo depending on E, M, and R
(but not on w) such that for w > wy

1T(2(t),2(t)) — I(2(0),2(0))]| < Cw™  for 0<t<Ce™.

The proof of this theorem will be given in the last section of this chapter. We first
discuss the modulated Fourier expansion in Section 2.2, and we show that the coefficient
functions of (1.4) are given by asymptotic differential and algebraic equations. The effect of
truncating the asymptotic series is studied in Section 2.3. Whereas these two sections treat
the general problem (1.1), the final Section 2.4 assumes that g(x) = —VU(z). It is shown
that the coefficient functions of the modulated Fourier expansion are then exponentially
close to the solution of a Hamiltonian system in an infinite dimensional space, which has
two invariants: one is close to the Hamiltonian (1.2) and the other is close to the oscillatory
energy (1.3).

Let us mention that the dominating fluctuation terms in the oscillatory energy can be
given explicitly. Writing down the O(w™") terms in Z of (4.4) below we find that

. 1 .
I, ) = 3 (1l + w* 22]2) — 22 gal1,0) (1.6)

satisfies
| J(z(t),2(t)) — J(x(0),2(0))|| < Cw™?
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on exponentially long time intervals. Since x5 = O(w™!), this implies that the fluctuations
in I(z,%) are of size O(w™2) when go(x1,0) = O(w™1).

The techniques of this chapter can also be applied to the slightly more general situation
where the potential U(x) contains expressions of the form ¢ (z1, 23) + wps (1 /w, x2), such
that the differential equation becomes

# = g1(21, 22)

.fg + WQIQ = a}gg(l'hl'g)

with g(x) depending smoothly on w™!. In this case, the quantity
. 1 . 1
K(,2) = 3 (42l + o 22)) = wadga(21,0) + 3lg2(a1,0) (1.7)

satisfies
| K (z(t),4(t) — K (2(0),2(0))]| < Cw™

on exponentially long time intervals. Notice that the additional terms in (1.7) are in
general of size O(1), so that the oscillatory energy exhibits fluctuations that can be large
independent of the size of w.

Example. Inspired by an example of Bambusi and Giorgilli
|BG93| we consider a closed chain of an even number of par-
ticles with alternate light and heavy masses. They interact
through springs which are harmonic up to small perturba-
tions, and neighbouring heavy particles interact also through
arbitrary anharmonic springs (see the picture to the right).
More precisely, we consider the Hamiltonian system with

N

] 2N 52 1 2N
HEE =D 5+ 5D (& =&)Y pi(6y — &)
i=1 t i=1

Jj=1

+ Z %(\/Fﬂ (& — 51‘—1))7

where my; ; = m < 1 and my; = 1 for j = 1,..., N, and § = &§n. Applying the
symplectic change of coordinates & +— /m; &, & +— &/\/m;, and using the notation
w = 1/4/m, the Hamiltonian becomes

N

. 13N
H(,§) = 2 ng + B Z ((f2j — wéyj 1) + (wpj1 — 523'72)2)
i=1

Jj=1

N N | |
+ ; ©;(§25 — E2-2) + ; (1/121' (% - 52]'71) + 91 (52],71 . 52;_2».
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We then consider an orthogonal linear transformation £* = Q¢ that takes the harmonic
part of the Hamiltonian to diagonal form. It is given by

§j-1 = &oj—1 — i(fzj + §2j—2) +O(w™?),
& =&y + i (&2j41 + &25-1) + O(w™?).

Omitting the stars, the Hamiltonian becomes (in the new variables)

2N N
H(é. E) = % ng + w2 Zggjfl + @1(5) + @2(51752/(.4),53, 54/("07 N ')7
i=1 7=1

which is of the form treated above.

Numerical Experiment. For a concrete example we put N = 3, w = 50, we let
0;i(s) = x(V2 — s/w) with x(s) = s7'2 — 570 be the Lennard-Jones potential, we take
Uo;(s) = s?/2+s*/dfor j=1,...,N —1, and ¢;(s) = 0 else.

Figure 2.1 shows the components &, &y, &, and 105 on the interval 0 < ¢ < 10. The
factor 10 multiplying &5 is included to show more clearly the oscillations of size O(w™!) in
the numerical solution.

i|“r‘r“\|'l!ﬂli¥ilili!l|l!mml»! | 1’11.111‘\,1 | ‘ﬁub','\‘ il W i I,j‘m'iWM'lmqﬂmlilﬁlM‘Hﬁl}vﬁyi’ll'ill‘l’lllml?l{l

/ WUTTTITN ” ,” T

Figure 2.1: Solution components, where the non-zero initial positions are &(0) =
0.5,(0) = (2w) 1,&(0) = w ', &(0) = 0.3 and the non-zero initial velocities are
51(0) = —53(0) = w‘l,fg(O) = 08,54(0) = _1756(0) =0.2.

N

L
500 1000

Figure 2.2: Oscillatory energy for the solution with initial values as in Fig.2.1.
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In Fig.2.2 we plot the energies I;(£*,£*) = %(é;j,l)Q + w?(&; 1)* together with the
oscillatory energy I = I + I + I3 (cf. (1.3)) along the numerical solution on the interval
0 <t < 1200. For this example, the expression g»(z1, 0) is of size w™!, so that the oscillatory
energy is conserved up to terms of size w2 (see (1.6)). Therefore, the oscillations cannot
be observed in Fig.2.2.

2.2 The modulated Fourier expansion

We write the system (1.1) in the equivalent form

T = g1(x1, T2)

. 2.1
To + wiry = go(w1, 1), (2.1)

where w > 1 represents the dominant frequency of the system. In this section we do not
assume that g(x) is the gradient of a potential. Our aim is to present a technique that
allows us to separate the smooth and the oscillating parts of the solution of (2.1) and to

write it in the form 0 " k)

Ty % ikwt [ 21
where y;(t) and z¥(t) are smoothly varying functions (i.e., their derivatives are bounded
independently of w). The functions y;(t) are real-valued and z¥(¢) are complex-valued.
Since the solution z;(t) is real-valued, we have to require that z;* = 2*. We also use the
notations 2, := 24 and 29 := ys.

Inserting (2.2) into (1.1), expanding the nonlinearity into a Taylor series around (y1(t),0),
and comparing the coefficients of e yields differential equations for the coefficient func-
tions y;(¢) and 2¥(¢). With the exception of y;(¢) they are of singular perturbation type.
We have to find smooth solutions of these equations. As explained in [HLO0O|, the functions
y1 and 2, are seen to be given by differential equations of the form !

= Zw_lFll(ylayla za), 2 = ZW_lFZI(yla Y1, 22), (2.3)
1>0 1>1
and the remaining functions by algebraic relations
2k = Zwilel(yl, U1, 22). (2.4)
1>0

Observe that yo = 29, so that we also have an algebraic relation for y,. Furthermore, for
i =2 and k = 1, we have the trivial identity z3 = 2, which implies

Gho(y1, U1, 22) = 22, Gy(y1,11,2) =0 for [>1. (2.5)

Remember that z; * is the complex conjugate of 2¥  so that also Gi’lk is the complex
conjugate of G%.

1 The series (2.3) and (2.4) are asymptotic expansions and do not converge in general. For convenience we
nevertheless use the symbol =. Later, we shall truncate them suitably in order to get rigorous statements.
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2.2.1 Recurrence relations for the coefficient functions

For a computation of the functions F}; and G¥ in (2.3) and (2.4) it is convenient to introduce
the Lie operator £;. It can be applied to smooth functions G(y1, 71, 22) and it is defined
for [ > 0 by

0 it 1>, (2.6)

,CIG - D2G Fll +D3G F2l + {
where D; denotes the partial derivative with respect to the jth argument of G(y1, 91, 22).
This definition is motivated by the fact that, whenever y;(¢) and z5(¢) are a solution of the
differential equation (2.3), then we have

MITONORT = S WG (1), (1), 2 (). (2.7)

>0

Lemma 2.2.1 The function (1(t),22(t)) of (2.2) with y;(t) and zF(t) given by (2.3) and
(2.4) represents a formal solution of (2.1) if the coefficient functions Fy and G¥ satisfy the
following recurrence relations (for 1 >0):

Fy = $1(0,0)
GY = %( D LulaGhy 2k Y LG = Si(k 1 - 2)
1 mA4n+j=I-2 m+j=I—-1
Fa = 5 (S1L1=1) = Y L)
m+j=Il—1
ah = 1k2<52kl—2 > LalaGh =2k Y LaGh).
1- mtn+tj=1—2 m+j=1—1

The sums are over m > 0,n > 0,5 > 0, and we have used the abbreviation

S= > - 3 Z DY Digi(31,0) (G5, G,

o,
s(a)+s(B)=k é(e)+é() l

Here, a = (ay,...,an),8 = (B1,-..,0n),e = (e1,...,en), [ = (f1,..., fn) are multi-
indices with a; # 0, ; arbitrary, e; > 0, f; > 0, and (GS,, Gﬁ ) =(G1L, ..., G ,Gglf - Gg’}n)
We use the abbreviation s(a) =Y " a; and similarly for the other multz indices.

Proof. Inserting the relation (2.2) into the first equation of the system (2.1), and expanding
the nonlinearity into a Taylor series around (y;,0), we obtain

i+ YR (E 4 2ikwif — Kw?2y)
k0 .
= 2 m! nlZeim(s(a)ﬂ(ﬁ))DinDSgl(?Jh0)(2?,»25),

m,n>0 U ap
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where (22, 280) = (20, .., 20m 20" 2P, and the last sum is over all multi-indices o, § with

a; # 0. We now insert our ansatz (2.3) for 4j; and (2.4) for 2F, we use the Lie derivative
for expressing the derivatives of 2¥, and thus obtain

SowF 4+ Do 3 wiL, LG,

1>0 k0 m,n,j>0
ok Y w LG - K w G
| m,j20 720
— Z — Zei“’t(s(a)“(ﬁ))D{”Dggl(yl, 0)
m,n>0 a,3

(D wan, Y w e,

>0 £>0
We just have to compare the coefficients of e** and w ! (resp. w'*?) to obtain the recur-
rence relations for the functions Fy; and G%. This implies

Ghy=0, Gfy, =0 forall k+#0, (2.8)

so that the series expansions (2.4) for all 2¥ start with the w™2-term.
Looking at the second equation of the system (2.1), we obtain

o+ whys + Y €M (2h 4 2ikwif + (1 — k?)w?2h)

k#0
1 iwt(s(a)+s m a
- Z m! n! Ze el (B))Dl D292(y1,0)(zl,zﬁ)_
m,n=>0 o o,

We insert the ansatz (2.3) for Z, and (2.4) for 2¥, and in the same way as above we get the
recurrence relations for the functions Iy and G%. They imply

Ghy =0, Gi =0 for k#=+l, (2.9)

so that also the expansions (2.4) for 25 (k # 41) start with the w 2term. O

2.2.2 [Estimates for the functions Fj; and G’fj

Our next aim is to get upper bounds for the coefficient functions £}; and ij of (2.3) and
(2.4). Since they depend on the derivatives of g;(x;, z2), it is natural to require g(x) to be
analytic and bounded (by M) in a suitable complex domain, say in {(x1,22); |21 —y10| <
AR, ||z2|]| < 3R}. Cauchy’s estimates then imply

| DY D5 gi(y1,0)[| <m!n! M (B3R)™™™"  for |jy1 —ywol <R (2.10)

and for all n,m > 0. This is our main assumption of this section. To obtain the desired
estimates for the coefficient functions we combine and adapt the techniques of [BG94| and
[HLWO02, Sect. IX.5].
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We fix a value Yy = (Y10, 910, 0), and consider the complex ball

By(Yo) = {(y1,91, 22) 5 lyr = ol < pR. 91 = tholl < pM, |[z2|| < pR}. (2.11)
For a function G(y1, 91, 22) defined on B,())) we let
1G |, = max {[|G (y1. 1. z2) |5 (y1, 91, 22) € B,(Yo) }- (2.12)

Since the coefficient functions are defined via expressions of the form £;G, the following
lemma will be useful.

Lemma 2.2.2 Let G be analytic and bounded on B,(), and let Iy and Fy be bounded
on B,(Yy) with 0 < o < p. Then we have

1£0Gllo < 525 NGl - max([| Fiollo/M. |[n]lo/R).
I£:Glle < 55 - 1G], max(||Fulle/M. | Fallo/R) — for 1> 1.

p—

Proof. Consider a(() = G(?leyl + CFuyr, U1, 22), 22 +CF21(?J17?JMZ2)), where (y1, 91, 22) €
By(Yo)- This function is analytic for [¢| < e with € := (p— o)/ max (|| Fullo/M, || Ful+/R).
Since o/(0) = (£,G)(y1, 11, 22), Cauchy’s estimate yields

. 1 1
I(£:G) (Y1, 91, 22) || = [’ (O)]] < = sup la(O)] < - |G,
€ ll<e €
which proves the statement for [ > 1. For [ = 0 we have to consider the function a(() =

G(yl + Cyl; ?J1 + CFIO(yla yl; 22),22), because F20 =0 by Lemma, 2.2.1. O

The use of Lemma 2.2.2 implies that we cannot work with only one norm | - ||, for
finding estimates of the coefficient functions. We therefore fix a positive integer L, put
d =1/(2L), and consider the norms corresponding to balls with shrinking radius p = 1 -1
(0<1<L).

Lemma 2.2.3 Let Yy = (Y10, T10,0) be given, and assume that (2.10) holds. The functions
F;; and Gf] of Lemma 2.2.1 satisfy

[Fiolli < aoM,  [[inlly < aoR
[ Fulliis < arM, [Falli1s < aR, 1<I<L
1G0 1l + [1Gholls < boR
mw<§:ﬁmamlm,E:u—ﬁumAhm)gzwa 1<I<L
k0 keZ
where ag = max(9, (|71l +M)/R), by = 2, and the generating functions a(¢) = 3, ail’
and b(¢) = D15, bt are implicitly given by

a(¢) = =9+ 9(1+ XY (1 —b(¢)) " + & (a0 + al¢))a(C),

b(¢) = 2 (1—p) T+ = (ao—l—a ¢)) (bo +b(¢)) (2.13)
(€))* (b0 + b(C)).-

+ (CLO+CL
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Proof. (a) In this proof we shall use the shorthand notation

1G]l = |G li=is = max {||G(y1, 91, 22) || ; (y1.91, 22) € Bi—is(Mo) }- (2.14)

Observe that ||G]]; is a decreasing function of .

To obtain the desired statement, we begin with some estimations and then we prove
the result of this Lemma by induction on [.

(b) Because of (2.8), (2.9) and (2.5), the above estimates for G% also imply

SNGHI < bR, D GhI < bR for 1>0. (2.15)

k0 kez

Using these relations and the analyticity assumption (2.10), we are able to majorize the
Si(k,1) as follows:

I ml
SISkl < Y = Z Z (BR) ™ G - G -

kez >0 Y +s(f
;é

My 3m"b€]...bembf]...bfn

m,n>0 s(e +s(f

<MY (j+1 Z 377y, ... by, = M,

7=0 d1+---+dj=l

IA

where ¢; (I > 0) are the coefficients of the generating function

e 1 9
2o =0 = T TRmay ~ (o)

The second equality follows from the derivative of the geometric series. We have used

G, < 1G9 o, and ||G2 ||, < G2 , which are a consequence of e; <[ and f; <.
leg legller 2f1 2f1 Ilf1
(¢) For m+n+j=1— 2 a twofold application of Lemma 2.2.2 yields
1L Ln G|l < ||G 1 aman and Y L, LGl < b Uy -
k#0

This implies

VoG < 2,
> > 5

k#£0 m4+n+j=1—2

where the generating function of the d; is

=" dic' = (b0 + b(C)) (a0 +a(0))”.

>0

The same estimate is obtained for 37, ., > ) o £ LG5l
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(d) In order to estimate |k| || £, GY;[l; for m 4 j = [ — 1, we observe that similarly to
(2.15) also

STIENGEI < bR D IKIGY] < bR for 120 (2.16)

keZ k€EZ

holds. As in part (b) we thus obtain

R
Dk D0 IEnGhl < S a.

keZ m+j=Il—1

where the generating function for the ¢; is

=3 "¢t = (b +5(0)) (a0 + alC)).

1>0

(e) After these preparations the statement can be proved by induction on /. The bounds
ap and by are defined just to satisfy the estimates for [ = 0. The form of the generating

functions for a; and b; are a consequence of the recurrence relations of Lemma 2.2.1 and of
parts (b), (c¢) and (d) of this proof. O

To get bounds on the expressions of Lemma 2.2.3, we have to majorize a; and ;. This
can be done with the help of Cauchy’s inequalities, because the generating functions a(()
and b(¢) are analytic in a neighbourhood of the origin. Since the equations (2.13) depend
on ¢, R and M, we have to be careful in determining the radius of the disc of analyticity.
In the following we assume M > R. This can be done without loss of generality, because
we can always increase M without violating (2.10) or, even better, we can rescale time in
the differential equation and thus multiply g(x) by a scalar factor.

Theorem 2.2.4 We fiz Yy = (y10,%10,0), and we assume that the nonlinearity g(x) sat-
isfies (2.10) with M > R, and that ||[910] < M. The coefficient functions of Lemma 2.2.1
then satisfy for [ > 1

vIM VIM !
1Bl < b (P5) . Wl < wR(Z50).

e (322 Ghilhye: 3 1= K 1G2) < k()

k0 keZ

where (1 and v only depend on an upper bound of M /R but not on the other data of the
differential equation. The norm is that of (2.12).

Proof. We multiply the ¢ in (2.13) either by % > 1 or by % > 1 so that the relations only
depend on 5R, a(¢), and b(¢). This makes the coefficients a; and b, at worst larger, so that
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the estimates of Lemma 2.2.3 still hold. We then introduce the new variables CA = (M/JR,
a(¢) = a(¢), and b(¢) = b(¢), so that (2.13) becomes

() = —9+9(1+5) (1=b(C) ™ + § (a0 +a(0))al(¢
b(&) = 9¢2(1=1(0)) 7 +2¢(ag +a(C)) (2+b(0)) (2.17)
+¢2(a0 +d({))" (2 +B(0)).

Observe that ap < max(9,2M/R), which is a consequence of ||710| < M.

In the equations (2.17) we obtain @ = 0, b =0 for ¢ = 0. The Jacobian matrix at
@ =b = 0 is invertible and the Implicit Function Theorem can be applied. This proves the
existence of constants 1 and v, such that a(¢) and b(C) are analytic in the disc |¢| < 2/v and
bounded by p. Cauchy’s inequalities thus prove that the [th coefficient of these generating
functions is bounded by p(v/2).. This yields

ORN! v\! ORN! v\!
O (Y b<—><<—>.
“Z(M> —“(2) ) =13
Putting [ = L in the estimates of Lemma 2.2.3 and inserting the just obtained upper
bounds for a;, and by, proves the theorem. We use the fact that 1 — L = 1/2. O

2.3 Exponentially small error estimates

In general, the series expansions in (2.3) and (2.4) diverge, even for arbitrarily large w. For
obtaining rigorous statements we have to truncate these series. We thus consider

Y1 = Z WilFll(ylvy'hZ@); Zy = Z wlem(yl,?Jl,Zz), (3.1)
0<I<N 1<I<N
Z w G (y1, 1, 22). (3.2)
2<I<N

The choice of the truncation index will be made on the basis of the estimates of Theo-
rem 2.2.4. The [th term in the expansions (2.3) and (2.4) is majorized by Const (vIM/wR),
which is minimal for vIM/wR = 1/e. We therefore choose the integer truncation index N
such that

wR

ev

N <

<N+ 1. (3.3)

Using the inequality

lQ(ulM>l—2 - Z 2 (eLNy_Q < 865,



24 Chapter 2 Highly oscillatory differential equation.

which can be checked numerically for small N, and the left-hand expression of which is a
decreasing function of NV for large N, it immediately follows from Theorem 2.2.4 that

Z k? Z wGY 12 < 8.65uR(%>2 < Const - R <%>2 (3.4)

k#£0  2<I<N

The remaining bounds of Theorem 2.2.4 yield similar estimates also for G%,, F;, and Fy,.

2.3.1 Initial values for the modulated Fourier expansion

In this section we consider the function

-G T e

k0

where y;(t) and z¥(t) are solutions of the truncated system (3.1)—(3.2). The sum over k is
still infinite.

In the following we consider the differential equation (2.1) with initial values z;(0) =
T10, 1(0) = Z19, x2(0) = x99, T2(0) = d90, and we assume that the harmonic energy of
these initial values is bounded by E independent of w, see (1.5). We first show that to these
initial values there correspond (locally) unique initial values for the system (3.1), such that
z(0) = z(0) and Z(0) = ©(0). We then show that the function (3.5), obtained with these
initial values for ¥, 1 and 2o, has an exponentially small defect when it is inserted into
(2.1).

Lemma 2.3.1 Consider the differential equation (2.1) with initial values x(0) = (219, T2),
2(0) = (&10, T20) satisfying (1.5). Assume that the nonlinearity g(x) is analytic in a ball
{(z1,22) | [|x1 — 210|| < 4R, ||z2|| < 3R} and bounded by M, with M > R. For sufficiently
large w (M/wR < =, where vy does not depend on w) there ezist (locally) unique initial
values y1(0) = Y10, 11(0) = Y10, 22(0) = 299 for the system (3.1), such that

2(0) = 7(0),  (0) = Z(0) (3.6)
with Z(t) from (3.5). These initial values satisfy

r19 = Y10 + O(Rw™?), To0 = zag + Zoo + O(Rw?),
i‘lo = yl() + (’)(Rw’l), i’go = iCUZQ() — iw%m + O(Rwil),

where the constant symbolizing the O(-) can depend on M/R and on the harmonic energy
E, but not on w.
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Proof. Using the truncated relations (3.2) and the Lie operator L, the condition (3.6)
becomes

Ty = le"‘Z Z w™" GY (Y10, 910 220, Z20)

k£0 2<I<N
Tog = Zog + Zoo + Z Z w ™" G (y10, Y105 220: Z20)
|k|£1 2<I<N
T = ?J10+Z Z (1kw G1(Y10, Y10, 220, Z20)
k£0 2<I<N
+ Z (L Gu Y10: Y105 Zzo;»’«’zo))
0<s<N
(iw)tigyg = 290 — Zoo + (W) Z Z (17%) )G (Y10, 910, 220, Za0)
k|#£1 2<I<SN
+ Z = Eng y107y107220,2’20)>
0<s<N

Collecting the unknown variables into a vector Yy = (Y10, Y10, 220, Z20), this system can be
readily brought to the form ), = F())). Using Cauchy’s inequalities and (3.4), we have
|F'(Y)|] < Const-(2L) < 1if M/wR is sufficiently small. This implies, by the Mean Value
Theorem, that F is a contraction on the closed ball

B = {(y1: 91, 22) [ [lyr = 2a0ll < R/4, |91 — Fa0l] < M/4, || 22| < R/4}

Furthermore, by (1.5), (3.4) and using the fact that M/wR is sufficiently small, we have
F(B) C B. To conclude the proof, we apply the Banach Fixed Point Theorem to solve
the nonlinear system ) = F()). O

2.3.2 Estimation of the defect

After having found suitable initial values for the differential equation (3.1), wich exist for
w > wo with a sufficiently large wy, we investigate the length of the time-interval such that
the solution exists and remains in the ball

B = {1, 91, 22) [ Iy = yoll < B/2, |51 — tholl < M/2,||z2|| < R/2}.

We assume that the nonlinearity g(x) satisfies (2.10) with A/ > R and that ||g5] < M
(this assumption is essentially a definition of M and R). Similar to (3.4), the estimates of
Theorem 2.2.4 then yield

Z wH | Fuyi, 91, 22)|l12 < Const - M
0<I<N

. M ~
Z w™! ||F21(y1,y1722)||1/2 < Const - R <E%> < Const - M -w™!

1<I<N

(3.7)
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for (y1, 91, 22) € B. As long as the solution of (3.1) remains in B, we thus have the estimates

ly1(t) = y1oll < tloll 4 t*MConst
[92(t) = 910ll < ¢t MConst (3.8)
|22(t) — z90]] < ¢t Mw *Const.

This proves the existence of a 7' > 0 such that (y1 ), 1 (y), Zg(t)) e Bfor0<t<T. As
the generic constant Const, also 7" only depends on an upper bound of M/R.
In the following we denote

() wo-e() e

where y;(t) and 2F(t) are the solution of the system (3.1)—(3.2). The approximate solution
Z(t) of (3.5) is thus equal to >, y*(¢). Without any truncation of the series in (3.1)—(3.2),
the functions y*(¢) are formally a solution of

i* 4+ Q2 ’“_Z Z g™ ) (v, .y, (3.10)

m>0 ml s(a)=k,0; £0

because they are obtained by comparing the coefficients of e*** (see the proof of Lemma 2.2.1).

Let us study here the effect of the truncation.

Theorem 2.3.2 Consider the differential equation (2.1) with initial values x(0) and &(0)
satisfying (1.5). Assume that the nonlinearity g(x) is analytic in the complex ball
{(z1,22)] [|z1 — 21(0)]] < 4R, ||z < 4R} and bounded by M with M > R and let
|910]| < M. Let the truncation index N in (3.1) and (3.2) be determined by (3.3). Then,
there exist v > 0,T > 0 and wy > 0 such that the defect

S(t) = ¥ (t) + Q2yH (1) Z Yoy ) (y™ (1), -,y (1))

m>0 s(a) k aﬁéO

satisfies for 0 <t < T and for w > wy

S o) < CMe .

keZ
The constants C,~,T,wy only depend on an upper bound of M/R but not on w.
Proof. First we let N and w be independent variables (for the time being not related by
(3.3)), and we consider the defect as a function of £, N, and w™, i.e., 6 (t) = dp (¢, N,w ™).
By the construction of the coefficient functions y*, the defect J;, is an analytic function of

¢ = w™! in a neighbourhood of the origin, and moreover, §, = O(w™71). Therefore, the
following function is analytic in a neighbourhood of the origin:

= " wp Gt N,¢) ¢,

|k|<m
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where m is an arbitrary integer, and the u; are arbitrary vectors of unit norm. For ¢ < 7T,
with T sufficiently small (see (3.8)), the function F(w™!) is well defined for |w™!| < ey,

where
R

2UMN "’
so that the Maximum Principle can be applied on this disk. For |w™!| = ey, i.e., for |w|
and N related like in (3.3) but with 2 instead of e in the denominator, the bounds (3.4)
and (3.7) are still valid (except that the constant 8.65 increases to 12.4).

For t <T', we have ||y0(t) — 2(0)]] < R and Cauchy’s estimates yield

S Y )|

keZ m>0 'sa) k,c; 70

< MZWZ oY mIBR) |yl [ly*™ || < Const - M.

m>0 ;%0 am#0

EN =

The last inequality is a consequence of (3.4) and (3.7), which yield

Z |y*|| < Const - M - w™*
a0

which is smaller than 2R for w > wy (take w, greater if necessary). Again by (3.4) and
(3.7), we obtain

Z % + Q%% = Z 127 4 2ikwz® — k2w?2" 4+ Q%2F| < Const - M.
keZ keZ

Putting this together, we obtain the bound
> lI6k(t. N Q)| < Const - M for [¢| = en.

kEZ

With the Maximum Principle, this gives for |w™!| < ey

P < max [F(C)

< max 3006 N0 -y ™Y < Comst - 21 - <y,
=EN
k€EZ

Choosing now u; = 6 (t, N,w™)/||0x(t, N,w™")|| in the definition of F'(¢) and letting m —
00 gives
> 1I6k(t, N.w™)|| < Const - M - (wey) ™.
keZ
For w and N related by (3.3) we have (wey) ! <2/e=e"® with a=1—1In2 > 0, so that
in this case
Z 10(2)]] < Const - M - e~ *N+D < Const - M - e
keZ

holds with the exponent v = qut\?e' O




28 Chapter 2 Highly oscillatory differential equation.

2.4 The Hamiltonian case

Sections 2.2 and 2.3 treated general second order differential equations with rapid oscilla-
tions. Our main interest is in Hamiltonian systems, where g(z) = —VU(x) and U(x) is an
analytic potential. The Hamiltonian H (z, ) of the system (2.1) is then given by (1.2).

2.4.1 Hamiltonian of the modulated Fourier expansion

It is interesting to note that the Hamiltonian structure passes over to the differential
equation for the coefficients of the modulated Fourier expansion. To see this, we let

y= (v 2y %y 2 )

be a two-sided infinite sequence, and we define

Uy) =UE)+ Y S U ). (11)

m>0  s(a)=0,a;#0

This function is well-defined as long as >~ [|[¥*|| < R. The system (3.10) then becomes

i+ Q%yF = =V, U(y) (4.2)
and is Hamiltonian with
) 1 CRNT -k _
Hy.y) =5, ((y T+ (y ’“)TQQy’“> +U(y). (4.3)
keZ

2.4.2 An almost-invariant close to the oscillatory energy
It turns out that, besides the Hamiltonian H(y,y) (see [HLO0O]), the system (4.2) also has

I(y,y) = —iw ) ky™"y" (4.4)
k0

as a conserved quantity. This series converges if Y7, ., [k [|4*]| < 0o and max.o [|7*]| < oco.
For the functions y*(t) of (3.9), where y;(t) and zF(¢) are the solution of the truncated
system (3.1)—(3.2), this is a consequence of (3.4).

We shall prove here that the expression Z (y(t), }'I(t)) is conserved up to exponentially
small terms. Moreover it turns out that this expression is close to the oscillatory energy

. 1. 2
Iz, #) = L] + £ lal (45)

of the system (2.1) with g(z) = —VU(x).
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Theorem 2.4.1 Let y(t) be the infinite vector with components y*(t) given by (3.9) and
corresponding to initial values given by Lemma 2.3.1. Under the assumption of Theo-
rem 2.3.2 we then have

I(y(®).¥(t) = Z(y(0).3(0)) + Oe ™)
Z(y(t).y(t) = I(z(t),2(t)) + O(w™)

for 0 <t <T and w > wy, where the constants symbolizing the O(-) depend on E, M, and
R, but not on w.

Proof. We use the algebraic identity
D ik (") VUe(y) = 0, (4.6)
k#0

which holds for 3, _ || l¥*|] < co. For a proof we refer to [HLO0| and [HLW02, Sect. XI11.6.2].
We then compute the time-derivative of Z(y(t),y(t)) with y(t) of (3.9):

k#£0 s

= —iw) ky™( ( (t) + QPyh(t )+vuy_k(y(t))>
k#£0

= _leky T5k
k#£0

We have used that the terms k (y7%)"¢y* as well as k (y=*)"Q?y* cancel with the corre-
sponding terms for —k. Furthermore, we have added the expression (4.6) to let the defect
appear in the right-hand expression. The first statement now follows from Theorem 2.3.2,
and by an integration on the interval [0, ¢].

The second statement is obtained as in the proof of Theorem 4.3 in [HLOO]. O

2.4.3 Proof of Theorem 2.1.1

To prove the main theorem of this chapter, which states that (4.5) is nearly conserved
over exponentially long time, we only have to use Theorem 2.4.1 and change the O(w ")
remainders by O(e™*) in the proof of Corollary 4.4 in [HLO0O].
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Chapter 3

Numerical methods

In this chapter we develop some numerical methods to solve oscillatory differential equa-
tions of the form (1.1) encountered in Chapter 2. We first give the general numerical
method, then in Section 3.2 we discuss some geometric properties of this method. We then
analyse our numerical methods in Section 3.3. Numerical comparisons and examples are
left for the last section of this chapter.

3.1 The general method

Let’s first recall the problem that we want to solve; it is a second-order differential equation
of the form

y 5 : (0 0
¥+ Q= g(x) with Q—(O ol , w1, (1.1)
and with initial values satisfying
1 .
L (1) + 2w ()?) < B, (12)

where FE is independent of w. We do not require £ to be small. As usual, the block
matrices in {2 are of arbitrary dimension.

In the preceding chapter, we have seen that the solution of (1.1) admits an expansion
of the following form

z(t) = y(t) + Y e (). (1.3)
k#£0

The numerical methods proposed in this chapter are based on approximations of the first
two terms of this expansion. This seems to be reasonable by the bounds obtained in
Theorem 5.1 of [HLW02, Sect. XIIL.5.1]. Indeed, for |k| > 2, the functions z* are of order
O(w™"2). Thus, we search for a smooth real valued function y and a smooth complex
valued function z := 2! such that

z,(t) = y(t) + e 2(t) + e “z(t) (1.4)

31
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is a good approximation of the solution of (1.1) (see [HLW02, Sect. XII1.3.1]). How do we
find the functions in (1.4)? We insert z, into the differential equation (1.1) and expand
the function g around y.

( i ) b et <—w2zl + 2iwz + ,'2'1) it (—wQZl — 2iwz; + §1>

yg + w2y2 20Wwzy + Z9 —2iw§2 + 52 (15)

= g(y) +e“g(yz+e g Wz +9"(y)(z,2) +...

We now compare the coefficients of 1,e“?, e !, solve for the term with highest power of
w, and remove terms of order O(w™2) on the left of the equality. Depending and how we
truncate the Taylor series on the right of the equality, we obtain the following two systems
that determine the functions y and z.

[ ]
o= gyy) + 9y, v2)(2,2)
Zy = _igé(ylayQ)z (1 6)
Y2 = ﬁ(gz(ybyz) + g5(y1,92) (2, 2)) .
zZ = —a%gi(yhyz)z-

e Neglecting further the second order term in the Taylor series for g, we get

i = gy v2) + 91 (v1,92)(2, 2)

Zy = —5505(Y1,Y2)2 17
Y2 = ﬁgz(yl,?h) (.7
2 = —ﬁgi(ylam)z-

Methods 3 and 4 (see below) are designed to solve these systems.

Initial values. The initial values for the differential equation (1.1) permit us to find
initial values for the system of differential equations in (1.6) or (1.7). In fact, we want
2,(0) = 2(0) and #,(0) = £(0). This means that we have to solve

21(0) = 1(0) 4+ 21(0) + 2,(0)

22(0) = 2(0) + 22(0) + 22(0) '
21(0) = 41(0) +iw(z1(0) = 21(0)) + £.(0) + z(0)
22(0) = 92(0) +iw(z2(0) = 2(0)) + 22(0) + 2(0),

y1(0) = 21(0) — 22,(0)

20(0) = 72(0)—y2(0) (1.8)
> 12(0) 220, (0)—it2(0)

w0) = BOEERRERO,

where 2o, and zy; stand for the real and imaginary part of z, (same definition for z;). This
system can now be solved by fixed point iterations to yield y1(0), 91(0), z2,(0), 2;(0), the
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initial values required for systems (1.6) or (1.7). Here, we use the algebraic relations for y»
and z; from (1.6) or (1.7) and the fact that if w is sufficiently large, the iterations converge.

Defect. Aslong as 23(t) = O(w '), on a bounded interval, from (1.6) and (1.7), we obtain
the following bounds
Ya(t) = O(w™2), 21(t) = O(w™), 2(t) = O(w™?). (1.9)

Inserting (1.4), with y and z given either by (1.6) or (1.7), into the second order differential
equation (1.1), the defect

d(t) = &.(t) + Pwu(t) — gla.(t))

is seen to be of size O(w™2).
Error. The Fundamental Lemma (see for example [Car77, p.116]) shows that, on a
bounded interval, the error z(t) — x.(t) is of the same magnitude as the defect.

Going back to (1.5), we try to simplify even more the systems that determine the
functions y and z. We put y, = 2; = 0 and obtain the following two systems

[ J
= 91(1.0) + 971, 0)(2, 2) (1.10)
29 = _%D2g2<y170)z2-

e Neglecting the term of size O(w™?2) in the Taylor series for g;, we get

o= 0(y,0)

/ ; 1.11

Zy = —5D292(y17 0)22- ( )
Methods 1 and 2 (see below) are designed to solve these systems.

Initial values. Putting z; = y» = 0 in (1.8), the initial values for (1.10) or (1.11) are
given by

y1(0) = x1(0)

91(0) - il(o)

(0) = 2 1)
29;(0) = 22”(02)712(0),

where 25,.(0) is given by the differential equation (1.10) or (1.11).

Defect. Unfortunatly, this time, the defect is of size O(1). This is because its second
component contains the term go(y).

Error. However, looking at system (4.2) in Chapter 2 that determine the modulated
functions, we can show that

r1(t) — 2 (t) = yu(t) — u(t) + O(Ufz) = O(Wﬂ)a
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where y,(t) is a term of the modulated expansion z;(¢) and ,(¢) is a solution of (1.10) or
(1.11). For the second component of the error, we obtain

2a(t) — Taa(t) = €9 (29(t) — (1)) + e (5 (t) — F) + O(w™2) = O(w™2).

We thus get 2(t) — z.(t) = O(w™?).
All the systems (1.6), (1.7), (1.10) and (1.11) can be written in the following form:

L2 b

z2 = J2\Y)z

yo = wfs(y,2) (1.13)

2 = wifi(y)z.
This system consists of one second-order differential equation, one first-order differential
equation and two algebraic equations. We remark that for sufficiently large w, we can use
the Implicit Function Theorem for the algebraic equations of problem (1.13), and show that
Yo and z; are functions of y; and zy. Namely, yo = w™2a(y1, 22) and z; = w™2b(y1, 22) 2.

We point out that this technique was also used in [MvV78|, but no attention was paid
to energy conservation.

To solve the system (1.13), we first have to find initial values (this was done above),
then we solve the second-order differential equation with a Stérmer-Verlet’s type method
and the first-order differential equation with a method of the kind of the midpoint scheme,
within that we solve the algebraic equations, and finally we give an approximation of the
solution of (1.1) with (1.4).

The numerical method gives, for a step size h and approximations v}, y7, 25 of ¢;(nh),

n

yi(nh), z5(nh), and y3,2 satistying yi = w=2f(y", 2"), resp. 2 = w2fu(y™)",

n+1/2 n n . n
U1+/ = U +%fl(y ,2")
v = e
n+1 _ -2 n+1 n+1
Yo = w T fa(y )
2 _ n n 1.14
AT = Wyt . (114)
A = g B ()
ot = T Lyt 2,

With these values, we can now give an approximation of the solution of (1.1). Indeed, the
approximation of the first terms of the modulated Fourier expansion is:
" = yn + eiwtnzn + e—iwtnzn
- yn + eiwtn (lwzn + Zn) + e_iwt"(—i(xJZn + En)’

(1.15)

where t,, = nh, §7 = v}, and 2} is given by (1.13). The remaining values ¢3 and Z}
are computed depending on the numerical methods considered. For the two first methods
(see below), designed to solve (1.11) and (1.10), we put y5 = 2" = 0 along the numerical
solution. For the third and fourth methods, which solves (1.7) and (1.6), we solve the
following system

=y = (B + fw2).



3.2. Numerical properties 35

3.2 Numerical properties

In this section, we analyse geometric properties of the numerical method given in the first
section and of the flow of the differential equations contained in (1.13). We first consider
the symmetry of the numerical method and then we look at the reversibility property of
the problem.

3.2.1 Symmetry

The general method (1.14) is symmetric. To see this, we exchange n <> n+1 and h < —h.
The method is then symmetric if and only if

+1/2
T = et R At )
yiL yiH—l h ! Yty pntlgan
29 = 29— f2( 2 )( 2 )
U? - U?+1/2 - %fl(yna Zn)v

this is the case by definition of the numerical method (1.14).
The method (1.14) is consistent with problem (1.13) and is symmetric, thus it has
order 2.

3.2.2 p-reversibility

As shown in the preceding section, we know that y, and z; are functions of y; and 2.
We thus rewrite the differential equations in (1.13) as a system of differential equations of
order one: ‘

1= U

v = ]21(.%,22) (2.1)

Zy = f2(y1722)22,

where f; is real-valued and f, is complex-valued function defined by

filyr, 22) = fi(yr,w™2a(yr, z2), w ™ 2b(y1, 22) 22, 22)

and

fo(y1. 20)22 = fo(yr,w™a(y1, 22)) (W 2b(y1, 22) 22, 22).
Remembering (see Chapter 1) the definitions of p-reversibility for a problem y = f(y) and
for a numerical method ®,,, we have the following proposition:

Proposition 3.2.1 If f1(y1, 20) = fi1(y1, 22) and fo(y1, 22) = —f2(y1, Z2), the problem (2.1)
is p-reversible for the map p1(Y) = (y1, —v1, Z2), where Y = (y1,v1, 20). Here, one should
interpret the third component of vector pi1(Y) in terms of real and imaginary part of zo.
Thus one obtains a linear map p(Y) = (y1, —v1, 2o, —29;)-

We also have p-reversibility for po(Y') = (y1. —vi, —22) if filyr, z2) = filyr, —%) and

f2(y1, —Z) = —f2(y1, 22).
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Systems (1.6), (1.7), (1.10), and (1.11) are p-reversible for these two maps. As an example,
we show that the conditions f; (y1,22) = fl(yl7 Zy) and fZ(y~1, Z9) = —fg(yl, 7y) are fulfilled
for problem (1.11), thus it is p;-reversible. Indeed, we have fi(y1, 22) = g1(y1,0) = fi(y1, 22)
and fy(y1, 22) = ingz(?Jl;O) = —f2(y1, 22)-

Proof: We prove the proposition only for the first application p;. We first have to compute

(%1

p1(F(Y)) = :fl(y1722) )
J2(y1, 22)Z2

where F(Y) = (v1, fi(y1. 22), fo (41, 22)22)T of (2.1). We have p-reversibility if this quantity
is equal to
U1
—F(pi(Y)) = —F(y1, —v1, 22) = —~f1(y1,22)
—f2(y1, 22) 22

Using the hypothesis on functions fl and fg permits us to show that the p-reversibility
condition is verified and this concludes the proof of the proposition. O

By Theorem 1.5. in [HLWO02, Sect. V.1], for a symmetric method ®,, it is sufficient to
prove the p-compatibility condition po®;, = ®_; 0p to show p-reversibility. This permits us
to prove that the numerical method (1.14) is p-reversible for the two applications defined
in the last proposition.

Proposition 3.2.2 The numerical method (1.14) applied to problem (2.1) is p-reversible
for the two applications given in Proposition 3.2.1.

Proof: We just show the condition po ®, = ®_;, o p for p;, the proof for p, is very similar.
Under the conditions on the functions f; and f5 of the last proposition, this follows from the
fact that replacing h,v?, 25 by —h, —o?, 25 yields y™*!, —v™, 207 as numerical solution.

O

3.3 Four numerical methods

In this section we define and analyse four numerical methods based on systems (1.10), (1.11)
and (1.6), (1.7). They are presented from the easiest to compute to the more complicated.

3.3.1 Method 1

Let’s recall the problem that we solve; for the first method, we fix yo = 21 = 1) = 21 = 0
(which is a reasonable first approximation of these quantities) and we solve the following
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differential equations (see (1.11))

ho o= gl(yla 0);
: i 3.1
22 = —5D292 (?Jl, 0)22- ( )

As explained in Section 3.1, Method 1 reads

1/2 h
o™ = w4 i, 0)
vt = g ot . N )
2t = o hingz(yl +2111 :0)(22 +222 ) :
h
vttt = U?H/Q + 501y, 0).
The computaion of U?H/ 8™ and vt is explicit, that of 22+ is linearly implicit.

Let’s first recall that this problem and the numerical method (3.2) associated to it are
p-reversible (for a proof, see Section 3.2).

Lemma 3.3.1 The problem (3.1) and the numerical method (3.2) are p-reversible for the
two applications defined in Proposition 3.2.1.

What can we show for the conservation of the Hamiltonian A and of the oscillatory
energy I if the function g(x) is a smooth gradient g(x) = —VU(z) 7
First of all, the second-order differential equation in (3.1), namely,

Yy = Uy,

’[)1 - gl(ylao) = _VU(y1ﬂ0)7

is a Hamiltonian system with H (y1,v1) = %vlTvl + U(yi,0). The first part of the method
reduces to the Stormer-Verlet scheme, which is symplectic, so that we have for the numerical
solution H(y7,v}) = H(y),v)) + O(h?) for nh < T on exponentially long time intervals
T.

Writing the first order differential equation of (3.1) as a real part and a complex part,

we get
ZoR ZoR
2R) = A ,

with a real skew-symmetric matrix A(y;). Therefore, the following quadratic quantity
I(z) = 28n2or + 231291 = 23 7z, is an invariant for the problem considered. Our method
preserves this invariant. Indeed, the method reads z' = z° + 2Az% + 2Az' where z =
(22R, zor) (we do not write the argument in the matrix A). We thus have

. h h
I(z) = 77t = 20 §Z1TAZ0 + §Z1TAZ1
h h h .
= 0+ §Z1TAZO =290 + §ZOTA21 + §Z1TAZO =070 = 1(29),
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where we have used the skew-symmetric structure of matrix A and the fact that I is
an invariant. This is exactly the proof that the mid-point rule preserves quadratic first

integrals.
Let’s come back to the Hamiltonian H(z,#) = i’ + 3270% + U(z) and to the
oscillatory energy I(z,#) = L|jia]|* + % ||22||> of problem (1.1). The next proposition

tells something more about the almost preservation of these quantities.

Proposition 3.3.2 The numerical method (8.2) applied to problem (3.1) yields for the
second-order differential equation (1.1) with initial values satisfying (1.2),

H(z", ") = H(z(0),#(0)) + O(w™)+ O(h?),
I(z",2") = I(z(0),2(0)) + O(w™2),

on exponentially long time intervals.
Proof: Let’s start the proof by computing H(z", "), we have:
H(z" ") = 3(7)"(v]) + 2w?(25)"(25) + U(y1.0) + O(w™)
= Ao + w(25) + Ow™),

if 2,(0) = O(w™"). Using the symplecticity of the method, we get H(y7,v?) = H(y2,19) +
O(h?) for nh < T on exponentially long time intervals 7', thus

H(a"i") = H(p(0),01(0) + O(R) + 21(2(0)) + O(w™)
= H(x(0),#(0)) + O(w™) + O(R?).

For the oscillatory energy, we obtain

I(z", ") = 2w (z0) + O(w™2) = 2w2I(2(0)) + O(w™?)
= I(z(0),2(0)) + O(w™2).

3.3.2 Method 2

As for the first method proposed, we fix yo = 2 = 9, = 2; = 0. This time, we go further
in the computation of the Taylor series of function g. We solve the system, see (1.10),

di= 91(y1,0) + ¢7(y1,0)(z, 2) (3.3)
Z = —55D292(y1,0) 2
The numerical scheme reads
n n } n n n =n
o2 =t S(gi (1, 0) + g7y, 0)(2", 27)
y?—H = yr+h n+1/2 +1 +1 (3.4)
n n +y71 Z +Zn .
Z2+1 _ 22—hﬂDgg (y1 21 7())( 2 22 )

n n h n >N
ot = T 2 0) + gl (v 0) (2 2.
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The numerical method is also p-reversible (see the first method for a proof), the quantity
[ is still an invariant of problem (3.3) and we also have [(z7) = I(2Y) for the numerical
solution. Moreover, the same proof for the near conservation of I (see Proposition 3.3.2)
can be applied to yield:

Proposition 3.3.3 The numerical method (8.4) applied to problem (3.3) yields for the
second-order differential equation (1.1) with initial values satisfying (1.2),

Iz", ") = I(2(0),2(0)) + O(w™2). (3.5)

3.3.3 Method 3

We now add the algebraic equations for the variables ys, z;. Thus, the third method consists
of solving

o= gy, v2) + 91y, v2)(z, 2)
= —595(y1,0)2 36
Y2 = ,%292(.@1,%) (36)
1 = _u%gi(yl;lﬁ)z-/
as explained in Section 3.1. The method reads
n n h n n n zn
o = ) + gl ) (27, 2)
S L
Y= wlge(y" )
L 2 () gt . . (3.7)
n n Loyt Yyttt
22+1 = 29— hﬂgé( 5 ) D) )
n n+1/2 h n n n =n
oIt = T S () + gl () (2, 2,

The same ideas as given in the preceding section allow us to show that problem (3.6) and
the numerical method associated to it are p-reversible.

To conclude the analysis of the third method, we mention the result concerning the
oscillatory energy:

Proposition 3.3.4 The numerical method (8.7) applied to problem (3.6) yields for the
second-order differential equation (1.1) with initial values satisfying (1.2),

I(z",2") = I(z(0),2(0)) + Ow™). (3.8)

3.3.4 Method 4

The last method is very similar to the third one, but we take one term further in the
equation for y,. We consider, see (1.6),

o= gy v2) + 911, 42)(2 2)
'éQ - _igé(y:l) y?)z 3 9
Yo = (1. ye) + 951, 12)(2,2)) (3.9)

21 = —w—lzgi(yla Ya)Z.
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Next, we solve this system using the numerical method

n+1/2 n h n n n zn
o = () + gl (" 2)
y?+1 y? + hv?+1/2

yg+1 w—Q(gz(yn-t-l) +g§’(y”+1)(zn+1,2"“))

Z;H-l — _w—2gi (yn+1)zn+1 » » (310)
B o= - h%gé( 5 ) B )

n n h n n n 1
ot = o (g () + gl () (2 ).

This method is also symmetric, p-reversible and satisfies (3.8).

We do not have results concerning the conservation of the total energy by the last three
methods. However, a look at the forthcoming numerical experiments (see Section 3.4)
shows a good behaviour for these methods. This is perhaps due to the fact that all these
methods are symmetric and p-reversible.

Two major disadvantages of these methods is that they are implicit and they require
the computation of the first two derivatives of the function ¢ in (1.1). However, as we will

2
see in the next section, they preserve the two energies I(z,1) = %||x2||2 + %||:c2||2 and

H(x, i) = %(HIHQ + ||w:r2||2> +U(x) uniformly for all values of hw (this was a disadvantage
of the trigonometric methods).

3.4 Examples

We illustrate our methods with two examples. The first one is an FPU type problem
consisting of six alternating stiff/soft springs (see Chapter 1). The datas comes from
[HLWO02, Sect.1.4.1] and [HLW02, Sect. XIIL.3|. We first plot the solution given by DOP853
(for a definition of this numerical method, see [HNW93|) and then apply our methods with
different step sizes. We make an experiment with larger w, and a last one on long time
intervals.

Let us first solve the problem on a time interval of length 220 with w = 50 using
DOP853 and our methods with step sizes h = 0.22.

14 ! i I

100 200 70 72

Figure 3.1: Oscillatory energies using DOP853.
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Figure 3.2: Total and oscillatory energies using Method 1 with h = 0.22.
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Figure 3.3: Total and oscillatory energies using Method 2 with A = 0.22.
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Figure 3.4: Total and oscillatory energies using Method 3 with h = 0.22.
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Figure 3.5: Total and oscillatory energies using Method 4 with h = 0.22.

We see that, as predicted in the preceding section, the oscillatory energy [ is well
preserved during the experiment. The energy exchange between the stiff components is
quite well modelled by our numerical methods. We however see a bad behaviour in the end
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of the interval of integration. This is due to the fact that the FPU problem is very sensitive
to perturbations in the initial data. All numerical methods described in this section nead
the computation of the initial datas by iterations. We can also see in the close-ups of the
pictures that the oscillations in the components of the oscillatory energy are not present
for the two first numerical solutions. The close-ups for Method 3 and 4 do not represent
the oscillations, this is because we take h and w such that hw = 11 (thus h is greater than
the period of the oscillations) and link I;(z",%") and [;(2"*!,2"*!) by a straight line.
Let us take a smaller step size, say h = 0.022, and see what we get:
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Figure 3.6: Total and oscillatory energies using Method 1 with h = 0.022.
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Figure 3.7: Total and oscillatory energies using Method 2 with h = 0.022.
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Figure 3.8: Total and oscillatory energies using Method 3 with h = 0.022.
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Figure 3.9: Total and oscillatory energies using Method 4 with h = 0.022.

This time too, the oscillatory energy is well preserved. We can also see a better be-
haviour in the energy exchange for the third and fourth methods. For these two methods,
the oscillations in the components of I are now present and correspond quite well to the
one given by DOP853 (see Figures 3.8 and 3.9).

Let’s look at the numerical solution given by Deuflhard’s method, for a definition,
see Chapter 1. For this method, the filter functions are given by ¢({) = 1,¢(¢) =
sinc(¢), ¥o(¢) = cos((), ¥1(¢) = 1.

It is known (see [HLWO02]) that the trigonometric methods of Chapter 1, don’t conserve
H and I uniformly for all values of hw (bad energy conservations for multiples of 7). But
what about Method 37 Let’s plot the maximum deviation (close to 7) of the total (resp.
the oscillatory) energy on the interval [0, 1000] as a function of hw for h = 0.02.

.0004

. |
'000%.04 3.14
Figure 3.10: Maximum deviation of the total energy as a function of hw, for A = 0.02.
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Figure 3.11: Maximum deviation of the oscillatory energy as a function of hw, for h = 0.02.
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We see that for this method we have a uniform conservation of the two energies for all
values of hw. Similar observations are also made for the other numerical methods given in
the preceding section or for hw near 2.

We now take w = 500 and h = 0.025, we thus have hw = 12.5. We only plot the
numerical solution obtained by DOP853, Method 1 and Method 3 on the interval [0, 1000].
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Figure 3.12: Large omega experiment using DOP853.

I | \ \ \ \
100 200 300 400 500 600 700 800 900

Figure 3.13: Large omega experiment using Method 1.
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Figure 3.14: Large omega experiment using Method 3.

This illustrates the fact that for large hw too, the total and oscillatory energies are well
preserved by the numerical methods.

The last figures show the numerical solution obtained by the third method and DOP853
on an interval of length 10000 with w = 50, we take h = (0.2 for the third method. For
long time intervals, the preservation of the energies is still valid.(For graphical reason, we
have ploted a shiffted Hamiltonian).
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Figure 3.15: Long time intervals experiment using Method 3.

Figure 3.16: Long time intervals experiment using DOP853.

The second example describes a one dimensional model of a diatomic gas with short-
range interaction forces. This model is described in [BGG94|, for four diatomic molecules,
the Hamiltonian reads

2 3
1
H(z, ¢ p,m) = Z 5(7%2 + Wi +pp) + ZU(HJI +G =1 — Q1)
1=1 1=1

where the fixed end particles satisfies xg = (; = (3 = 0 and x3 = 12. We take two different
2

potentials: a Lennard-Jones one U(s) = s7'2 — s7% and U(s) = ~. For each potential,
we use DOP853, Method 1 and Method 3.

For the Lennard-Jones potential, we plot the oscillatory energies and the Hamiltonian
obtained by the numerical methods on a time interval of length 200. For the initial values,
we take z = (4,4+2'/%),¢ = (1/w,1/100000), p = (0,1.1), 7 = (1.2,0.1). For the parameter
w, we take w = 150.
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Figure 3.17: Total and oscillatory energies for a Lennard-Jones potential using DOP853.
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Figure 3.18: Total and oscillatory energies for a Lennard-Jones potential using Method 1.
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Figure 3.19: Total and oscillatory energies for a Lennard-Jones potential using Method 3.

For the other potential, we plot the same quantities as before on the same interval. The
initial values are z = (1,5),( = (1/w, 1/10000),p = (1,1.1), 7 = (0.2, 1.1) and w = 50.
We see that for both potentials, the numerical behaviour discounted is present.
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Figure 3.20: Total and oscillatory energies for a short-range potential using DOP853.
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Figure 3.21: Total and oscillatory energies for a short-range potential using Method 1.
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Figure 3.22: Total and oscillatory energies for a short-range potential using Method 3.
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Chapter 4

Multi-frequency oscillatory differential
equations

In this chapter we extend the techniques of Chapter 2 to the multi-frequency case. We
first study the non-resonant case in Section 4.1. Sections 4.2 and 4.3 are devoted to the
two frequencies resonant case. The general case is analysed in Section 4.4. Finally, we say
a few words on the numerical treatment of these differential equations. This chapter is
based on ideas of the texts [CHLO03| and [HLOO|. Similar results are obtained in [CHL] but
with a different approach (see the end of this chapter for more details).

4.1 Non-resonant case

We generalize the single high frequency problem studied in Chapter 2 by adding other
frequencies to equation (1.1). More precisely, we study the system of differential equations

i = gl(xla"'axn)
:'éj—&—w]?-xj = gj(afl,...,a:n), for j:2,...,n,
or shortly
i+ Q% = g(x) with Q= diag(0,wal,wsl, ..., w,1), (1.1)
where we use the notation w; = a; A for © = 2,...,n. The real numbers a; are fixed,

distinct and are such that min(a;) > 1 (for normalization). Each block of the matrix (2 has

arbitrary dimension. We only consider this problem for A > 1 and take g(z) = —VU(2)
so that the problem is Hamiltonian.
To obtain near-conservation of

. 1 . . .
L, @) = 5 (a2 + wf a5?) , with j =2,....n, (1.2)

in the n-frequencies case (1.1) we need some additional hypothesis, namely, that there exist
some positive constants v,y such that

\k-a| >~ |k forall keZ" ', k#0. (1.3)

49
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In this section, we first analyse the case n = 3 in (1.1), the general case will be discused

by the end of Section 4.1. We remark that (1.3) is automatically satisfied if a; = /2

1

a
and a3 = 1. This is also the case if, for example, 2 is algebraic *. The main result of
a

3
this section is to prove the near-conservation over exponentially long time intervals of the
following two oscillatory energies :

h(wd) = 3(ll + o o)) (1.4)
I@,a) = 5 (llasl? 4w as)?). (1.5)

We assume again that the initial values of system (1.1) satisfy
s (120)12 + 02(0) ) < £, (1.6)

where F is independent of A. We do not require £ to be small.

Before we begin to treat the non-resonant case, let us mention some preparations which
will be also useful for the general case. We use the technique of modulated Fourier expan-
sions to write the solution of (1.1) as a (formal) series of the form

z(t) =y(t)+ Y eFtF (), (1.7)
|k|#0
where k = (ka, k3) (the k; are integers), w = (ws,ws3), k - w is the usual scalar product of
two vectors and |k| = |ko| + |ks]. We also use the notation z=% = z* for the index k.

As explained in [HLOO], inserting (1.7) into the differential equation (1.1), expanding
the nonlinearity g(z(¢)) around y(t) and comparing coefficients of ! gives relations that
allow us to determine the real function y(¢) and the complex functions z*(¢).

This gives for the first component of the system (1.1):

i+ > e (EF 4 21k - w) A — (k- w)?2f)

|k|£0
L (m) ihewt k)
= 0+ o (y)(ze z ) :
m=1 k120
ik-wt

Comparing coefficients of e on each side of the equality yields the following systems

(for A sufficiently large):

.. 1 m (e}
for k= (0,0): 41 =g1(y) + Z Eg% )(y)z :
s(a)=(0,0)
. . 1 m 167
if |k-w|=0: 2F= Z ﬁgﬁ )(y)z : (1.8)
s(a)=k
L m
if |k w|#0: —(k-w)?eb +2i(k-w)iF + 5F = g™ (y)=",
m!

s(a)=k

'We thank N.Bartholdi and J. Steinig for an interesting discussion on the subject. For a reference, see
[Cas72, Chap. 4]
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where ¢\ (y)z* stands for ¢\™ (y)(z°2,...,z°) and s(a) = (>-", a;) for a multi-index
a=(ag,...,a,) with o; € Z2.
Exactly the same calculations for the second and third component gives the equations:

. 1 m (6%
for k=(0.0): Wy +i=g@+ D —g" W)=,
s(a)=(0,0)
. . . . 1 m 6%
if |w? — (k-w)?[=0: 2i(k-w)zh+2) = Z %g]( J(y)2™ (1.9)
s(a)=k

if [w? — (k- w)? #0: (W] — (k-w)?)2l +2i(k-w)ih + 2 =

with j = 2,3.

By using iteratively equations (1.8) and (1.9), we remove the higher derivatives and
obtain algebraic relations and differential equations, like those in Section 2.2.

The non-resonant hypothesis (1.3) allows us to express all the modulation functions
y and 2* of (1.7) as functions of the variable ) = (y1, 91, 20, 23), where 2z, = 251,0) and
23 = zéo’l). Indeed, the case |ws — (k- w)?| = 0 of (1.9) (which leads to a differential
equation for 25) only appears if a3 = (ag ko + a3 k3)?, i.e. if and only if ky = +1 and k3 = 0.
The same arguments occur for the third component: we have |w? — (k- w)?| = 0 if and
only if ks = 0 and k3 = +1. Thus, this gives a system of differential equations for y;, 2o, 23,
namely:

=Y AN, A=) M), =) ATFy() (1.10)

1>0 1>1 1>1

and algebraic relations for the other variables (with the notation 200 = y;, for i =2, 3)

# =) NGhD). (1.11)

1>0

4.1.1 Formal analysis

In this subsection, we follow ideas of [HLOO| and give a formal analysis that leads to
the near-conservation of the oscillatory energies over long time intervals. In the next
subsection, we do this analysis rigorously and show the near-conservation of this quantities
over exponentially long time intervals.

The series in (1.10) and (1.11) usually diverge, so we have to truncate them

N N N
=Y ANTFuY), =) NTEu), =Y AF(), (1.12)
=0 =1 =1

N
=) AIGHD), (1.13)
1=0
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at an arbitrary integer N > 2. We insert these sums into (1.8) and (1.9) to determine
recursively the functions Fj; and ij The initial values given for the differential equation
(1.1) permit us to find initial values for the system (1.12). This gives the desired modulated
Fourier expansion. The proofs of [HL0OO| extend in a straightforward way and give the
following result.

Theorem 4.1.1 Under hypothesis (1.6), if x(t) stays in a compact set for 0 <t < T,
and for X\ sufficiently large, the solution of (1.1) has, for an arbitrary integer N > 2, a
modulated Fourier expansion

w(t)=yt)+ Y eFF () + Ry(t), (1.14)
0<|k|<N

where the remainder satisfies

Ry(t) =0\ . (1.15)

The real functions y = (y1,vs,y3) and the complex functions z* = (2§, 25, 2%) defined above
are bounded, together with their derivatives, by

y1 = O(1), o =0,k #(0,0),
29 = O()\_l), 23 = (9(/\_1)7 (116)
=0 M),k (£1,0), 2 =O0N2W), &k #(0,+1),

where we have used the notation |k| = |ko| + |ks| and 2° = y. The constants symbolized by
O are independent of A and t.

We turn now to the Hamiltonian case, where g(z) = —VU(x) with U(x) an analytic
potential. The Hamiltonian of system (1.1) is then given by

H(w, &) = 5 (72 + [1Qa])?) + U(a) (1.17)

Note that the Hamiltonian structure passes over to the differential equation for the coeffi-
cients of the modulated Fourier expansion:

1 (1) _ 21 (t)
V(1) =y00(t) = [5a(t) | and yF(t) =™ | 25(2) (1.18)
y3(1) (1)

To see this, let y = (..., 5"10) 90 410 ) be the sequence formed by the vectors in (1.18)
with |k| < N and define

1
Uy)=UWD+d — > U™ ™), (1.19)
m>0 " s(a)=(0,0),|a;|#£0

By definition (see (1.8)—(1.9)), the modulation functions satisfy the system
JF 4+ QfF =~V U(y) + ONT) (1.20)
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which is Hamiltonian (neglecting the O(-) term) with

Hy.y) =5 3 (G739 + 679 +ul) (1.21)

0<|k|<N

As in [HLOO], we can prove that (1.21) is well conserved and very close to our Hamiltonian
(1.17):

Theorem 4.1.2 Under the assumptions of Theorem 4.1.1 we have, for 0 < t < T and
y(t) solution of (1.20),

H(y(t),¥(t) = H(y(0),5(0)) +OA™), (1.22)
H(y(t),y(t) = H(z(t),2(t) + O\ ") . (1.23)

The constants symbolized by O(-) are independent of A and t.

We are now prepared to study the adiabatic invariants (1.4) and (1.5) mentioned in the
beginning of this chapter. We first prove that the expressions

L(y.y) = —iws Y ko(y™)"9"

0<|k|<N

and
Ty(y.y) = —iws > ks(y ")"9F

0<|k|<N
are well conserved by the solution of (1.20) and that they are close to (1.4), (1.5) respec-
tively.

Theorem 4.1.3 Let y(t) be the vector with components y*(t) of (1.18). Under the as-
sumptions of Theorem 4.1.1 we have, for j = 2,3 and for 0 <t < T,

Zi(y(t),y(t)) = Z;i(y(0),5(0)) + OA™Y),
Li(y(1),¥(1) = Li(z(t).2(t)) + O\,

where I;(z(t), 2(t)) are defined by (1.4)—(1.5) and where the constants symbolizing the O(:)
are independent of \ and t.

Proof. Looking at the proofs given in [HL0O0O| and [HLW02, Sect. XIII.6.2], we want to use
a relation of the form

> ik () VU(y) = 0.

0<|k|<N

The equivalant algebraic identities for the two frequencies case are now given by

> ik () VU (y) = 0 for j=2,3. (1.24)

0<|k|<N
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To prove these identities, let a(y) = (..., el(710#y(=10) 4(0.0) o1 (1.0)-1g)(L0) ") wwhere p =
(2, p3) is a couple of real numbers. By definition of ¢, the function U(a(y)) does not

ou
depend on p so that the partial derivatives — are equal to zero. Evaluating these partial

Op,
derivatives at u = (0,0) yields (1.24). Once this is done, we just have to follow the ideas
of the proof of Theorem 4.3 in [HL0O] to conclude the proof. O

To prove the fact that the oscillatory energies (1.4) and (1.5) are nearly conserved over
long time intervals, we use repeatedly Theorem 4.1.3 as explained in [HL0O, Cor. 4.4].

As in Chapter 2, it is possible to obtain, for the non-resonant case, conservation of the
two quantities (1.4) and (1.5) over exponentially long time intervals. This will be discussed
in more details in the next subsection.

4.1.2 Rigorous estimates

To obtain the desired near-conservation of oscillatory energies (1.2), we adapt the proofs
and ideas of Sections 2.2 and 2.3 of Chapter 2 to the case of three components in (1.1),
the n-component case follows by similar arguments (see the end of this section).

To get recurrence relations for the coefficient functions of (1.10) and (1.11), it is con-
venient to use the following Lie operators £,

LG = DyG - Fy + D3G - Fyy + DG - Fy + { (1.25)

where D; denotes the partial derivative with respect to the jth argument of a smooth
function G(y1, 91, 22, 23). This definition of the Lie operators is made to satisfy

%G(yl (£). §2(2). 22(t). 23(1)) = D A LG (1), 51(1), 22(1), 25(1)

1>0

for yi(t), 22(t) and z3(t) solutions of the differential equations (1.10). A straightforward
but laborious extension of the proof of Lemma 2.2.1 gives

Lemma 4.1.4 The function (z1(t),z2(t), z3(t)) of (1.7), with y;(t) and 2¥(t) given by
(1.10) and (1.11), represents a formal solution of (1.1) if the coefficient functions F; and
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G* satisfy the following recurrence relations (for 1 > 0):

Fll - Sl(oal)a
|
Gk = — Lo LG
Y (koas + ksas)? (m+n+zjl 9 Y
+ 2lkaas + ksas) > LG - kz—m)
1 m+j=Il—1
Fy = 5( LI=1) = > LuFy),
m+j=l—1

1
"= ikl=2)= ) ¢
“ ﬁ—@wﬁ%ng&%J ) LG

m4n+j=[—2
— 2i(k2a2 + k:3a3) Z ﬁmGZ>

m+j=l—1

Here, i = 2,3 and the sums are over m > 0,n > 0,5 > 0; we have used the abbreviation

1
Silk, 1) = Z m!n!p! Z

m,n,p>0

a7B7

s(@)+s(3) + s(r)=k
Z DTlanDggz(ylvov 0)(G(11evG§vagh)v
6’f7h

s(e)+s(f)+s(h)=l

with o = (alv"wam)vﬁ: (Blv"'aﬁn)fy: (717"'7717)76 = (elv"'aem)af: (flv"'afn)v
h = (hi,..., h,) are multi-indices with a; # (0,0), B; and ; arbitrary in Z X Z, e;, f;, h; >
0, and (G5,,Gap.GY) = (G, Gyw Gy ... Ghy (G L. G ). We use the

abbreviation s(a) =Y ;" «; and similarly for the other multi-indices.

Keeping in mind that we want to get upper bounds for the functions appearing in the
last lemma, we require the function g(z) to be analytic and bounded by M in a complex
domain {(x1,z2,23) : ||x1 — a0l < 4R, ||22|| < 3R, |z3]] < 3R}. Cauchy’s estimates then
imply

| D7 D3 D3g, (1. 0.0)]| < minlpl M (3R) ™ "7, for |lyi—ywol <R (1.26)

and for all m,n,p > 0.
We fix a value Yy = (y10, 910, 0, 0), and we consider the complex ball

. ) ) R
B,(Vo) = {(1,91, 22, 23) : llyr — yoll < pR, 191 — ol < pM, ||zl and | zs]| < Pz}-
(1.27)
For a function G(y1, 91, 22, 23) defined on B,(),) we let

|G, = maX{HG(yb?Jl;Zst)H D (Y1, 01, 22, 23) € Bp(y())}' (1.28)

Since the coefficient functions are defined via expressions of the form £;G, the following
lemma (based on Cauchy’s estimate) will be useful.
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Lemma 4.1.5 Let G be analytic and bounded on B,(Y,), and let Fy, Fy and Fy be
bounded on B,(),) with 0 < o < p. Then we have

1£0Glle < 555 - G, - max([| Frollo /M, 911lo/R),

16Gle < 5 1C, - max(|Fulle/M, 4 Fullo/ R, A Fullo/R) for 1> 1.

hS)
— |

—0

A

With these tools in hand, we can now bound the coefficient functions £j; and ij
Similarly to [CHLO3] we fix a positive integer L, we put § = 1/(2L), and we consider the
norms corresponding to balls with shrinking radius p = 1 —1§ (0 < [ < L). We also
consider a sequence 4y defined by po = 2 and p; = po + 10 (1 <1< L).

Lemma 4.1.6 Let Yy = (Y10, Y10, 0,0) be given, and assume that (1.26) holds. The func-
tions F;; and ij of Lemma 4.1.4 satisfy

[ Fiolly < aoM, 91l < aoR/4,
| Fullims < aiM, | Forll1ms < aR/A4, | Esilis < aR/4, 1<I<L,

7 (1657 1+ 1G5+ 165+ 165571h) < bR

k 1+ |k .
max( > | |||G”||1 Y Ll 1G]l - m) <WR. 1<i<Landi=23,

||
kEZXTZ Ml kezxz M

where ag = max(27,4(||910]1 + M)/R), by = 2, and the generating functions a(() =
D1 aiCt and b(¢) = D1 bi¢t are implicitly given by

o7 4 27(1 4 2 (1 - b(g))“q’ + X (ag + a({))a(Q),
b(Q) = L) (T (3 - by —b(()

+ 2mmleaa (g, 1 q(C)) by + b(C))

+ S(antal0)* o+ b(C)) ).

With o = [3+ 2v] + 1, v and v taken from (1.3).

S
—
I
S~—

I

(1.29)

Proof. (a) In this proof we shall use the shorthand notation
Gl == |Gllizis = maX{||G(y1:yl:Z2>z3)” (Y1, 91, 22, 23) € B145(y0)}-

Observe that ||G||; is a decreasing function of [.

To obtain the desired statement, we begin with some estimations and then prove the
result of this lemma by induction on [.

(b) Because of Lemma 4.1.4, the above estimates for G% also imply

Z HGllHl < YR, Z IGiil < R, for [ >0 and 1=2,3 (1.30)
B W = o = o '

k20 Hi kezx7 M
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Using these relations and the analyticity assumption (1.26), we are able to majorize S;(k, [)
as follows (for i = 1,2, 3):

mlnlp! o
1Sk Dl < > il ol > o> M@BRT

m,n,p=>0 a, 3, Y é( )+<5(f)+6(h)
|vi|#0 =l
a v
el IGE e o 16,
1 e
P M

IN

Mp Y > 3T b, by by,

m,n,p>0  s(e)+s(f)+s(h)=l

+ 1)+ 2 »
S Mulk‘ Z % Z 3 ]bdl---bdj = Muydcl,

Jj=0 di+...+dj=l

where ¢; (I > 0) are the coefficients of the generating function

N 1 _
2 =0 = TRIEy = (i)

We used [|G} |li < [|GT, |le,, which is a consequence of e; <[ (the same estimates hold for
the other multi- indices). We also used the fact that |k| < |a1| + |51| + |7] + ... for a, B
and 7 such that s(a) + s(8) + s(vy) = k.

(c) A twofold application of Lemma 4.1.5 and the fact that ||G}; || < M“,}'HbjR yields

1

Sl Gl <% S I o

mA4n+j=I0—2 R m4n+j=I0—2

| |

< 5 Z b; ap, .

m4n+j=1—2

This implies
Hye|2
Z ||£m£nG ||l dl—27
m+n+j=l—2

where the generating function of the d; is

= di¢" = (bo+b(C)) (a0 + al¢))”.

>0

The same estimate is obtained for 3 - o[£, L,Gll where i = 2,3.
(d) In order to estimate [k 3 .., | [[LmGF;|li for i = 1,2, 3, we observe that similarly
o (1.30) also
k| |GEl < RulFlo, for 1>0, (1.31)
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holds. As in part (c), we thus obtain

K|

R
K> IEnGEl < a s,

m+j=l—1

where the generating function for the ¢; is

= Z%Cl = (bo + b(¢)) (a0 + a(Q)).
1>0
(e) We can now take the sum over k and use the Diophantine estimate (1.3). Because

the quantity Hiz is smaller than 1, we obtain the following estimate using the geometric
K

AP 1 .
> Tl < o D Ik

kezZxZ M keZxZ.

k
(NL_;I)‘ | (gdl,Q + Qmax(ag, Clg)%ql,1 —+ MCl—2>

< 3—5(2L)a+1 (é%dl_g + 2 max(as, a3)%ql_1 + Mcl_g).

series

Similar estimations are obtained for the other components.

(f) After these preparations the statement can be proved by induction on . The bounds
ap and by are defined just to satisfy the estimates for [ = 0. The form of the generating
functions for a; and b; are a consequence of the recurrence relations of Lemma 4.1.4 and of
parts (b), (c), (d) and (e) of this proof. O

To get bounds on the expressions of Lemma 4.1.6, we have to majorize a; and b;. This
can be done with the help of Cauchy’s inequalities, because the generating functions a(()
and b({) are analytic in a neighborhood of the origin. Since equations (1.29) depend on 9,
R, L and M, we have to be careful in determining the radius of the disc of analyticity. In
the following we assume M > R. This can be done without loss of generality, because we
can always increase M without violating (1.26) or, even better, we can rescale time in the
differential equation and thus multiply g(z) by a scalar factor. Similar arguments given
for the proof of Theorem 2.2.4 yield the following result.

Theorem 4.1.7 We fix Yo = (Y10, 910,0,0), and we assume that the nonlinearity g(z)
satisfies (1.26) with M > R, and that ||910|| < M. The coefficient functions of Lemma 4.1.4
then satisfy for [ > 1

[N\ R (nlot?M
1Fulys < bt (=), ||El||1/2_“4 (=),

a+2
wax (30 Blpctiis . 3 SRR 16 < un(™),

keZx7 M kezxz M

with i = 2,3 and where p and n only depend on an upper bound of M/R but not on the
other data of the differential equation. The norm is that of (1.28).
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Following [CHLO3|, we choose the truncation index N such that

yoiz o AR
- ea+27]M

< No*2 4 1. (1.32)

With this choice for the integer N, we obtain the following estimations :

> K ) ATGEy < Const - R(i\@?

keZXxZ — 2<I<N A2 (1.33)
ST+ R ST Ay < Const - R(AR>
kEZXZ 2<I<N

and for the coefficient functions £j; :

Z A || Fylly2 < Const - M,

&= ) (1.34)
Z A Fallie < Const - M - A7,

1<I<N

where ¢ = 2,3 and the constant only depend on an upper bound of M /R and v. We have
similar estimates as in Chapter 2, so that nothing has to be changed in the discussion of
the initial values and in the existence of a 7" such that the solution stays in the ball

B = {(y1,91.22,23) : [ly1 — yaoll < R/2, ||th — toll < M/2,||22]] < R/8, ||zs]| < R/8}

for0<t<T.
We can now estimate the effect of the truncation made in (1.33) and (1.34).

Theorem 4.1.8 Consider the differential equation (1.1) with initial values x(0) and &(0)
satisfying (1.6). Assume that the nonlinearity g(x) is analytic in a complex ball and bounded
by M. Then, there exists 3 > 0,T > 0 and Ao > 0 such that the defect

Su(t) = G (1) + Q2R (t Z D ) (Y™ (), -y (1))
m>0 s(a)= kaﬁéO

(here a;, k, s(a) are in 7 x 7.) satisfies for 0 <t < T and for A > Xy

> IG@I < C M

kEZLXZ

The constants C,~, T, Ny only depend on an upper bound of M/R, on a;, and on the Dio-
phantine constants y,v (like the constant o, see Lemma 4.1.6) but not on A.

Proof. To prove this theorem, we adapt the proof of Theorem 2.3.2 given in Chapter 2
to our case. First we let N and A be independent variables, and we consider the defect
as a function of ¢, N, and A~!. By the construction of the coefficient functions y*, the
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defect d, is an analytic function of ¢ = A™! in a neighborhood of the origin and, moreover,
o = O(NN7Y). Therefore, the following function is analytic in a neighborhood of the
origin:

= > updk(t, N, ¢) ¢,

|[k|<m
where m is an arbitrary integer, and the w; are arbitrary vectors of unit norm. For ¢t < T,
the function F(A\!) is well defined for |\ 7| < ey, where

R

EN = 2nMNo+2

so that the Maximum Principle can be applied on this disk. For |A\7!| = ey, i.e., for ||
and N related like in (1.32) but with 2 instead of €™ in the denominator, the bounds
(1.33) and (1.34) are still valid.

For t < T, we have |[y°(t) — z(0)|| < R and Cauchy’s estimates yield

Z HZ Z ym(t)a----/yam(t))H < Const - M.

k€eZxZ m>0 e(a) kozﬁéO

Again by (1.33) and (1.34), we obtain

Z |15* + Py = Z 2% + 2ikwi® — (kw)?2" + Q?2%| < Const - M.

kEZXZ kEZXZ

Putting this together, we obtain the bound

> 116kt N.Q)| < Const - M for |¢| = en.

k€EZXZ
With the Maximum Principle, this gives for |A\7!| < ey
[FATY] < max |F(C)]
I¢l=en
< max Z |0k (£, N, C)|| NH < Const - M - 5NN+1).
|d:5Nk
ELXL
Choosing now uy, = &, (t, N, A7) /||0x(¢, N, A71) || in the definition of F(¢) and letting m —
0o gives
> 118kt N AT < Const - M - (Aey) V.
kEZXZ

For A and N related by (1.32) we have (A\ey) < 2/e®™? =e P with f=a+2-1In2 > 0,
so that in this case

Z ||5k | < COHSt M. .e™ B(N+1) S COHSt .M - e,ﬁ)\l/a+2
KELXTL

holds with A\ sufficiently large. O
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We remark that, in the non-resonant case, we also have an exponentially small defect
when the truncated solution is inserted into (1.1) so that the techniques of Chapter 2
can be applied to prove the near conservation of the two quantities (1.4) and (1.5) over
exponentially long time intervals.

n-frequencies case. The n-frequencies case (1.1) follows with similar arguments. Here,
we give the results concerning the bounds of the coefficient functions, the estimation of the
defect and finally the result concerning the near conservation of the oscillatory energies.
Like for (1.10) and (1.11), we obtain a system of differential equations for the variables

0,...,0,1,0,...,0)
Y1y 224 235+« - 2n (Where zi =z :
Z/\ Fll Z)\ lFQl """ Z/\ anl (135)
1>0 1>1 1>1
and algebraic relations
2= NG, (1.36)
1>0
where Y = (y1, 91, 2500 200 and ke Zn L
Like before, we fix a value Yy = (v10, 910, 0, - ..,0), and we consider the complex ball
. . i pR
B,(Yo) = {(y1, 91,22, -+ ) = [ly1 = yioll < pR, (|91 — tnoll < pM, ||z < m}’
(1.37)

this permits us to bound the functions Fj; and Gf;.

Lemma 4.1.9 Let Yy = (Y10, %10, 0, ..., 0) be given, and assume that (1.26) holds (for the
n-dimensional case). The functions F;; and ij satisfy

[ Fiolli < aoM, 111l < aogpy
Fulhs < @M, [Fall1-16 < azg(n—Rl) L= 2,...,n
(GO 4 JG5 s IGS + 1S L) < wR,
k 1+ |k|?
max(Z ||||Gz||1 16 Z * 1K [rez 15>szR71§l§Landz’:2,...7n
|%] G
kezn—1 i kezn—1  H

where ag = max(3",2(n — 1)(||1o]l1 + M)/R), by = 2, and the generating functions a(¢) =
D s a;Ct and b(¢) = D s bi¢t are implicitly given by

a(¢) = =3"+3"(1+ TR (1= b(Q)) "+ U5 (a0 + al())a(Q),
bO) = L) (s —%—b))”
4 2mmenl®X (a0 + a(Q)) (b + b(Q))
+ % a0+ a(Q)* (o + Q).
With a = [n+2v] + 1, v and v taken from (1.3).

(1.38)
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These estimates are very similar to those given in Lemma 4.1.6 so we can also choose IV,
verifying (1.32), as the index of truncation for the series (1.35) and (1.36). We can now
estimate the defect:

Theorem 4.1.10 Consider the differential equation (1.1) with initial values x(0) and (0)
satisfying (1.6). Assume that the nonlinearity g(x) is analytic in a complex ball and bounded
by M. Then, there exists 3 > 0,T > 0 and Ag > 0 such that the defect

Sut) = M0+ 0 - 3 S PO ),y (1)
m>0 " s(a)=k,q;#£0

(here a;, k, s(a) are in Z" ') satisfies for 0 <t < T and for X > X

S I6()] < € Me

kezn—1

The constants C,~,T, g only depend on an upper bound of M/R, on the a;, and on the
Diophantine constants y,v (like the constant o see Lemma 4.1.6) but not on A.

We finish this section by mentioning the result concerning the conservation of the oscillatory
energies (1.2).

Theorem 4.1.11 Under the assumptions of Theorem 4.1.10, there exist positive constants
7, Ao, C such that we have, for j =2...,n, A\ > Xy and 0 <t < Ce??

Li((t), & (t)) = 1;(x(0),2(0)) + O(A ™). (1.39)

4.1.3 Some nice pictures

To illustrate the near conservation of (1.4) and (1.5) for Hamiltonian problems of the form
(1.1), we consider the following Hamiltonian (which is a modification of the Fermi-Pasta-
Ulam problem encountered in the third chapter)

H(-Tlv T2,T3, l;l; l.'27 l’g) = % 22:?:1 l'i + Z?:l CEgz + Z?:l ‘rgz
3 2
+ % D1 T3+ % Zz‘:lﬁi + %(1711 — )" (1.40)
+ i(_$15 - 3732)4 + i Zizl(xuﬂ — Xoj41 — L1 — $2i)4
+ i(3314 — T31 — T13 — $23)4 + i(fUm — T32 — T14 — x31)4,

where wy = v/2- 70, ws = 1- 70 and the initial values are given by

rn = 02,22 = 0.1, 213 = 01,24 = 0.1, 25 = 0.1,

0.3 0.1 0.2 0.2 0.1
Ty = —, T2 = —, T3 = —,T31 = —, T3z = —,
) o)) wa w3 w3
11 = 05,212 = 1.5, 213 = 06,214 = 0.7, 25 = 1.,

don 0.6, 390 = 0.7, d93 = 1.1, 05 14, i3 = 0.7.
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This system consists in fact of 12 mass points joined by alternating soft nonlinear and
stiff linear springs. The two end masses are fixed and the chain begins and ends with soft
springs. Among the five stiff springs, the first three springs have a stiffness constant ws
while the two last have a constant ws.

To solve this problem, we use a trigonometric method (see Chapter 1 and [HLWO02,
Chap. XIII]) with a constant step size h = 0.005. For the filter functions, we take 1({) =
sinc(¢)?, ¥y(¢) = cos(¢) sinc(¢), ¥1(¢) = sinc(¢) and ¢(¢) = 1. The next figure shows the
shifted Hamiltonian and both oscillatory energies (1.4)—(1.5) of the numerical solution.

16

15
14F I,
13
12

11
10

0.0E+00

0.5E+06

Figure 4.1: Experiment without resonance.

0.1E+07

For the second experiment, we adapt Hamiltonian (1.40) to the 18 dimension vector

where A = 100. The initial values satisfy (1.6)

Z11
€32
T12

T33

Q = diag(0, ..., 0.v2X, V2X, VBN, VBN, VB, 3X, 3), 3), 3))

= 02, T19

0.5
= —, 33
w3

- 01, l"15

= 27 l"41

0.]_, T921

0.4
—, T41
w3

0.2, 319

1> T43

and are given by

0.98
—, T22

)

0.99
— Tu4
Wy

0.01, &gy
0.5, @44

0.9

ng

1.6 .
—, T11
Wy

17 -i'Sl

0.1,

u)3’

0.5,

and zero for the remaining initial values. Again we plot the three corresponding oscillatory
energies and the shifted Hamiltonian, with the same method as above, over an interval of
length one million.
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35,
30 ::13 I, 1.388
ig; H 1.386
12; h 1.384

[ ‘ \ ‘ ‘ ‘
'00.0E+OO 0.5E+06 1E+06 5015 5200

Figure 4.2: Near conservation of the oscillatory energies, with a zoom in the second com-
ponent of the oscillatory energy 1.

4.2 (1,2)-Case

This section is devoted to the 2-frequencies resonant case, more precisely we consider the
matrix € in (1.1) with ay = 1, a3 = 2. Our goal is to show that the quantities (1.4) and
(1.5) are nearly conserved over long time, but not exponentially long time. To prove this
fact we follow the same approach as in the non-resonant case, namely we search for the
dominating terms in (1.8)—(1.9), give bounds and initial values for the functions of the
truncated system and finally give an analogue of Theorem 4.1.11 (where we proved the
near conservation of the two quantities mentioned above).

4.2.1 The dominating terms

Let us examine which couples of integers (ko, k3) in (1.8)—(1.9) give a differential equation
for their corresponding function in the modulated Fourier expansion (1.7) :

e k-w=0<% kol +2ks\ = 0. So if ko is even and k3 = —%2_ we obtain second order

2
differential equation for z§k2’k3).

e For the second component, we obtain a first order differential equation for zékz’k‘q’)

if ky is odd and ks = 152 or ky = —3(1 + ko). Indeed, w3 — (k- w)? = 0 <

1—k§—4k§—4k2k320®k3:%0r kgz—%(1+k2)

e The same calculations yield for the third component differential equations for z§k2’k3)

ifkgisevenandk:g,:l—%ork3:— —%2.
Remark: We now have to choose the initial values for the systems of differential equation
(1.8)—(1.9). The fact that we have too much freedom naturally motivate us to fix, for the k’s

mentioned above (but not for y;(0),71(0), 22(0) and 23(0)), initial values 2¥(0) = 25(0) = 0
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and zf(O) = 0 for j = 2,3. Here we give a list of the couples of integers who give raise to
the differential equations mentioned above.

1. For the first component

+2
ko= -+ —4 -2 02 4

k3= 2 1_0 -1 —2
+1

Table 4.1: Couples of integers that lead to a second order differential equation for z%kZ’kS).

2. For the second

k3= - 2 1_0 -1 =2

Table 4.2: Couples of integers that lead to a first order differential equation for zékz’k?’).

3. And finally for the third component

Table 4.3: Couples of integers that lead to a first order differential equation for z§k2’k3).

Thus we can express the modulation functions of the expansion (1.7) as functions of
V= (2", 20" 252 25%) with k; coming from the lists of the previous tables.

We remark that |ky + 2 k3| = 0,1 or 2 for the k’s of the previous lists, so that if we
want to express a given couple of integers (ns,n3) with elements of this list, we need at

|ng + 2 ng|

least terms of this list.
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4.2.2 Bounds for the modulation functions

We have now the tools to estimate the functions appearing in the modulated Fourier
expansions (1.7). To avoid an infinite system of differential equations for the functions of
Table 4.1 to Table 4.3, we have to truncate this expansion. We therefore consider

) =yt)+ Y &Pt (2.1)

0<|k|<N

For the moment N is an arbitrary integer, we discuss the choice of this integer in the last
theorem of this section.

Theorem 4.2.1 Under the assumptions of Theorem 4.1.1, there exists a T such that, for
0<t<T and A suﬁ‘iciently large, the defect x(t) — T(t) is of size O(A™"). The functions

v = (y1,y2,y3) and 2% = (2F, 25, 2%) are bounded by

Y1 = O(l)a
29 = O()\il), 23 = O()\il),
for k in Table 4.1 to Table 4.8 : zF = ON*), 2 = O(\1IkD | 2k = O(A—1IkD),
for the other values of k : zF = O(A=27IM),
(2.2)
where we have used the notation |k| = |ko| + |ks| and the constants symbolized by O are
independent of A and t.

Proof. We follow the approach of the proof of Theorem 4.1. in [HL00]. As mentioned in
the previous subsection, we have a system of differential equations

N
2 = D AFLY), #(0)=2(0) =0, for k# (0,0)
=0
N
)y = Y NFEY), 2F0)=0. for k# (£1,0), if j =2 and k # (0,%1), if j =3
=1
N
h(t) = ZA—lFf?"”(y), (2:3)
Z.éil,o)(t) _ Z)‘ lF (£1,0) (y)
0 = )
=1

for the couples of integers & = (kq, k3) appearing in Tables 4.1 -4.3. We determine the
remaining initial values for the system (2.3) such that 7(0) = 2(0) and z(0) = #(0). This
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yields a system

21(0) = y1(0)+O(A?)

1a(0) = z(0) +73(0) + OO

3(0) 23(0) +23(0) + O(A7?) (2.4)
#1(0) = 3(0)+ O :
332(0) = iwlzg(O) — 1(.()12’_2(0) + O()\_l)

.Tg(O) = iCUQ23(O) — 1wgz_3(0) -+ O()\il),

which gives, by the Implicit Function Theorem, locally unique initial values y;(0), 31(0),
29(0), 23(0). Assumption (1.6) and the variation of constant formula imply that z5(t) =

z3(t) = O(A™!) on a compact interval 0 < ¢ < T. Looking closer at the last remark of

the previous section, we see that ko factors zéﬂ’o) and k3 factors zéo’il) are contained in

each terms of the right-hand side of the differential equations for z¥ with k = (ky, k3).
This implies the bounds for the other functions in (2.3). The rest of the proof is now very
similar to the one given in Theorem 4.1. of [HLOO]. O

4.2.3 Near invariants

In this subsection we deal with the almost-invariants

Zi(y,y) = —iw, Z k;( Tyk. with j = 2,3,

0<|k|<N

where y = (..., (710,90, 410 ) is the sequence formed by the vectors y* = e*“!2¥  with
|k| < N, of (2.1) with initial values given by Theorem 4.2.1. Like in the non—resonant case,
we have the following theorem.

Theorem 4.2.2 Under the assumptions of Theorem 4.2.1 we have, for j =2,3,0<t<T
and \ sufficiently large

Ii(y(1),y(t)) = Z;(y(0),5(0)) + OA™Y),
Zi(y(),5(t) = L;(z(t), &(t)) + O(AY),

where the constants symbolizing the O(-) are independent of A and t.

We are now able to prove the main result

Theorem 4.2.3 Consider the differential equation (1.1) with as = 1,a3 = 2 and initial
values x(0) and ©(0) satisfying (1.6). If the solution stays in a compact set, and under the
assumptions of Theorem 4.2.1, if the integer N is larger than as + a3 — 1 then

Li(x(t), (t)) = I;(2(0),2(0)) + OA™Y) + O(tA™ %)

for j =2.3 and 0 <t < Const - \e2Fes~1,
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Proof. The beginning of the proof is exactly the same as the one given in [HL0O, Cor. 4.4].
But now we have (with our notation)

Ij(yl+1(0),yl+1(0)) — I](yl(O),yl(O)) = O()\_a2_a3+1) instead of O()\_N) where yl(t) de-
notes the vector of the modulated Fourier expansion terms that correspond to starting
values (z(IT), &(IT)).

This is due to the fact that our initial values for z;-“, with the k£ taken from Table 4.1
to Table 4.3, are zero (see Remark 4.2.1) except for 25,23 and y;. Thus, the transition
from y; to y;41 at the point (I + 1)7" is not smooth and has a jump discontinuity of size
O(\~®2733)_ Moreover, one looses a factor A because of the term /* present in the definition
of Z;(y(t),y(t)). Using repeatedly Theorem 4.2.2 yields the result. O

4.3 (as,as)-Case

The ideas described in the preceding section can be applied to the more general case of
two integers aq, ag with 1 < ay < a3 and ged(ag, az) = 1 (if there is a common factor in ay
and ag, we can put it in A).

The list of integers ko, k3 who leads to differential equations (2.3) takes now the form:

1. For the first component

T
kg = - —2a3 —az 0 as 2&3
kg 2&2 2 - 0 Q9 2&2
+asg

Table 4.4: Couples of integers that lead to a second order differential equation for z§k2’k3).
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2. For the second

+a3
N\
kQZ"'l—ag 1 1%&3"'
kg— a 0 —as
~—
+a2
or
+as3
~\
kQZ"'—l—ag —1 —1‘|—CL3
k)g— (D) 0 —aq
| g
+az

ko,k3)

Table 4.5: Couples of integers that lead to a first order differential equation for zé

3. And finally for the third component

+as3
—\
ko = —az 0 a3
kg = 1+ Qo 1 1— Qo
+asz
or
+as3
—\
ko = —az3 0 as
k3:---—1+a2 —1 —1—G2
V
+asz

ka2,k3)

Table 4.6: Couples of integers that lead to a first order differential equation for zé

We can remark that the bounds obtained in Theorem 4.2.1 are still valid for this case,
and so the main result can now be stated

Theorem 4.3.1 Consider the differential equation (1.1) with ay, a3 two prime integers
with 1 < ay < a3 and initial values x(0) and (0) satisfying (1.6). Under the assumptions
of Theorem 4.2.1, if the index of truncation N is larger than as + a3 — 1 then

Ii(x(t), £(t)) = I;(x(0), 2(0)) + O(A") + OA== 7 H)

for j =2.3 and 0 <t < Const - \e2Fes—1,
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Proof. We first prove that the minimum of {|k|; k- a = 0, |k| # 0} is obtained for ky = a3
and k3 = —as and so |k| = as + az. Indeed, if k-a = 0 with agas # 0, we have koks # 0 and
== —]Z—g. The fraction 22 is irreducible, so that —k3 = pas and Kk = pas. The minimum
is now obtained for 4 = 1 and we have |k:| = as + az. Like in the proof of Theorem 4.2.3,
we have Z;(y111(0), ¥141(0)) — Z;(y:2(0), ¥:(0)) = O(A=%27%F1) and the rest of the proof is

similar to the one given in Theorem 4.2.3. 0

4.3.1 Some more pictures

To compare the results of Theorem 4.3.1 with the one given in the non-resonant case, we
take the Hamiltonian (1.40) of Figure 4.1 Section 4.1.3, this time with wy = 1-70, w3 = 2-70
and with the same initial values. To plot the various energies, we use the same method
and same step size h than before. We see in Figure 4.3 that the oscillatory energies I, and
I3 are well conserved over long times, much longer than those predicted. It is not clear if
the drift observed in Figure 4.3 is due to the (1, 2)-resonance or to round off errors.

Unfortunately, the drift in the oscillatory energies evoked in Theorem 4.2.3 does not
appear in the time predicted. This is perhaps due to round off errors.

H

Is

et

"0.0E+00 0.5E+06 0.1E+07

PRRERERRREN
RPNWAUION0OO

(@]

Figure 4.3: (1, 2)-resonant case

The second example, inspired by [CHL], is more explicit. Let’s consider the Hamiltonian

2

CU
H(.Tl,l'g,l'g ZEl,IQ,l'g Zl‘ +—2.Tg 7$3+(0 001ZE1+5E2+Z’3) ,

where wy = 1-70, wg = 2 - 70. For the initial values, we take

. Ces o1
T = 10a T2 - 70:'773 - 70"
i1 = —0.75 iy — 0.6, 45 — 0.85.

This time, we use a very precise numerical method called DOP853 (for a definition, see
[HNW93]) and plot all the oscillatory energies. This time a clear drift can be observed
already for ¢ > 2000. We can also see the good conservation of the total oscillatory energy.
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3t

27 1 =15I+1;
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- I

0 5000 10000

Figure 4.4: (1, 2)-resonant case, with drift.

4.4 (as,as,...,a,)-Case

In this section we consider the most general case (ag,...,a,) where the real numbers a;
for j =2,... nsatisfy 1 <ay < ... < a,. The goal is to search for integer vectors k£ with
minimal norm, such that k-a = 0 or k- a = £a; with ¢« = 2,...,n. To do this, we define

the positive integer m(a) = min{|k|; k- a = 0, |k| # 0}.

For this integer, we have the bound 3 < m(a).

Indeed, this is obtained by the fact that if |k| = 1 or 2 with k- a = 0, we have a; = 0
or a; = a; for some 7, j, this contradicts our hypothesis on the vector a.

In the special case where the a; are integers with gcd(as,...,a,) = 1, we also obtain
an upper bound m(a) < miny; g;;(:;zj). To show this upper bound, we take k with all its
components equal to zero except two components, we now are in the case discussed in the

. . a;+a;
last section and we have m(a) < min;; ced(@ )
CRAai]

Let’s look at some examples :

Example: If a = (1,5,6) then m(a) = 3 with for example k£ = (1,1, —1). Taking the
third component greater a = (1,5,21) we have m(a) = 6 with £k = (=5,1,0). For real
a;, one could take for example a = (1,v/2,1 4+ v/2) and obtain m(a) = 3 with the choice
k = (1,—1,1). For the vector a = (4,52,2807,2902,6005) in R®, we have the m(a) = 13
obtained with k& = (—4,6,1,1, —1).

We know that the integer m(a) exists and that 3 < m(a), so that for a non trivial
solution of k- a = 0, we have a non trivial solution in the other cases k - a = a; with
|k| = m(a) — 1 at worst.

Like in the preceding section, we obtain a system of differential equation for the values
of k such that k-a =0, k-a = +a;,7 = 2,...,n. We take all the initial values equal to

£1,0,...,0 0,...,0,41
zero except the ones for y, zé ), e zﬁl ). As before, we define

) =yt)+ Y eFrF), (4.1)

0<|k|<N

and the proof of Theorem 4.2.1 can be adapted to the more general case to yield

Theorem 4.4.1 Under the assumptions of Theorem 4.1.1, there exists a T’ such that, for
0 <t <T and \ sufficiently large, the error x(t) — x(t) is of size O(A\™N). The functions
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Y= (y1,...,Yn) and 2* = (2§,...,2%) are bounded by

’rn

Y1 = 0(1)’

Zél,(],...,o) — O(Ail), o 72;7(10,...,0,1) — (9()\71)H

fork such thatk-a=0,k-a=a;: 28 = O\ ), 2F = ON) s =2, ... n,
for the other values of k : z;? = QA2 lkl),

(4.2)

where we have used the notation |k| = |ko| + ... + |k,| and the constants symbolized by O
are independent of \ and t.

We can now show that the quantities (1.2) are well conserved on time interval of length
O(}\m(a)fl)'

Theorem 4.4.2 Consider the differential equation (1.1) with1 < ay < ... < a,, and initial
values x(0) and ©(0) satisfying (1.6). If the solution stays in a compact set, and under the
assumptions of Theorem 4.4.1, if the indez of truncation N is larger than m(a) — 1 then

Li(z(t), 2(t) = L;(z(0),2(0)) + OA™Y) + Q@A™+
for j=2,...,n and 0 <t < Const - AL,

Proof. With our choice for the initial values of the system of differential equation, the
transition from the functions y; to y;4; (defined in Theorem 4.2.3) at the point (I +
1)T is not smooth and as a jump discontinuity of size O(A~™@). So that we have
Zi(y141(0), ¥151(0) — Z;(3:(0), 3(0)) = O(A"™@+1). We now use repeatedly the results of
Theorem 4.2.2 adapted to the n dimensional case to conclude this proof. 0

To conclude with the analysis of the exact solution of (1.1), we want to mention that
this approach is different from the one given in [CHL|. Let us see what are the advantages
and disadvantages of these approaches. The major disadvantage of our approach is that
we have too much freedom in the choice of the initial values of the system that determines
the modulation functions. We arbitrarily set these initial values to zero. On the other
hand, we have adiabatic invariants for every frequency in this system. The advantage of
the approach given in [CHL] is that we do not have this freedom for the choice of the initial
values by considering the frequency modulus. However, we have less adiabatic invariants
in the system of the modulation functions.

4.5 Numerical solution

The techniques used during this chapter for the analysis of the exact solution of (1.1) are
also applicable to the treatment of the numerical solution of Hamiltonian problems with
Hamiltonian (1.17). We just give the main result without proof. For a proof with the other
techniques, see [CHL].
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We consider the class of trigonometric methods (see Chapter 1 and [HLW02, Chap. XIII]).
For a step size h, a two-step formulation of these methods is given by

Ty — 2¢08(h) Ty, + Ty = RV g(P,,), (5.1)

where subscripts refer to the time step. Here, U = 9(h(2) and ® = ¢(hS2), where the filter
functions ¢ and ¢ are real-valued bounded functions with (0) = ¢(0) = 1. We have a

velocity approximation
2h sinc(h) &y, = Tipa1 — T (5.2)

if sinc(h€?) (where sinc(§) = sin(§)/€) is invertible. We make the following assumptions
(see |[CHL)):

e The energy of the initial values is bounded independently of A,

SO + 312 (0] < B (53)

e The numerical solution values ®x,, stay in a compact subset of a domain on which
the potential U is smooth.
e We impose a lower bound on the step size: hA > ¢q > 0.

e We assume the numerical non-resonance condition
h
‘sm(5 k- w)) > ¢vVh forall k€ Z\ M with |k| < N, (5.4)

for some N > 2 and ¢ > 0. Where M = {k € Z" ' : kyay + ... + kpa, = 0}.

e The filter functions (&) satisfies, with &; = hw; = ha;A,

()] < Clsine(3&)| for j=2.....n, (5.5)

and
()] < C sinc®(5 &), (5.6)
W) < Clo&))l for j=2,...,n. (5.7)

It is then possible to give the numerical analogue of Theorem 4.1.1, the numerical solution
also has a modulated Fourier expansion, namely

Ty = Yn(t) + Z eF Wl (t), (5.8)

0<|k|<N

where t = mh and k € Z"~1. Once again, the modulation functions 2} (we note z) = y3)

have formal invariants that are related to the Hamiltonian H (see (1.17)) and to the
oscillatory energies I; (see (1.2)). We mention the results in the following theorem
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Theorem 4.5.1 Under the above conditions (5.3)-(5.7), the numerical solution obtained
by the method (5.1)-(5.2) satisfies

H(zp, &) = H(xzo,20) + O(h)

Li(zp, &) = 1j(xo,%0) +O(h) for j=2,....n,
for 0 < mh < Const - min(A™®~1 hN). The constants symbolized by O are independent

of n, h, A\, a; satisfying the above conditions, but depend on N and the constants in the
conditions.



Chapter 5

Another type of oscillatory Hamiltonian
systems

In this chapter, we enlarge the class of highly oscillatory Hamiltonian systems considered
by generalizing the Hamiltonian encountered in the second chapter. We begin this chapter
by studying an interesting example, then we give the modulated Fourier expansion of the
exact solution for the class of problems considered. We then look at certain invariants.
The last four sections deal with numerical methods and the modulated Fourier expansion
for the numerical solution. This allows us to prove near-energy conservation also in this
setting.

5.1 Introduction

We adapt the technique of the modulated Fourier expansion to the more general Hamilto-
nian

wQ

1
H(p,q) = K(p1.q) + 5p2p2 + 562 ¢o- (1.1)
We denote the variables p = (p1,p2) and ¢ = (q1, ¢2) according to the partitioning of the
square matrix

0 0
0 wl

Q= , w1,

with blocks of arbitrary dimension.
Again, the initial values are assumed to satisfy

(O + l120(0)|” < E. (12)

By taking the function K to be %plTpl + U(q), we get the Hamiltonian (1.1) of the
second chapter. With function (1.1) it is even possible to consider coupling between the

75
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position ¢ and the momenta p;. For example, one can take K(p;,q) = %plTM(q)pl, with a
mass matrix M (q). Such problems often occur in physics.

As a concrete example, we consider the stiff spring pendulum in polar coordinates as
described in [AR99a|. In this case, the Hamiltonian reads

1 -
H(p,q) = 5(293 + (g2 + 1)7%p} + ¢; +w’a3), (1.3)

with a large parameter w. Here, the fast component ¢, represents the displacement of
the mass connected to the spring around the equilibrium circle of radius 1. The slow
component ¢; corresponds to the angle of the pendulum.

s ~ w7 v L L L L7

T

|

1
1
[}

!

Figure 5.1: Stiff spring pendulum.

Let’s use DOP853 (for a definition of this numerical method, see [HNW93]) and plot
the Hamiltonian and the oscillatory energy

1 w?
1(p,Q):§||p2||2+?||Q2||2 (1.4)

of problem (1.3) over a time interval of length 100. For this experiment, we take for the

initial values p;(0) = —%,pg(O) = %, ¢1(0) = 0,¢2(0) =0, and w = 80.
T .255
6~ H
5
Ar T 250 .w
3
o T
A-
010 20 30 40 50 60 70 8 w P w0

Figure 5.2: Hamiltonian and oscillatory energies for (1.3).

This example illustrates that for a Hamiltonian problem of the form (1.1), the oscillatory
energy is still a near-invariant. Our goal in the next sections is to explain this behaviour.
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5.2 Expansion of the exact solution

We first decompose the exact solution of (1.1) into a modulated Fourier expansion and
estimate the remainder. Then, we give two almost-invariants for the coefficient functions
of this expansion. They are related to the Hamiltonian (1.1) and to the oscillatory energy
(1.4).

To do this, we follow the lines of [HLWO02, Sect. XIII.5.1] and write the equations of
motion for the Hamiltonian (1.1)

P = —VuK(p1,9)
P2 = —w2q2—Vq2K(p1,q) (2.1)
G = VuK(piq)
2 = Do
or briefly
p = —Pg+g(p1q)
0 0 (2.2)
=\, p+ h(p1,q),

with analytical smooth functions ¢ and h. We then expand p and ¢ as an asymptotic
series and estimate the remainder when this expansion is inserted into (2.2). This will be
discussed in the following theorem

Theorem 5.2.1 If the solution (p(t),q(t)) of (1.1) satisfies the condition (1.2) and stays
in a compact set K for 0 <t <'T, then the solution admits an expansion

p(t) = ) e™ik(t) + Ry(t),
k<N (2.3)
g(t) = > e E(t) + S(t),

|k|<N
for arbitrary N > 2, where the remainder terms are bounded by
Ry(t)=0Ow™), Sy{t)=0w™), for 0<t<T. (2.4)

The real functions n = n° = (n1,72),¢ = ¢ = ((1,¢2) and the complex functions n* =
(¥, %), C* = (CF, ¢Y) are bounded, together with all their derivatives, by

Cll = O(w_2)7 77% = O(W_Q): C21 = O(w_l): 77% = O(w_l): (25)



78 Chapter 5. Another type of oscillatory Hamiltonian systems

for k = 2,....N — 1. Moreover, we have n=%F = ﬁ and (7% = (k. These functions
are unique up to terms of size O(w™). The constants symbolized by the O-notation are
independent of w and t with 0 <t < T but depend on N, T and E.

Proof. To determine the smooth functions n,n',..., 7t and ¢, ¢, ..., ¢N7L, we put

p(t) = nt)+ > k()
0<|k|<N . (2.6)
wt) = O+ Y ek,

0<|k|<N

insert these functions into (2.2), expand the nonlinearity functions g and h around (7;(¢), {(t))
and compare the Coefﬁcients of elFvt,

multi-indices o = (o, . .. ,am) and 3 = (f1,...,0,) (we adopt a similar notation for the
function h), we obtain the following system of differential equations:

7;’1 0 1 m yn @
) =9 O+ > P Dy g(m, ¢)(n7,¢”) (2.7)
w C2 12 s(@)+s(B)=0
1 m n (63
& () + ) mD1 D3ha(m, ¢) (7, ¢7)
= s(@)rs@)y=0 T (2.8)
G2 7
ikwy Ui 1 o
9 ke + . & ok :Z mn D D2g(7717C)(7717<ﬂ) (29)
w (s 1kwny + 1y s()+s(8)=k
ikwCk K 0
) = +Z DmD”h(m,C)(n?,Cﬁ)- (2.10)
-kwck k k
1RWGo 2 2 ) s(a)+s(8)=
Here the sums range over all m,n > 0 and all multi-indices a = (aq,...,qp), B =

(B, ...,0,) with integers o, §; satisfying 0 < |ay|,|3:] < N, which have a given sum
s(e) +s(8) = 250y a; + 225, B

For large w, the dominating terms in these differential equations are given by the left-
most expressions. We are interested in smooth functions 7, ¢, n*, ¢* that satisfy the system
up to a defect of size O(w™"). However, their higher derivatives make difficulties, we
remove these terms by using iteratively the differential equations (2.7)—(2.10). This leads
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to a system

G o= Filn, ¢, ¢k o, = Fi(n, ¢ nk, ¢Fw Y,

Co = w™2Go(n, ¢, nF, ¢ w™h), M = w2Ga(n, ¢, 0", CFw™Y),
¢ =w'GFn, ¢ ¢Fow™), nf = w ' GFm, ¢k, ¢F W)
G =w G, ¢k, ¢ W), i = wT F (¢ ¢ ow T,
G = w2GE(n, ¢t ¢ ow™), k= wT2GE(n, ¢k, ¢FwY,

(2.11)

?

where F;, G;, g]’?, .7}]-, Q~j, Q~]”c are formal series in powers of w™!. Since we get formal algebraic
relations for (o, m2, CF 0k, ¢, C¥ b, we can further eliminate these variables in the series
(2.11). We finally obtain for 7, (o, CF, nF, ¢4, ¢5, 0% the algebraic relations

¢ = o (G (m, Cmy) + T G (e, Gumg) + )
nf = w(Glolm, CLm) +w ™ Gy, Gmy) + )
G = w(Gao(m,Cmy) +w ' Gor(m, Gomg) + )
mo = w2(Goolm. C1omd) + w ' Gor(m, Cumb) + .. (2.12)
G = wH(Gi(m, Ci,nd) + w0 Gh (1, Cms) + .. )
G = w (Gho(m, CLm) +w ' Gh (m, Cum) + )
o= W (Gholm, Gum) +w Gl (s Gm) + ),

and a system of real first-order differential equations for 7;,(; and complex first-order
differential equations as follows for 7;:

G = Fuoln, ) +w  Fa(m, GLmd) +
o= Fuolmn G.m)+w  Fulm, G.nd) + ... (2.13)

o= wH (Fyn, Gamd) + w L (. GLmd) + ).

The series present in the ansatz (2.12)-(2.13) usually diverge, we thus truncate this ansatz
after the O(w™") terms. Inserting this ansatz and its first derivative into equations (2.7)—
(2.10) and comparing like powers of w™! yields recurrence relations for the functions
FJ””;, G;“l,FJkl, G’~C This shows that these functions together with their derivatives are all
bounded on compact sets.

Next, we determine initial values for the differential equations (2.13) such that the
functions p,(t), g.(t) of (2.6) satisfy p.(0) = p(0) and ¢.(0) = ¢(0) (where p(0) and ¢(0)
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are the initial values for the system (1.1)). Because of the special structure of the ansatz
(2.12)—(2.13), this gives a system

P(0) = m(0) + 0@

Pa(0) = 2Re(n}(0)) + Ow™?) -
wl0) = G(0)+Ow?)

©(0) = 27 m(n}(0)) + Ow™)

which, by the implicit function theorem, yields (locally) unique initial values 7;(0), {;(0),
n3(0). The assumption (1.2) on the initial values implies that 73(0) = O(1). It further
follows from the boundedness of £, that ni(t) = O(1) for 0 < t < T. By looking closer
at the structure of the function F, F ]’3, G", sz it can be seen that it contains at least k
times the factors ¢! or ni. This 1mp11es the stated bounds for all other functions.

We still have to estimate the remainders Ry () = p(t) — p.(t) and Sy(t) = q(t) —
¢.(t). To do this, we consider the solution of (2.12)—(2.13) with initial values (2.14). B
construction, these functions satisfy the system (2.7-(2.10) up to a defect of O(w™"). This
gives a defect of size O(w™), when the functions p,(t) and q.(t) of (2.6) are inserted
into (2.2). Hence on a finite time interval 0 < ¢t < T, we obtain Ry(t) = O(w ) and

Sn(t) = O(w™N). O

5.3 Two almost-invariants of the modulated Fourier ex-
pansion

In this section, we show that the system for the modulation functions of the expansion
of the exact solution has two formal invariants. As we said before, one is related to the
Hamiltonian (1.1). This almost-invariant is defined by

1 L 5
Hp.a) =5 D ((a7)"%" + (0:")85) + K(p1. @), (3.1)
|k|<N
where p = (p ¥t ... p% ..., pV 1) and p* = e*'nk (1) (the same notation is used for q),
and ]
Klpra) =K@ d") + Y —=DI'DiK(p¢")(pF . a). (3:2)

s(a)+s(B)=0
Here, the sum is over all m and n greater or equal to zero and all multi-indices o =
(a1,...,am), B = (B1,...,0,) with integers 0 < |a;|,|5;| < N which have a given sum

s(a), resp. s(f3).

The other almost-invariant is related to the oscillatory energy (1.4) and is given by

I(p,a) = —iw Y k(g """ (3.3)

0<|k|<N
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By (2.7)—(2.10), the functions p, q satisfy the system

PP+ QP¢" = —V,K(p1.q) + O(w™) (3.4)
-k O O k —N
" = 0 p" + V- K(p1,q) + Ow™), (3.5)

which, neglecting the O(w™") terms, is a Hamiltonian system with (3.1).

Theorem 5.3.1 Under the assumptions of Theorem (5.2.1), the Hamiltonian (3.1) satis-
fies

H(p(t).a(t)) = H(p(0),q(0)) +OwW™), (3.6)
H(p(t).a(t)) = H(p(t),q(t) +OW™), (3.7)
with 0 <t <T.

Proof. Multiplying (3.4) with (¢7%)" and (3.5) (but with —k instead of k) with (p*)” and
summing up yields

D@HE+ ) == ) (M Ve K(pr,q) + O ™)
|k|<N |k|<N
St =0 ([ )t vekmna) + o)

k| <N k| <N 0 1

Substracting these two equations gives £ H(p(t),q(t)) = O(w™"), integrating from 0 to 7’
yields (3.6).
By the bounds obtained in Theorem 5.2.1, we have

H(p.q) = K@.¢")+ ||pg+p21||2

+ —||q2 + ¢ P+ Ow™),
H(p,q) = K(pl, O+ o3l I° + Wllgsl]? + O(w™).
Using ps +py" = iw(gd — ¢3') + O(w™), |Ipil| = wl|gi]| + O(w™) and developing these
terms shows (3.7). O

Concerning the other formal invariant, we have a similar result

Theorem 5.3.2 Under the assumptions of Theorem (5.2.1), the almost invariant (3.3)
satisfies

I(p(t).a(t)) = Z(p(0).q(0)) + O(w™), (3.8)
Z(p(t),a(t)) = I(p(t).q(t)) + Ow™), (3.9)

with 0 <t <T.
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Proof. For a real number A, let us define the two vectors

p(\) = (ei(—N-i—l)/\p—N—i-l’ 0 ’ei(N—l))\pN—l)

bl

Q()\) _ (ei(fN+1))\qu+1: e qO’ o ;ei(Nfl)/\qN71>.

The definition (3.2) of K shows that K(p;(\),q(A)) does not depend on A, hence its
derivative with respect to A yields

0 = FK(P1(N).a(N)
= ) k() VK@iV, a(N) + (@) VrK(Pi(V), a(V)),

0<|k|<N

and putting A = 0 we obtain

0= Y ik((p")"V,eK(pi.q) + (¢")"V K (p1. q)). (3.10)

0<|k|<N

We now multiply (3.4) with —iwk(¢~*)? and the transpose of (3.5) with —iwk(p"), taking
the sum over all &k, with 0 < |k| < N, yields

—iw > k(g + ) =

0<|k|<N

iw Y k(g™ V- eK(pr ) + Ow™),

0<|k|<N

and

—iw Y k(@M=

0<|k|<N

—iw Y k(p*’“)T(

P*+ VpK(pra)) + 0w ).
0<|k|<N 0 1

Exchanging k& with —k in the last sum, adding these two quantities, using (3.10) and the

0 0 _
symmetry of the terms >, k(¢7%)"Qq¢" and >, k(p~*)" pk yields
0 I

—iw Y k(G P+ k() = O@w™).

0<|k|<N

This is nothing else than the time derivative of (3.3) which, after integration, implies (3.8).
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Using the bounds from Theorem 5.2.1, we obtain

Ip(t).at)) = —iw(gz') ps+iw(e) Py’ +OwW™)
= —iw(G ) (W) +iw(6)" (—iwg ") + Ow™)
= 2G|+ Ow™),
I(p(t),q(t) = 3Pt +p3' [P+ 5lleb + ¢ 1>+ Ow™)
= 20%|g3]]* + O(w™).
Result (3.9) follows using ¢* = el*t¢k. O

We have obtained the same estimates for the two almost-invariants H and Z as in
[HLW02, Chap. XIII]. We thus can show that the oscillatory energy (1.4) is nearly conserved
over long time intervals:

Theorem 5.3.3 If the solution (p(t),q(t)) of the Hamiltonian problem (2.2), with initial
values satisfying (1.2), stays in a compact set for 0 <t < wl, then

I(p(t).q(1)) = 1(p(0), q(0)) + O(w™) + O(tw™™).
The constants symbolized by O are independent of w and t, but depend on E and N.

5.4 Numerical methods

In this section, we adapt the numerical methods given in [HLWO02, Chap. XIII| to our
problem (1.1). Then we analyse the method, and present some geometric properties.
Next, we illustrate the method on the stiff spring pendulum problem (see Section 5.1) and
on the motion of a diatomic molecule. Finally we look at the expansion and at the almost
invariants of the numerical methods.

5.4.1 New Trigonometric Methods (NTM)

Treating the second components of the variables p and ¢ with a trigonometric method
like those given in [HLWO02, Chap. XIII] and the first components with the Stérmer-Verlet
scheme, the numerical method NTM reads

P = GV KT a7
G = g (VK@ 0g") + ¥, K (0T o)
¢ = cos(hw)gy +w" sin(hw)py — %2‘112Vq2K(p?+1/2: ®q")
Pt = VLR e
pott = —wsin(hw)gy + cos(hw)p} — g(\i’quQK(prﬂ/?, dg™)
+ UV, K(pi ™2, 0gmt)),

(4.1)
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where here and in the following ¥ = Y(hQ), ¥ = P(hQ), ¥ = (hQ) and & = #(h2) and
Uy = Qp(hw),\llg Qp(hw),\llg Y(hw) and ® = - ¢(hS2). The filter functions U, 1,1, ¢ are
even real-valued functions with ¥(0) = $(0) = ¥(0) = ¢(0) = 1.
Because of the special structure of the Hamiltonian H (p, ¢), the derivatives V,K (p1,q)
and VK (p1,q) do not depend on p,, so that this component need not to be computed.
Moreover, we can remark that the method is explicit if the function K (py, q) takes the
form K (pi, ) = 301 M(g2)p1 + U(q).

5.4.2 Numerical properties

We first present some conditions which determine the symmetry and the symplecticity
of method (4.1), then we give its order and finally we mention a result concerning the
conservation of the Hamiltonian (1.1).

Proposition 5.4.1 The numerical method (4.1) is symmetric if and only if
¥(¢) = sinc(QW(C),  W(C) = cos(Q)P(C), (4.2)
where sinc(¢) = sin(¢) /(.

Proof: Exchanging n <> n+1 and h <> —h in the definition of the numerical method (4.1),
we have

P = Y K g

q = CJ?“ (VK@ agm) +Vp1K ("2, 0gm))

a3 = cos(hw)gy™ — w™tsin(hw)pstt — \IIQVqQK( P2 gt

P = AT L K agn)

Py = wsin(hw)gy™ + cos(hw)pd ™ + (\IJQVQ2K( nHZ pgnt)
+ ULV, K ).

The equations for p! +1/2 , P, q} coincide with those of (4.1). Solving the remaining two
n+l _n+l

equations for g5, p5 ™ yields
@t = cos(hw) (g + h—zmpgva( /2 , ©g" 1))
w™! sin(hw) (p3 (\IIQVqQK( P2 gntty
\IIQVq2K( n+1/2 d)q )))
Pyt = —wsm(hw)(qg + 0.V, K (2, o))
+ cos(hw) (py (quv@K( P2 pgnt)
+ UV, K(p] w1/ ,®q™))).

_|_
+

Comparing these equations with those in the definition of the method, we thus have sym-
metry if and only if (4.2) holds. Il
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For symmetric methods, we can now give the condition for symplecticity

Theorem 5.4.2 Under the symmetry conditions (4.2), if

¥(¢) = 6(¢) (4.3)
holds then method (4.1) is symplectic.

Proof: Under the symmetry conditions, the numerical method reads

pn+1/2 = pn— Eli,v K( n+1/2 CDq")

G = g+ (Ve KT 0 + V, K, @gm))

@t = Cos(hw)q2 + h sine(hw)py (4.4)
Pt = TR IV KT et

Pt = —wsin(hw)gd + cos(hw)ph T — g\i'quQK(prH/Q, dgnt1).

We write this method as a composition of three methods

" 2 = UV, K (P, @) (4.5)
—_— = .
q" qnt/2 q" + V LK (07 o)
p;L—H/Q
prt1/2 prt1/2 g sm(hw)qfl/ + cos(hw)ps n+1/2 (4
—_— _= .
gt/ Grt1/2 q?H/Q
Cos(hw)qQH/ + h sinc(hw)py ntl/2
ﬁn+1/2 pn+l ﬁn+1/2 _ ﬁ\ijv K( ~n+1/2 (I)qn+1) .
C?n—|~1/2 - q"“ An+1/2+ v K(An+1/2 qun+1) ) ( . )

where we have defined the second method so that the third method is the adjoint of the
first. We have also used that g7 = g, /2 \which is due to the fact that the function K does
not depend of ps. R

We now prove that (4.5) is symplectic if ¥(¢) = ¢(¢). We also show that (4.6) is
symplectic. The proof for the symplecticity of the third composition method is similar
to the one given for the symplecticity of the first method. Let us define the Hamiltonian
f((p, q) = K(p1, ®q). If we apply the symplectic Euler method to the system

p = —VK(p.q)
q = VPIA((pvq)a
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we obtain

T T h 2% T n
PR = pt = SV K ("2 ")

n n h 2 T n
q 2= q + §VPK(p +1/27q )7

which is nothing else than method (4.5) if {)(¢) = ¢(¢). Thus the first composition method
is symplectic if the condition (4.3) is satisfied.

To show that the second method is symplectic, we verify the condition ®} J®) = J
where ®;, stands for the second method (4.6) and J for the structure matrix. We have

I 0 0 0

& — 0 cos(hw)l 0 —wsin(hw)l
0 0 1 0
0 hsinc(hw)l 0  cos(hw)l

This permits us to check the symplecticity condition for the second method and concludes
the proof because the numerical method (4.4) is then a composition of three symplectic
methods. Thus it is symplectic. 0

We finally mention that we have, for fixed w and h — 0,
|H(p",q") — H(p°,¢")| < Ch* + Cyh"t, for 0<t=nh<h™", (4.8)

for arbitrary positive integer N. This is due to the fact that our numerical method is
consistent with the problem, symmetric, symplectic and has order two. However, the
constants C', C'y depend on w and this result is useless for hw > 1.

5.4.3 Numerical examples

We consider the stiff spring pendulum encountered in Section 5.1, and plot the Hamiltonian
H and the oscillatory energy I along the numerical solution obtained with (4.1), first on
an interval of length 200 and then 10000. For the filter functions, we choose ¥»(¢) =
sinc?($), ¥2(¢) = ¥2(¢)/ sinc(¢), ¥2(¢) = cos(¢)12(¢) and ¢2(¢) = (¢). With this choice,

the numerical method NTM is symmetric and symplectic.
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.0 - | | | ' . | . |
i 50 100 150 70 72

Figure 5.3: Total and oscillatory energies for problem (1.3) at xend= 200, with 2000 steps.

- H

\ ‘ \ ‘ \ ‘ \ ‘
2000 4000 6000 8000

Figure 5.4: Total and oscillatory energies for problem (1.3) at xend= 10000, with 20000
steps.

As a second example, we consider the motion, in R?, of a diatomic molecule as the one
encountered in the introduction. As in [AR99b|, we use the local coordinates: q. € R? for
the center of mass of the two atoms, r for the bond length and ¢ for the angle of rotation.
The Hamiltonian is

1 7 1 o9 1 —2 9 w9
H(ch ¢7 Ty pcap¢7pr) = gpcpc + Qpr + 5(7“ + 7“0) Py + 7T >
where 1y = 1 is the equilibrium length and w is the stiffness of the spring. Let us use

the same method used for the previous example and plot the total and oscillatory energies
obtained with initial values ¢.1 = 0.1, p, = p, = 1 and zero for the remaining initial values.

L H
10

C | | |
O 50 100 150

Figure 5.5: Total and oscillatory energies of the diatomic molecule at xend= 200, with
2000 steps and w = 50.
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Once again, we obtain the desired behaviour.
A slight modification of the method (4.1) gives another type of numerical method for
the problem (1.1)

n+1/2 n h n n
Y4 / = P — §vq1K(p1a(Dq )

G = g BV KT 0" + 9, K (T g)

@t = cos(hw)gh 4wt sin(hw)pl — %Z@Dg(hw)qu[((p?, Pq")

Pt = = A R, @)

Pyt = —wsin(hw)gs + cos(hw)ph — g(%(hwquff (pt, q")
+ Uo(hw) Vi, K (i, &gm+h)).

This method is also symmetric (with same conditions, see above) and gives similar results.

It is explicit if the function K takes one of the following forms K (pi,q) = K(p1,q2) or
1
K(p1,q) = 5pi M(a2)p1 + U().

(4.9)

5.5 Expansion of the numerical solution

In this section, we show that the symmetric numerical method (4.4) also admits a mod-
ulated Fourier expansion. As in [HLW02, Chap.XIII|, we confine our discussion to the
case where hw > ¢y > 0 and to the non-resonant case, and assume that A and w™' lie
in a subregion of the (h,w™!)-plan of small parameters for which there exists a positive
constant ¢ such that

1
| sin(Skhw)| > evVh, for k=1,...,N, with N >2. (5.1)

For a given h and w, this condition imposes a restriction on N. In the following, N is a
fixed integer such that (5.1) holds.
We first recall the symmetric numerical method

n n h = n n
P = = SOV K (T 2

n n h n n U n
Q1+1 = q + §(VP1K(p1+1/2,CI>q )_l_vle(lerl/Q’q)q H))

@t = cos(hw)gy + h sinc(hw)ph /2 (5.2)
n n h n n

p1+1 = p1+1/2 - §Vq1K(p1+1/2a g +1>
n+l h n h n+1/2 h + h I% n+1/2 o n+1

P = —wsin(e)gd + cos(hlpt ™ — L ()Y K, 8,

to prove the numerical analogue of Theorem 5.2.1, we need the additional requirements on
the filter functions
(hw)| < Cysine(5hw),

[h(hw)| < Cysine(hw)].

(5.3)



5.5.Expansion of the numerical solution 89

Theorem 5.5.1 If the numerical solution (p",q") of (1.1) with initial values verifying
(1.2) stay in a compact set, satisfies the non-resonance condition (5.1), the hypothesis
(5.3) and if hw > co > 0 then it admits, for 0 <t =nh < T, the expansion

pro= Y eIk + Ry n(t),

qn _ Z elkwtc}llc(t) + Sh,N(t);
|k|<N
where the remainder terms are bounded by
Ryn(t) = O(thN72),  Sun(t) = O@hVN72). (5.5)
The coefficient functions are bounded, together with all their derivatives, by
Ch,l - O(1>7 Mh = O(1>7 Ch,2 - O(W_Q)a Nh2 = O(w_l):
C}%,l = O(w_2)v 77}1L71 = O(w_2)7 C}%,Q = O(w_l)v 77}1L,2 = O(w_l)’ (56)

Ci’:,l = O(w_k_l)a 77}]?,1 = O(w_k_l)v C}IZ2 = O(w_k_Q)a 77]?,2 = O(w_k_l)a

fork=2,...,N—1. Moreover, we have n™" = ﬁ and (=% = k. The constants symbolized
by the O-notation are independent of w and h, but depend on FE, N, cq and T.

Proof. The proof of this theorem is very similar to the one given for the expansion of the
exact solution. We look for two functions

pu(t) = m(t) + Z el (t)
0<|k|<N . (57)
a(t) = GO+ Y €M),

0<|k|<N

with smooth (in the sense that all their derivatives are bounded independently of h and
w) coefficients (y,, ¢, m, and 7 such that, with ¢ = nh,

Pt = palt) + O

(5.8)
¢ = qu(t) + OV,

Construction of the coefficient functions. As in Theorem 5.2.1, we insert (5.7) in
the numerical method (5.2), expand the nonlinearity functions V,K and V,K around
(1 (t), ®(hw)Cn(t)) and compare the coefficients of e**!. To motivate the ansatz (5.12)
below, we compare the dominant terms.
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e Firstly, we implicitly define, for t = nh + g,

A

() = pu(t = 3) = SUVLK B (D), Pan(t — 3)). (5.9)

As for (5.7), we also define

P =p) =&+ Y (). (5.10)

0<|k|<N
The coefficient functions of (5.10) satisfy £¥(t) = n(t) + O(h).

e For the second term of the numerical method (5.2), we have

h h h ~ h A h
@it +5) —aalt —3) = §(Vle(ph,1(t),<I>qh(t— 7))+ Vo K (D), @an(t + 5)))
Using (5.7), we get
1kw ikw(t— ; h h A~ h
P (s ) — ) eI — 3) = g(VmK(phJ(t)aq’Qh(t -3))
|k|<N |k|<N

+ vp1K(ﬁh,1(t): quh(t + g)))

Expanding the smooth functions 7, and ¢;, around A = 0 and the function V,, K into
its Taylor series, and comparing the coefficient of e** yields for k = 0

Gualt) + 261(t) = Gua() + 5a(t) + OB) = BV, K (1 (1), ©G(1))
P L DD (1, (1), 96 (0) (0. 9 (1)
s(a)+
+ 3 Z mﬁn,ei“h”“”)““))DT“D;LK(nh,l(t),@chu))(nal(t),@cf(t))
ol
+ O(h),

where we used the same notations as in Theorem 5.2.1 for multi-indices a and f3.
This yields a relation for (j, ;(¢). Similarly, for k& # 0, we obtain

Gat) = g (2 e DR DI (0 (0. 96(0) 171, 9G)(0)

1 iw s(B)—s(a m n o
BN O DI DK (g (1), DG (1)) 1), BC())
s(a)+s(B)=k
+ O(R?).
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e For the third equation of (5.2), we obtain
h h . .
Qno(t + 5) = cos(hw)qn2(t — 5) + hsine(hw)pp2(t).

Again, we expand the smooth functions 1}’ and ¢} into their Taylor series. Comparing
the coefficient of e yields for k = 0

(1 = cos(h))Gualt) = (~1 = cos(h))a(t) + hsine(h)ma(t) + O(H).
For k = 1, we obtain
isin(hw) G o(t) = (—hcos(hw) — it sin(hw))Cl 5 (1) + hsine(hw)n} (1) + O(h?).
And finally, for the remaining k

(cos(khw) +isin(khw)) (Ch(t) + 2Cka(1)) = cos(hw)(Ch(t) — 2Ck (1))
+ hsinc(hw)n}’iQ(t) + O(h?).

Here, we can remark that these equations also depend on the derivative of the coef-
ficient functions. We can remove them by using iteratively these equations.

e From the fourth equation of (5.2), we get similar relations as for the second equation
(see above) for the coefficient functions 71,75 but with —V,, K instead of V,, K.

e For the last formula of (5.2), we use the symmetry of the method, exchanging n < n+
land h «» —h , we get pj; , = w Sin(hu])qg’gl+COS(hW)pz;1/2+%w2(hW)quK(ijl/2, Pglt).

Taking n — 1 in place of n in this last expression and adding this quantity to p%l

yields

Pt Pyt = cos(hw)(py T 4 p )

h > n— n— ) n
+ SUs(hw) (Vi K(p1 7%, @g"7) = Vi, K (712, 2g™1)).

Inserting (5.7) and using the fact that p /> = p? '+ O(h) and p™"/* = p? + O(h),
we obtain

h 3h h
ph’g(t + 5) + ph,g(t - 7) =2 COS(hu])ph’2<t — 5)
h

+ & cos(hw)ia(hw) (Vo K (pra(t = 51), @an(t — 3))
~ VoK (pra(t = 5). Sa(t — 1)) (5.11)
2 (ho) (Vi K (pra(t — 20, g — 20))

— Vg K (pna(t — g), P (t + g))) + O(h?).
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This relation is true for every ¢, so we can exchange ¢ with ¢ + g Using the operator
L(RD) = ¢"” — 2cos(h) + e~"? = 4sin(ShQ + LihD) sin(5hQ) — JihD)
defined in [HLWO02, Chap. XIII|, we can rewrite formula (5.11) as
L(RD)pn(t) = 5 cos(h)ila(ho) (Vo K (prs (¢ = B). Pan(1))
— VoK (pna(8), (1)) ) + Sl (hw) (Voo K (prs (t = B), Ban(t — 1))
— Vi K (i (1), San(t + b)) + O(h?)

Now, by the hypothesis (5.1) on N, the dominating terms in the Taylor expansions of
L(hD) and L(hD + ihkw) give the desired first terms for the series of the coeflicient
functions 7y, ,. Indeed, we have

Malt) = ——ty(hw) cos(hw)(....) + ———ao(hw)(...) + O(h?)
SSinz(Ew) 8sin2(§w)
iho(t) = 4isinl(hw)¢2(hw) cos(hw)(...) + mqﬁg(hw)(. )+ O(h)
h ~
h A
- _ ba(hw)(...) + O(h?),
SSin(Mw) sin( (k + th)

2

where the (...) terms are big expressions involving sums like those encountered in
the formulas for ¢, (see above).

This motivates the ansatz

éh,l = fiul:)+..
M1 = 910A(')+---
e = @)+ )
G o= ——(hO +.)
sin(kiw)
= ——(gh() + ) (5.12)
sin(k-w)
Cf]f,2 = ffo()+
e = —2—(gn() +-..)
sm2(§w)
, h .
Mo = : (95 () + ),
" sin(k_lle)Sin(k+1izw) v
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where the dots stands for power series in & with coefficient functions f* and ¢* = depending
on the variables ¢, 1, 75,1, 77}1%2 and hw. Using the hypothesis on the filter functions and a
closer look at the functions f* and g*  gives the bounds (5.6) on the coefficient functions
of the modulated Fourier expansion.

Initial values. The conditions p,1(0) = p1(0),pr2(0) = p2(0),¢n1(0) = ¢ (0) and
Pra(h) = pa(h), give a system

pi(0) = my,1(0) + O(w™?)
p2(0) = 2Re(n;(0)) + O(w™)
7:1(0) = Cua(0) +O(w™?)
wga(0) = 2Im(r; 5(0)) + O(w™),

that can be solved using the implicit function theorem to yield locally the desired initial
values 7,1(0), ¢u,1(0), 75, 5(0) for the differential equations appearing in the ansatz (here we
used condition (1.2)).

Defect. Let’s define the components of the defect, for ¢ = nh,

d1(t) = na(t + 1) = ana(t) = 5 (Vo K (P (¢ + 5), 2an(0)) + Vi K (Bna(t + 3). Sanlt + 1))

da(t) = pua(t + h) = pua(t) + §(Vq1K(ph,1(t + g): Pgn(t)) + Vo K (Pna(t + g): Ogy(t + h)))
ds(t) = qn2(t + h) — cos(hw)qn2(t) — hsinc(hw)pp2(t)

2 sine(hw i (ho)V g, K (Bra(t + 2, g,(1))
dy(t) = ppa(t + h) + wsin(hw)qp2(t) — cos(hw)pp2(t)

+ & sine(hw) s (hw) Vg, K (P11 (£ + ), Dan(2)).

By definition of the coefficient functions ¢F,nF, we have d;(t) = do(t) = O(hN 1) and

d3(t) = O(RY). For the fourth component of the defect, we have to use the two-step

formulation for py, o, this gives dy(t+h)+dy(t —h) = O(RY). With our choice for the initial
values, the defect at ¢ = 0 is dy(0) = O(hY), so that we have dy(t) = O(hY) + O(thN71).

We still have to estimate the remainders (5.5). To do this, we define R™ = ||p" —py(t)||,

St o= ||q” - qh( )” and the norm ||(Sl,R1,SQ,R2)||* = ||(Sl,R1,w52,R2)||. Let’s begin

mH/2 Pralt + g) For the difference of the first equation in (5.2)

and of (5.10), if the gradient of K satisfies a Lipschitz condition, we have, by a triangle
inequality

with the difference p;

n A n n ~ h n
172 = ra(t + )|| < [[Rt][ + Cihllpy +1/2—ph,1(t+§)||+02h||5 I

This gives

n h 1 m "
I +1/2 ’1(t+§)||§oz, where o= 1—Olh(||R1||+02h||S E
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Similarly, for the remainders, we then have

|‘(SI>R17327R2)n+1||* S ||(S1,R1,S%R2)n|‘*—|—h/§/1a
+ h,{’2||(SlvR17527R2)n+1||*
+ hH3||(S17R17‘927R2)n||*+/€4hN71.

Using this relation repeatedly and the fact that |[(S;, Ry, S2, R2)°||. = O(hY) is given by
the definition of the initial values, we obtain the following estimate for the remainders

< (IR, Ray Son Ba)Pl. + o+ 1N

< CnhN-1.

H(Slﬁ Rl: SQ) R2>n||*

5.6 Almost-invariants of the numerical method

We want to show that the coefficient functions of the modulated Fourier expansion of
the numerical method (5.2) also have two almost-invariants. By the last theorem of the
preceding section, we have (with a different NV than the one given in that theorem)

R h h 2 R h
Pu(t) = pu(t = 5) = =5 UV K (Pna(t), Pan(t — )

h h h R h
qna(t + 5) — qna(t — 5) = §(Vp1K(ph,1(t): gy (t — 5))

+ VK (B (1), 2u(t + 2)) + O(hY)
Pralt+3) = Bua(t) = =5 Ve K (B (1), Ban(t + 5) + O(hY)
Pra(t + g) + wsin(hw)gn2(t — g) — cos(hw)pra(t) =

— 2y (M) VK (s (1), gt + ) + O(Y)
Gha(t+ 5) — cos(hw)gn ot — &) = hsinc(hw)pr.z + O(h™),

where we define ¢ (t) = Z at), pu(t) = Z ph(t) and py(t) = Z pr(t) with ¢ (t) =

. . |k|<N ' |k|<N |k|<N '
etk (), pi(t) = e*ink(t) and pf(t) = e*'¢F(t). Comparing the coefficient of e we
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get, writting the resulting equations in terms of pf, p¥ and ¢f,

PE(t) — Pt — ) = — BTV K (B (1), alt — 7))
gt +2) - 51<t—§>=h( k/cms()( )
+V 7kICh(p1( ), q )) + O(h™)
E1(t+0) = B (1) = — 2V K (B (1), alt + &
ph,2<t +2+ wsm(hw)qzz(t — 1)~ cos(hw)p o (1) =
— Bl (hw) 83 (hwo)V K (B (1), a(t + 5)) + O(h™)
dha(t+ 5) — cos(hw)gf o(t — 5) = hsinc(hw)} o(t) + O(R™),

)+ O (6.1)

where, similarly to (3.2), we define

~ A 1 m n lay %
Kn(p1,q) = K(p}, ¢°) + Z mD1 Dy K (), 2¢°)(BF, (®a)?), (6.2)
s(@)+s(B)=0

for a vector p; = (13,;]1\7“, DR ,ﬁ,lxl_l) and py , = e™'EF (t), where & (t) are the

modulated functions (5.10) (see Theorem 5.5.1). The same notation is used for q. From
here, we do not write the index A in the modulation functions.

Lemma 5.6.1 Under the assumptions of Theorem 5.5.1, the coefficient functions of the
modulated Fourier expansion of the numerical solution satisfy

Hi[n*, ¢FI(t) = Haln®, ¢*1(0) + O(th"), (6.3)
for 0 <t <T. Moreover, we have
Haln*, ¢M(t) = 20°p(hw) (¢ )G + K (m, BC) + O(h), (6.4)

where 1(hw) = ¢o(hw)hy (hw).

Proof. The idea of the proof is to multiply the relations in (6.1) by a derivative of some
coefficient functions, then we take the sum over all k£ with |k| < N and show that the result-
ing formula is in fact a total derivative of a function, say, Hy[n*, C¥](t). After integration,
we obtain the desired statement (6.3).

After multiplications and summations, (6.1) becomes

> (=) eu (G0 — - ) + AW @+ 3) - ab - 5)

|k|<N
— (A + 3P+ 5) = PEW) = (@ (4 5)) o)y () (ph(E + )
+ wsin(hw)gh (t — g) - cos(hw)ﬁé’(t))) =

=% </Ch(f)1(t)a q(t+ g)) + Kn(P1(1), alt — g))) +O(RM).
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Expanding the functions ¢*(t + %) and n*(¢ & %) around ¢ and replacing p§ by the last
formula of (6.1) shows that the left side of this equality is a total derivative.
Moving the terms from the left to the right side of the equality, we get

d -
L1t 1) = o),
and an integration yields statement (6.3) of the theorem.

This construction of H[n*, ¥](t), the bounds of Theorem 5.5.1, hypothesis (5.3) on
the filter functions and the fact that we have 73 = iw(} + O(h?) yields (6.4) and conclude

the proof. 0
For the second near invariant, similarly to (3.10), we obtain
w 3 () VrKa(Br @) + (6) Ve Kn(Bra) ) = 0, (6.5)
0<|k|<N

for KCp,(P1(t),q(t)) of (6.2). The same tricks used in the proof of the last lemma permit to
prove the following lemma

Lemma 5.6.2 Under the assumptions of Theorem 5.5.1, the coefficient functions of the
modulated Fourier expansion of the numerical solution satisfy

Lo, ¢¥1(8) = Tuln", ¢*1(0) + O(n™), (6.6)
for 0 <t <T. Moreover, we have
Tnln*, ¢*(t) = 20 u(hw) (1) ¢ + O(h?), (6.7)

where p(hw) = ¢o(hw)ihy  (hw).
Proof. This time, we multiply and sum the equalities in (6.1) too make (6.5) appear. We
get

w30 k(=g (- )TOE G - p - 5) + (5 (L 5) — gbt— )

0<|k|<N
= (@M )W 5) = B — (a0 + 5) T dahe)dy (o) (1 + 5)

+wsin(hw)gs (t — ﬁ) — cos(hw)ﬁ’g)) =
=5 2 k(@O VK0 alt — 5) + (@t = 5T Ki(Ba(0) al - 5))

0<\k|<N
+ () VyKn(B1(0),alt + 3)) + (0" + 5) Vs Kn(Br(0), alt + 5)) ) + O(BY).

The left side of this equality is again a total derivative. For the right side, we have, using
(6.5), 0+ O(hY). Thus, we get

d -

STl ¢M(e) = O(Y),

and an integration from 0 to ¢ yields the result (6.6). Like before, statement (6.7) follows
from the bounds obtained in Theorem 5.5.1. O
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We see that for symplectic numerical methods, we have y(hw) = 1 and hence Z,,[nF, ¢¥|(nh) =
I(pn. Gn) + O(h) and Hy[nk, cFl(nh) = H(p,.q,) + O(h). Under the additional hypothesis
on the function u

p(hw) > ¢y > 0, (6.8)

we have the following result concerning the near conservation of (1.4) and (1.1) over long
time intervals. The proof of this result is similar to the proof of Theorem 7.1. in [HLWO02,
Sect. XIIL.7].

Theorem 5.6.3 Under the assumptions of Theorem 5.5.1 and the additional hypothesis
(6.8), if the numerical solution (pn,qn) stays in a compact set, we have

H(pn,qn) = H(po,q) + O(h)
[(pna Qn) - I(p07 QO) + O(h)a
for 0 < nh < h=N+L,

To be able to treat numerical methods where p(hw) can be small, one should look closer
at the equations that determine the modulated functions and follows the approach given
in [HLWO02, p. 446].
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Appendix A

Résumé de la thése en francais

A.1 Introduction

Ce mémoire traite de la résolution (numérique et exacte) d’équations différentielles d’ordre
2 a grandes oscillations. Derriére ce nom barbare se cache en fait I’équation suivante

¥ = gi(x1,22)
To+w?ry = go(x1,29),
ou sous forme matricielle
. 9 0 O
T+ Qv =g(x) ol 0= , (1.1)
0 wl

et w > 1. De plus, nous supposerons que la fonction (non-linéaire) g : R — R™ soit
analytique avec toute ses dérivées bornées indépendamment de w. Nous supposons égale-
ment que les blocs de la matrice carrée () soient de taille arbitraire. En ce qui concerne
les conditions initiales du systéme (1.1), nous demandons qu’elles satisfassent I’hypothése
suivante

s (I20)2 + 22(0)|2) < F. (1.2)

ou I est une constante indépendante de w.

Ces équations différentielles apparaissent parfois en physique ou en dynamique molécu-
laire (nous en verrons des exemples plus précis plus loin). Si la non linéarité est sous la
forme g(z) = —VU(x) avec une fonction U : R" — R, le systéme est Hamiltonien avec

H(w,&) = 5 (22 + [0a]]?) + U2) (1.3)

Pour ce type de probléme, nous nous sommes intéressés a la presque conservation de
I’énergie oscillatoire

1, 3) = 5 (Il +w?aa]?) (1.4)

99
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pour des temps exponentiellement longs.

Une fois les propriétés de I’équation différentielle (1.1) et de sa solution connues, ils nous
faut trouver une maniére efficace pour résoudre ce genre de probléme a 'aide de méthodes
numériques.

Nous rappelons qu’une méthode numérique pour résoudre des équations différentielles
¥y = f(y),y(0) = yo consiste en un schéma itératif, y,,.1 = P5(y,), nous donnant une suite
de valeurs y,,, pour n > 0. Ces valeurs sont des approximations de la solution y(¢,) ou les
t, = nh sont des points équidistants d’une subdivision de I'intervalle de temps considéré.

Par “maniére efficace” de résoudre ce genre de probléme, nous entendons une méth-
ode numérique suffisamment simple & programmer mais précise et ayant de bonnes pro-
priétés géométriques (symétrie, symplecticité, bonne conservation de I’énergie totale H et
de I'énergie oscillatoire I, ...). Au lecteur n’ayant pas eu la chance de suivre le cours “Inté-
gration géométrique” de E. Hairer, nous remémorons ces notions. Une méthode numérique
y1 = ®p(yo) est symétrique si quand on échange yo < y; et h < —h la méthode reste la
méme, i.e. O, = CID:,ll. Pour la symplecticité, c’est un peu plus laborieux, il faut que la
méthode satisfasse

0 I
-1 0

O, (y) TP (y) = J ou J =

Nous mentionons encore le fait que la symplecticité est une charactérisation typique des
systémes Hamiltoniens. Des exemples de méthodes numériques vérifiant ces propriétés sont
disponibles, entre autre, dans [HLW02].

D’un point de vu théorique, Hairer et Lubich, voir [HL0O|, ont développé un outil, la
modulated Fourier expansion, pour montrer la presque conservation de 1’énergie oscillatoire
pour des temps longs. Cet outil nous permettra de montrer, dans la prochaine section, la
presque conservation de cette méme énergie mais pour des temps exponentiellement longs.

Des systémes Hamiltoniens similaires au probléme Hamiltonien avec pour fonction
hamiltonienne (1.3), quoique plus géneraux dans certains cas, ont été étudiés par Benet-
tin et al. dans les deux articles [BGG87| et [BGG89|. Ces auteurs ont utilisés d’autres
techniques pour montrer la presque conservation de [ pour des temps exponentiellement
longs.

En ce qui concerne la résolution pratique de telles équations, plusieurs types de méth-
odes numériques ont été élaborés pour ce genre d’équations différentielles, nous en citerons
quelques unes. Commencons par une méthode trés utilisée en dynamique moléculaire: la
méthode de Stormer-Verlet (voir par exemple [PJY97],[HLWO03] or [HLW02]). Appliquons
cette méthode au probléme Hamiltonien avec fonction hamiltonienne (1.3), un pas du
schéma numérique s’écrit

. . h
Tpy1jp = &p— §(Qzal:n + VU (z,))
Tpy1 = Tp+ hTniryo

. . h
Tpt1 = Tpt1/2 — §(Q2$n+1 + VU(7n11)),
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ou h est la longueur du pas. Bien qu’ayant de nombreux avantages (facile & programmer,
symétrie et symplecticité), cette méthode est extrémement onéreuse lorsqu’elle est utilisée
pour résoudre des équations différentielles a grandes oscillations sur de longs intervalles de
temps (nous avons une restriction sur la longueur du pas h). Une alternative a la méthode
de Stormer-Verlet a été proposée par plusieurs auteurs. Une majorité de ces méthodes
numériques peuvent étre englobées dans une seule classe de méthodes. Cette classe a pour
nom: les méthodes trigonométriques (méthodes analysées dans [HLW02, Chap. XIII]). Elle
englobe entre autre les méthodes de type Gautschi [HL99| et la mollified impulse method
de Garcia-Archilla et al. [GASSS9S].

Comme premiére application du modéle (1.3), nous considérons le mouvement linéaire
d’une molécule diatomique, p.ex. C — C, H — H ou H — O, soumise a un champ de force
externe. L’expression de ’énergie de liaison entre les deux atomes peut étre décrite par la
loi de Hook. Cette loi décrit le mouvement d’un ressort et s’exprime de la facon suivante:

2
E = %(1'2 — 71 —19)?, ol w est la constante du ressort (grande dans notre cas), z;, pour

7 = 1,2, les positions des deux atomes et ry la distance au repos entre les deux atomes
(voir Figure A.1). Pour ce probléme, 'Hamiltonien est donc donné par

. . 1,. . 2
H(xy,x9,d1,@9) = E(x% + x%) + %(1'2 — 2] — x0)2 + U(x1, x9),

ou U est un potentiel externe & la molécule.

T T2

@ @

ressort raide

Figure A.1: Molécule diatomique.

Un changement de variables approprié raméne cet Hamiltonien sous la forme désirée
(1.3). Pour ce probléme, I'énergie oscillatoire I correspond en fait a ’énergie du ressort
qui lie les deux atomes.

Le prochain exemple est un modéle un peu plus physique, c’est en fait une variante du
probléme de Fermi-Pasta-Ulam (FPU) (voir [FPU55],[Wei97],|AT87]). Nous considérons
une chaine de 2n points masses reliés alternativement par des ressorts durs et mous, fixée
aux extrémités.
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ressort dur ressort mou
harmonique non-linéaire

Figure A.2: Chaine de ressorts. (Q[HLW02])

Les équations du mouvement sont données (voir [HLWO02, p. 17]) par I’'Hamiltonien

2n n
. 1 , 2 1
H(z, ) = 3 fo + % inﬂ + 1 <(CC1 — Tpi1)?
i=1 i=1 (1_5)
n—1

+ (Tig1 — Tnpirt — T — Tpps) + (Tp + «T2n)>a
1

i

ol z;, pour i = 1,...,n, représentent le déplacement du i-éme ressort dur, z;,, la com-
préssion (ou décompression) de ce méme ressort et w la constante des ressorts durs. Nous
allons considérer une chaine de trois ressorts durs, dans ce probléme, [ correspond a

’énergie totale des trois ressorts durs, H a I’énergie totale du systéme et [;(z;y, Tj4n) =

1,. < 19, . . N S1i2
—(22,, + w?x?, ) a I'énergie du j-éme ressort dur. Pour ce systéme, nous avons utilisé

o\ Titn Jjtn

une méthode trés précise, appelée DOP853 (pour une définition, voir [HNW93|), pour
résoudre les équations du mouvement des six points masses. La Figure A.3 montre les dif-
férentes énergies du systéme pour la solution numérique avec w = 50 et les valeurs initiales

21(0) = #1(0) = 74(0) = 1, 24(0) = w™! (les autres valeurs initiales sont nulles).

H

I

07\ \H‘L\"iuu IO A e el M [
E 50 100 150

Figure A.3: Energie totale et énergie oscillatoire du probléme FPU modifié.

Nous remarquons la bonne conservation de I et de H, ainsi que 1’échange des énergies
entre les trois ressorts durs. Toutes ces oscillations, aussi bien dans I et les [; que dans
la solution exacte (voir Figure A.4), nous “expliquent” le terme “équation différentielle &
grandes oscillations”.
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04
02

"(h

00 H‘“

~02

-.04
. | . | . | .
0 50 100 150 200
Figure A.4: Premiére composante rapide (z4) du probléme FPU modifié.

A.2 Equations différentielles a grandes oscillations

Dans cette section, nous présentons un résultat concernant la presque conservation de
Pénergie oscillatoire I (voir (1.4)) sur des temps exponentiellement longs. Nous donnerons
aussi quelques idées afin d’arriver a ce résultat.

Théoréme A.2.1 Si la solution z(t) de (1.1) reste dans un compact K et si g(x) est
analytique et bornée par M dans un voisinage complexe

D={xeC";||lz—¢&| <R pourun £ € K}.

De plus, si les valeurs initiales x(0),#(0) satisfont (1.2), alors, il existe des constantes
positives v, C, 6, wo dépendantes de E, M et R (mais pas de w) telles que, pour w > wy,
on a

|1 ((t),2(t)) — I(x(0),2(0))] < Cw™  pour 0<t<Ce™.

L’outil principal pour montrer ce résultat est la modulated Fourier expansion. Sans rentrer
trop dans les détails, il s’agit d’écrire la solution de (1.1) comme une série formelle

2(t) = y(6) + e (0), (26)

k40

ot y(t) et 2F(t) sont des fonctions lisses (i.e., de dérivées bornées indépendament de w).
Nous rendons le lecteur attentif au fait que le k& des z*(¢) est un indice et que nous utilisons
la notation 2% = z,. Ces fonctions sont données par une équation différentielle d’ordre 2
pour yi, par une équation différentielle d’ordre 1 pour 21, par des relations algébriques pour
les autres. Pour trouver ces équations qui déterminent ces fonctions, il “suffit” d’insérer
(2.6) dans (1.1), de développer la fonction g en série de Taylor autour de y puis de comparer
les coefficients de e***. Cela nous donne le systéme différentiel suivant

@1 - Zw_lFll<ylaylvzé)a Z; = ZW_ZFQZ(ylaylaZ%)7 (27)

1>0 >1
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ainsi que les équations algébriques (pouri =1,k =1,2,... et pouri =2,k =0,2,... avec
la convention 2 = y)
2F = Zw*lel(yl, U1, 2g)- (2.8)
1>0

Malheureusement ces séries divergent, il nous faut les tronquer et estimer ’erreur ainsi
faite. Une fois cette tache accomplie, nous constatons que le systéme qui détermine ces
fonctions a deux invariants formels. Ces deux invariants sont en fait reliés a (1.3) et (1.4),
et une comparaison de tous ces termes nous améne au théoréme.

A.3 Meéthodes numériques

La section précédente analysait la solution exacte de (1.1), il s’agit maintenant de trouver
des méthodes numériques pour résoudre ce genre de probléme. Nous proposons des méth-
odes basées sur les premiers termes de la série (2.6), nous cherchons donc des fonctions
lisses y(t) et z(t) telles que

2. (t) = y(t) + e 2(t) + e “2(t) (3.9)
donne un petit défaut quand on I'insére dans (1.1) et satisfasse les conditions initiales

Insérons donc (3.9) dans I’équation différentielle (1.1), un développement en série de Taylor
de g autour de y et une comparaison des coefficients de 1,e“! e™“* nous donne (pour les

termes dominants)
o= gy +9y)(z2)
2wz, = ¢4

w2y2 = g2\y

)
) (3.11)
)
)

—w?z = gi(y)z.

Pour la méthode numérique, on commence par trouver des valeurs initiales pour les équa-
tions différentielles contenues dans (3.11). Ensuite, on résout ’équation différentielle
d’ordre 2 (par une méthode ressemblant a la méthode de Stormer-Verlet), puis celle d’ordre
1 (par une méthode ressemblant a la méthode du point milieu) et enfin on résout les équa-
tions algébriques (par des itérations successives). Une fois les fonctions yi,v2,21 et 2o
trouvées, on calcule une approximation de la solution de (1.1) par la formule (3.9).
Quatre méthodes numériques ont été développées selon la facon de tronquer la série
de Taylor de la fonction g ou de négliger des termes. Toutes les méthodes numériques
proposées sont d’ordre 2, symétriques, p-réversibles (pour une définition, voir [HLWO02,
Chap. V|) pour les deux applications p1(y1, 91, 22) = (Y1, — U1, 22r, —22i) €t p2(y1, 91, 22) =
(Y1, —U1, —Z2r, 22;) OU 2o, et zo; désignent la partie réelle et imaginaire de z,. De plus,
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elles conservent bien 'Hamiltonien et 1’énergie oscillatoire /. Un avantage pour ces méth-
odes numériques par rapport aux autres méthodes est le fait que nous avons conservation
uniforme des énergies H et [ pour toutes valeurs de hw ou h est le pas de la méthode.

Malheureusement, ces méthodes sont implicites et nécessitent le calcul de la deuxiéme
dérivées de la fonction g (pour certaines), elles sont donc cotiteuses.

A.4 Multi-fréquences

Une fois le cas (1.1) étudié, il est naturel de regarder ce qu’il se passe pour plusieurs
fréquences w. Considérons le systéme

515’1 = gl(l'l,ﬁg,...,l‘n)
T +wir;, = gi(z,T Tp) our j =2 n
J /A gj\T1,T2,...,Tn), p )= 4,..., N,
ou en notation matricielle

i+ Q% = g(z) avec Q= diag(0,wql, ... w,I), (4.12)

ou w; = a;\, A > 1, les a; sont des réels plus grands que un et les blocs dans la matrice
() sont de taille arbitraire. Nous supposerons toujours que les valeurs initiales satisfassent
I’hypothése (1.2) et que la fonction g soit analytique.

L’introduction de fréquences supplémentaires et différentes dans la matrice €2 peut
entrainer de la résonance dans le systéme (4.12). Nous commencerons par étudier le cas
de non-résonance:

il existe des constantes positives v,y telles que (4.13)
|k-al >~-|k|”” pour tout k€ Z" ', k#0. (4.14)

Ici k - a est le produit scalaire (kaag + ... + kpay) et |k| = |ko| + ...+ |ky]. Sin =3, un
exemple est donné en prenant a; = 1 et az = /2 dans (4.12). Dans ce cas, il est possible
de montrer la presque conservation des énergies oscillatoires

. 1 . .
Ii(z,2) = §<||:16j||2 + w? ||:v]||2> ,pour j=2,...,n (4.15)

sur des temps exponentiellement longs.

En ce qui concerne le cas de résonance (prenons par exemple as = 1 et a3 = 2), la durée
de la presque conservation des énergies oscillatoires (4.15) dépend des valeurs que nous
prenons pour les ;. Dans ce résumé, nous ne mentionnons que le pire des cas possible (il
est réalisé en prenant a; = 1 et ag = 2):

Théoréme A.4.1 Considérons l’équation différentielle (4.12) avec 1 < ay < ... < a,, et
valeurs initiales x(0) et ©(0) satisfaisant (1.2). Si la solution x(t) reste dans un ensemble
compact et si A est suffisament grand, alors, nous avons

L(x(t),2(t) = L;(2(0),(0)) + OA™Y) + O(tA™?)
pour j =2,...,n et 0 <t < Const - \2.
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Pour bien voir la différence entre les résultats pour le cas de résonance et celui sans,
considérons I’Hamiltonien

2
H(xq, 29, w3, 1, T2, T3) Zl’ ﬁx% %Ig + (0.00121 + 25 + 23)%, (4.16)

oll wy = 1-70, wy = 2- 70, pour le cas de résonance, et wy = 170, wy = /2 - 70, pour
le cas de non-résonance. A nouveau, nous utilisons une méthode trés précise (DOP853) et
dessinons dans chaque cas les différentes énergies du probléme Hamiltonien (4.16).

27 I + I3
e Ao AR

WW
1 I3

%
r I,

0 ;
C . | . | . | . | .
0 1000 2000 3000 4000 5000

Figure A.5: Energies oscillatoires du probléme (4.16): cas de résonance.
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Figure A.6: Energies oscillatoires du probléme (4.16): cas de non-résonance.

Les figures A.5 et A.6 montrent bien un drift des énergies I, et I3 dans le cas de
résonance, alors que pour l'autre cas tout est bien conservé.

Les idées développées dans cette section permettent aussi de mieux comprendre la so-
lution numérique du probléme (4.12). Pour des méthodes trigonométriques, sous certaines
conditions, la solution numérique admet aussi une modulated Fourier expansion, nous avons

T, 2 : elkwt k

0<|k|<N

out = nhet k € Z". Comme pour la solution exacte, le systéme qui détermine les
fonctions lisses y,(t) et 2F(t) admet, dans le cas o g(z) = —VU(z), des invariants
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formels. Ces derniers sont reliés a ’Hamiltonien (1.3) et aux énergies oscillatoires (4.15).
Ceci nous permettra d’expliquer la presque conservation de ces énergies par les méthodes
trigonométriques.

A.5 Une nouvelle classe d’Hamiltonien hautement os-
cillatoire
Pour certains problémes en physique, il est possible que dans I’Hamiltonien les vitesses et

positions ne soient pas aussi distinctement séparées que dans (1.3). Dans cette section,
nous considérons I’Hamiltonien suivant

w2

1
H(p,q) = K(p1,q) + §p§p2 + 7612%- (5.17)

Nous supposerons bien entendu que la fonction K (py, ¢) soit lisse et analytique. On dénote
les variables p = (p1, p2) et ¢ = (q1, g2) conformément & la partition de la matrice carrée

0 0
0 wl

0= , w1,

ou les blocs de la matrice sont de dimensions arbitraires. De nouveau, les valeurs initiales
du systéme Hamiltonien découlant de (5.17) satisfont 1’hypothése

(IO + [29(0)?) < B, (5.18)

ou £ est une constante indépendante de w.
Nous remarquons que cet Hamiltonien englobe I’Hamiltonien (1.3), en effet en prenant

pour K (pi,q) la fonction K (p1,q) = %p{pl + U(q), nous retombons sur (1.3). Il est méme

un peu plus général car des couplages du style K(p1,q) = %plTM (q)p1, ot M(q) est une
matrice de masse, sont aussi possibles.

Comme illustration du probléme Hamiltonien (5.17), nous considérons le mouvement
d’un pendule a ressort. Ce probléme a été étudié par Ascher et Reich dans [AR99a] et la
fonction hamiltonienne s’écrit

1 _
H(p,q) = 505 + (@2 + 1) i + ¢} +w°a3), (5.19)
ou w représente la constante du ressort. Ici, la composante rapide ¢ représente le dé-

placement de la masse connectée au ressort autour du cercle d’équilibre de rayon 1. La
composante lente ¢; correspond a 'angle du pendule (voir Figure A.7).
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s ~ w7 v L L L L7

Figure A.7: Pendule harmonique.

Nous allons réutiliser la méthode numérique DOP853 pour voir ce qu’il se passe pour

les différentes énergies du probléme (5.19) avec valeurs initiales p;(0) = —%,pg(O) =
%, ¢1(0) = 0,¢2(0) = 0. Pour le paramétre w, nous prenons w = 80.
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Figure A.8: Energie totale et oscillatoire de (5.19).

De nouveau, nous constatons que 1’énergie oscillatoire

I ! 2 “’—2 2 5.20
(P, 4) = 5lpaI” + -l (5.20)

est presque conservée. Le zoom sur / nous montre les petites oscillations d’amplitude
O(w™). Une fois de plus, la modulated Fourier nous permettra de résoudre ce mystére.
En effet, les équations du mouvement pour I’'Hamiltonien (5.17) sont données par

D1 = _vqlK(plaQ)
P2 = _WQQQ - ngK(ph C])
G = V,K(p1,q)

G2 = D2,

(5.21)
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ou en notation matricielle

p = —Qq+9(p1.q)
_ 0 0 (5.22)
g = p+ h(p1.q),

0 I

avec g et h des fonctions lisses et analytiques. Quelques adaptations aux idées de la
Section A.2 nous permettent de montrer le résultat suivant

Théoréme A.5.1 Sila solution (p(t),q(t)) de (5.17) satisfait la condition (1.2) et reste
dans un ensemble compact K pour 0 < t < T, alors elle admet une modulated Fourier
expansion de la forme

p(t) = Y e™iF(t) + Ry(t),
<N (5.23)
g(t) = > e k(t) + Sn(t),

|k|<N

pour un entier N > 2 arbitraire, et des fonctions lisses n* et C* (i.e. ces fonctions et toutes
leurs dérivées sont bornées indépendammant de w). De plus, les termes de reste sont bornés
par

Ry(t) =0Ow™), et Sy(t)=0w™) pour  0<t<T. (5.24)

Dans ce théoréme, nous pouvons aussi trouver des formules de récurrence pour déterminer
les fonctions lisses n¥(t) et ¢*(¢) et méme trouver des bornes pour ces fonctions ainsi que
toutes leurs dérivées. Comme dans le premier cas analysé (voir (1.3)), le systéme qui déter-
mine les fonctions n*(t) et ¢*(¢) posséde deux invariants formels, disons H(p(t),q(t)) et
Z(p(t),q(t)) (voir plus bas), qui sont reliés & I’'Hamiltonien (5.17) et & I’énergie oscillatoire
(5.20). Nous avons

H(p(t).a(t)) = H(p(t),q(t)) + O(w™),
Z(p(t),qa(t)) = I(p(t).q(t)) +Ow™),

pour 0 < t < T. et le vecteur p = (p~™*', ....0%...,p o p¥ = e™ink(t) avec
k=0,...,N—1. Ceci nous permet de montrer la presque conservation de I, pour le prob-
léeme Hamiltonien (5.17), sur des temps longs. Une analyse plus détaillée des estimations
obtenues plus haut nous permettra siirement de montrer la presque conservation de cette
énergie oscillatoire pour des temps exponentiellement longs.

Dans ce travail, nous avons aussi développé des méthodes numériques pour résoudre
suffisamment bien des systémes Hamiltoniens donnés par (5.17). Ces méthodes sont une
extension assez naturelle des méthodes trigonométriques et ont pour nom les New Trigono-
metric Methods (NTM). Comme pour les méthodes trigonométriques, ces méthodes dépen-
dent de fonctions filtres, elles sont données par

N—l)
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Définition A.5.2 Un pas de la méthode numérique s’écrit

pvf+1/2 — qulK( n+1/2 L Bq™)
n+l n+1/2 n n+1/2 n+1
@t = g+ (VK 0 )+ Vp K@, 2g™)
@ttt = Cos(hw) a3 + w ™' sin(hw)py — —wg(hw)VqQK( /2 , &™) (5.25)
pvlzﬂ _ prll+1/2 _ ﬁvqlK( n+1/2 q>qn+1) )
P = —wsin(hw)g) + cos(hw)ph — & ($a(hw) Vi K (0712, 0g7)
+ P(hw) Vg, KT @ thy),
ot U = Y(hQ). ¥ = P(hQ), T = (hQ) and & = ¢(hQY). Llindice 2 dans ces matrices

correspond a la partition de la matrice €). Les fonctions filtres 1, ¢ 1/) ¢ sont réelles et

paires avee $(0) = $(0) = P(0) = $(0) = 1.

Sans entrer trop dans les détails, le schéma numérique pour cette classe de méthodes
consiste en fait a utiliser une méthode de Stormer-Verlet pour les premiéres composantes
de p et ¢ et une méthode trigonométrique pour les composantes rapides de ces variables.
Comme pour la solution analytique, nous avons le résultat suivant

Théoréme A.5.3 Sila solution numérique (p™,q™) de (5.21) avec valeurs initiales vérifi-
ant (1.2) satisfait la condition de non résonance

1
|sin(§khw)| >cvh, pour k=1,....N, avec N > 2,
et que les fonctions filtres de la méthode numérique vérifient

W(hw)| < Cysine(5hw),
[h(hw)| < Cssinc(hw)).

De plus, si la solution reste dans un compact et si hw > co > 0 alors, la solution numérique
admet, pour 0 <t =nh <T, un développement

pn — Z elkwt k +RhN()

|k|<N

qn — Z eikwtcilf(t) "‘Sh,N(t),

|k|<N
ot les termes de reste sont bornés par

Rh N( ) O(nhN 1), Sh N( ) O(nhN 1)
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Les coefficients sont bornés, ainsi que toutes leures dérivées, par

Ch,l = 0(1), Mh1 = O(l), Ch,Q = O(w_Q)’ Nhao = O(w—1)7
Gi=0Ww™), n,=0w?), (,=0w™), nf,=0wM),
Chi=O0W™), i =0W™ ), (hy=0W™"?), 15, =0wW™"*1),

pour k = 2,....N — 1. De plus, nous avons n~ % = ﬁ et (8 = Ck. Les constantes
symbolisées par O sont indépendantes de w et h, mais pas de £, N,cy et T'.

Nous donnons des conditions sur les fonctions filtres pour que la méthode numérique
ait des propriétés géométriques intéressantes. Suivant les cas, ces méthodes peuvent étre
symétriques, symplectiques, d’ordre 2 et elles conservent bien les deux quantités habituelles
H et I. De plus, ces méthodes sont explicites si la fonction K (pi,q) prend la forme
K(p1,q) = %p{M (g2)p1 + U(q) (ce qui est le cas par exemple pour le pendule harmonique
du début de section).

Une analyse des méthodes NTM symmétriques a l'aide de la modulated Fourier expan-
ston a été effectuée. Nous montrons qu’a nouveau le systéme qui détermine les fonctions
apparaissant dans ce développement posséde deux presques invariants notés H), [nF, CF] et
Iy [77;; ) C}If ]

Si la méthode numérique est symplectique, nous avons le résultat suivant pour la
presque conservation de 1’énergie oscillatoire (5.20) et de ’Hamiltonien (5.17) sur des temps
longs.

Théoréme A.5.4 Sous les conditions du théoréme précédent, nous avons

Hulnf, CFI(t) = Hulng. ¢F(0) + O(thY)
Lnlnk, CR1(t) = Tnlnf. ¢F1(0) + O(th™)
Hulnf. CFI(t) = H(pn. ) + O(h)
Lulnf, CE(t) = 1(pn.qn) + O(R),

pour 0 <t =nh <T. Il vient donc, st la solution numérique reste dans un compact,

H(pn,q.) = H(po,q) + O(h)
I(pnygn) = I(po,q) + O(h),

pour 0 < nh < h™N*1. Les constantes symbolisées par O dépendent de E, N et T.
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Pour conclure, nous voudrions remercier le lecteur d’avoir pris du temps pour lire ce
mémoire et d’étre arrivé jusqu’a la derniére page ...

Laisse-toi porter par le son,
ne te pose surtout pas de question.

(NTM, De Best)
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