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∗ Department of Mathematial Sienes, NTNU, NO-7491 Trondheim, Norway.email: David.Cohen, Brynjulf.Owren, Xavier.Raynaud�math.ntnu.noThe Camassa-Holm partial di�erential equation is rih in geometri stru-ture, it is ompletely integrable, bi-Hamiltonian, and it represents geodesisfor a ertain metri in the group of di�eomorphism. Here two new multi-sympleti formulations for the Camassa-Holm equation are presented, andthe assoiated loal onservation laws are shown to orrespond to ertainwell-known Hamiltonian funtionals. The multi-sympleti disretisation ofeah formulation is exempli�ed by means of the Euler box sheme. Numerialexperiments show that the shemes have good onservative properties, andone of them is designed to handle the onservative ontinuation of peakon-antipeakon ollisions.1 IntrodutionThe aim of this paper is to study multi-sympleti algorithms for the numerial integra-tion of the Camassa�Holm equation [6, 7℄

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = u0. (1)This partial di�erential equation has reeived onsiderable attention during the lastdeade. It is known to be rih on geometri struture and it supports non-smoothtraveling wave solutions. Thus, it seems natural to apply shemes whih are knownto retain at least some of these strutures. We shall here be onerned in partiular withthe property of multi-sympletiity and investigate to whih extent a simple numerialsheme with a similar property o�er a worthwhile alternative to other known methodsfor this problem. In partiular we are interested in understanding how the hoie of amulti-sympleti formulation an be used as a guide for ahieving the near-onservationof designated invariants. 1



We begin by reviewing ertain important properties of the Camassa-Holm equation.The equation models propagation of unidiretional gravitational waves in a shallow waterapproximation, with u representing the �uid veloity, see [6, 28℄. The Camassa-Holmequation also has appliations in omputational anatomy, see [36℄ and [27℄. Equation (1)an be rewritten in an equivalent manner as the following system
ut + uux + Px = 0, (2a)
P − Pxx = u2 +

1

2
u2

x. (2b)The Camassa�Holm equation an be derived from a least ation priniple and it orre-sponds to the geodesi equation in the group of di�eomorphism with respet to a givenright-invariant metri, see [17, 18℄. The equation has a bi-Hamiltonian struture [21℄ andis ompletely integrable [13℄. It has in�nitely many onserved quantities, see, e.g., [32℄.In partiular, for smooth solutions the quantities
∫

udx,

∫

(u2 + u2
x)dx,

∫

(u3 + uu2
x)dx (3)are all time independent (in this paper, we will not write the integration domain, whatis important is that the boundary terms vanish when integrating by parts).The Camassa-Holm equation also possesses solutions of a soliton type, whih, beauseof their shape, have been given the name of peakons. In the ase of the real line, a singlepeakon is given by

u(x, t) = c e−|x−ct|,thus, the traveling speed c is proportional to the height of the peak. In the periodi asewith period a, the periodized version of this single peakon is
u(x, t) = c

cosh(d(x − ct) − a
2 )

cosh(a
2 )where d(x) = min

k∈Z

|x − ka|. For initial time t = 0, the previous expression simpli�es to
u(x, 0) = c

cosh(x − a
2 )

cosh(a
2 )

.By taking a linear ombination of peakons one obtains what is alled a multipeakonsolution. In the ase of the real line, the multipeakons have the following form
u(x, t) =

n
∑

i=1

pi(t) e−|x−qi(t)| (4)where pi and qi are solutions of the Hamiltonian system
q̇i =

∂H

∂pi
, ṗi = −

∂H

∂qi
, (5)2
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Figure 1: Symmetri peakon-antipeakon ollision.with a Hamiltonian funtion H(p, q) = 1
2

∑n
i,j=1 pi pj e−|qi−qj |. At the peaks, the deriva-tive is disontinuous and the multipeakons an only be solutions of (1) in a weak sense,see, e.g. [23℄, for more details on the derivation of (5).When the initial data u0 is smooth enough, that is, u0 ∈ Hs(R) for s > 3

2 , the Cauhyproblem for the Camassa�Holm equation is well-posed loally in time, see [16℄ and [33, 38℄for the non-periodi ase. For initial data u0 ∈ H1(R) whih satis�es the ondition that
u0 − u0,xx is a positive Radon measure, the solutions exist globally in time and areunique, see [19℄. However, in the general ase, solutions may blow up and they do it inthe following manner. Let T be the time where a smooth solution eventually loses itsregularity, i.e., limt→T ‖u(·, t)‖Hs = ∞ for all s > 1. Then,

lim
t→T

inf
x∈R

ux(x, t) = −∞.There appears a point where the pro�le of u steepens gradually and ultimately the slopebeomes vertial. In the ontext of water waves, this orresponds to the breaking of awave. This fat was already noted in the seminal papers of Camassa and Holm ([6, 7℄)and was subsequently proved by Constantin and Esher ([14, 15℄). After blow-up, thesolution is no longer unique and the Camassa�Holm is indeed not well-posed globallyin time. A good illustration of what is happening is given by the symmetri peakon-antipeakon ase where two peakons whih travel in opposite diretions and ollide. Sinethe peakons have exatly opposite height, the solution at the time of ollision, t∗, will beidentially zero, see Figure 1.After the time of ollision, there exist two onsistent ways to prolong the solutions:The �rst one is to let u(x, t) vanish identially for t > t∗, and the other one is to let thepeakon and antipeakon �pass through� eah other in a way whih is onsistent with theCamassa�Holm equation. In the �rst ase the energy ∫

(u2 + u2
x)dx dereases to zero at3



t∗, while in the seond ase, the energy remains onstant exept at t∗. The �rst solution isalled a dissipative solution and the seond one a onservative solution. Global dissipativesolutions are studied in [11, 10, 40, 41, 3℄ and will not be onsidered in this artile. It islear that in order to obtain a onservative solution from the zero state that the solutionhas reahed at ollision, we will need extra information. This information is providedby the energy density (u2 + u2
x)dx. In the ase of the antisymmetri peakon-antipeakonollision the density energy (u2 +u2

x)dx tends to a Dira measure loated at the point ofollision and whose magnitude depends on the total energy of the solution, see [25℄ fordetailed omputations. A semigroup of global onservative ollisions has been obtainedin [2℄ and [24℄ via a hange of oordinates. In [24℄, Lagrangian variables are used andthe key point in the argument omes from the fat that the energy density satis�es thefollowing transport equation
(u2 + u2

x)t + (u(u2 + u2
x))x = (u3 − 2Pu)x (6)where P is given by (2b). In this artile we aim to derive numerial methods to obtainthe onservative solution. Thus we have to take into aount the evolution of the energydensity. After denoting u2 + u2

x by α, we an see that (2) and (6) are equivalent to
ut + uux + Px = 0, (7a)
P − Pxx =

1

2
u2 +

1

2
α, (7b)

αt + (uα)x = (u3 − 2Pu)x. (7)We now proeed to brie�y review ertain numerial shemes for the Camassa-Holmequation (1) found in the literature, but by no means intending to be exhaustive. Shemesusing a pseudospetral spae disretisation of the Camassa-Holm equation were derivedin [7℄ and in [30℄. This last paper investigates numerially di�erent aspets of perioditraveling waves and tries to understand the rate of onvergene of the algorithm. Anapproah based on the multipeakons (4) is examined in [8, 9, 23, 26℄. Amongst otherthings, the onditions for global existene and the onvergene of the methods are studiedin these artiles. A onvergene analysis of �nite di�erene shemes was given in [22℄and in [12℄. We mention that the shemes proposed in [12℄ and in [26℄ an also handlepeakon-antipeakon ollisions. In [1℄, a �nite volume method is developed to simulate thedynamis of peakons. This sheme is adaptive, with high resolution and stable. Finally,a �nite element method is derived in [42℄. The sheme proposed in this paper is highorder aurate and nonlinearly stable. Several numerial examples are also inluded inorder to illustrate the behaviour and verify the properties of this method.The rest of this paper is organised as follows: In Setion 2 we will review some of thegeneral theory of multi-sympleti PDEs and their numerial disretisations, followingthe approah of Bridges and Reih [5℄. In the third setion we will present two new multi-sympleti formulations of the Camassa-Holm equation, and disuss their momentum andenergy onservation laws. We onsider disretisations by the multi-sympleti Euler boxsheme and demonstrate their performane through numerial tests. Sine the fous of4



our approah is mainly geometri, we shall be partiularly interested in the onservativeproperties when we present the numerial experiments, and we make ative use of energyonservation in order to handle peakon-antipeakon ollisions. However, for omparisonwith earlier work published in the literature, we also present some numerial resultsrelated to onvergene on �nite time.2 Multi-sympleti PDEs and their multi-sympletidisretisationThe shemes that we propose for the Camassa-Holm equation are based on ertain multi-sympleti formulations of the partial di�erential equations (1) or (7). For the sake ofompleteness, we will in this setion review this onept in a general ontext, for moredetails, see e.g. [4, 5, 37℄. A partial di�erential equation F (u, ut, ux, utx, . . .) = 0 is saidto be multi-sympleti if it an be written as a system of �rst order equations:
M zt + K zx = ∇zS(z), (8)with z ∈ R

d a vetor of state variables, typially inluding the original variable u as oneof its omponents. The matries M and K are skew-symmetri d × d-matries, and Sis a smooth salar funtion depending on z. The formulation is not neessarily uniqueand the dimension d of the state vetor may di�er for di�erent formulations. A keyobservation is that M and K de�ne sympleti strutures on subspaes of R
d

ω = dz ∧ Mdz, κ = dz ∧ Kdz.Considering any pair of solutions to the variational equation assoiated with (8), we have,see [5℄, that the following multi-sympleti onservation law applies
∂tω + ∂xκ = 0. (9)With the two skew-symmetri matries M and K, one an also de�ne the density fun-tions

E(z) = S(z) −
1

2
zT
x KT z , F (z) =

1

2
zT
t KT z,

G(z) = S(z) −
1

2
zT
t MT z , I(z) =

1

2
zT
x MT z,whih immediately yield the loal onservation laws

∂tE(z) + ∂xF (z) = 0 and ∂tI(z) + ∂xG(z) = 0, (10)for any solution to (8). Thus, under the usual assumption on vanishing boundary termsfor the funtions F (z) and G(z) one obtains the globally onserved quantities of (energyand momentum)
E(z) =

∫

E(z)dx and I(z) =

∫

I(z)dx. (11)5



2.1 Multi-sympleti integratorsThere are two standard ways to onstrut multi-sympleti integrators: one is to approx-imate the Lagrangian by a sum and take variations (see for example [35℄), the other (seefor example [4℄ or [5℄) is to write the partial di�erential equation as a system of �rstorder equations (8) and then to disretise it.The idea of Bridges and Reih [5℄ was to develop integrators whih satisfy a disretisedversion of the multi-sympleti onservation law (9). For this purpose, they onsidereda diret disretisation of (8), replaing the derivatives with divided di�erenes, and theontinuous funtion z(x, t) by a disrete version zn,i ≈ z(xn, ti) on a uniform retangulargrid. We set ∆x = xn+1 − xn, n ∈ Z, and ∆t = ti+1 − ti, i ≥ 0.Following their notation, we write
M∂n,i

t zn,i + K∂n,i
x zn,i =

(

∇zS(zn,i)
)n,i

. (12)A natural way of inferring multi-sympletiity on the disrete level is to demand that onany pairs (Un,i, V n,i) of solutions to the orresponding variational equation of (12), onehas
∂n,i

t ωn,i + ∂n,i
x κn,i = 0,where

ωn,i(U
n,i, V n,i) = 〈MUn,i, V n,i〉, κn,i(U

n,i, V n,i) = 〈KUn,i, V n,i〉.Unfortunately, it is not generally true that the disrete versions of the loal onservationlaws for energy and momentum (10) are obeyed by solutions of a multi-sympleti integra-tor. However, as noted in [5℄ this holds in some ases when S(z) is a quadrati funtion,but this is not so for the Camassa-Holm multi-sympleti formulations presented here.We proeed by giving two well-known examples of multi-sympleti integrators, but �rstwe introdue some notation for di�erene operators to be used throughout the rest ofthis paper. For any variable U = (Un,i) de�ned on a two-dimensional grid, we let
δ+
t Un,i =

Un,i+1 − Un,i

∆t
and δ−t Un,i =

Un,i − Un,i−1

∆t
,and similarly for di�erenes in spae. Also, we shall need the entered di�erenes δt =

1
2(δ+

t + δ−t ), and δx = 1
2 (δ+

x + δ−x ).The onatenated midpoint rule. This sheme was proved to be multi-sympleti in[5℄, but has been known as a muh used method in hydraulis sine it was introdued byPreissman in 1960. The sheme also appears under the name Preissman box sheme, orentered box sheme. It reads
Mδ+

t

(

zn,i + zn+1,i

2

)

+ Kδ+
x

(

zn,i + zn,i+1

2

)

= ∇zS(zc)where
zc =

1

4

(

zn,i + zn+1,i + zn,i+1 + zn+1,i+1
)

.6



The Euler box sheme. Following [37℄ one may obtain an integrator satisfying a disretemulti-sympleti onservation law by introduing a splitting of the two matries M and
K, setting M = M+ + M−, K = K+ + K− where MT

+ = −M− and KT
+ = −K−. Theorresponding sheme reads

M+δ+
t zn,i + M−δ−t zn,i + K+δ+

x zn,i + K−δ−x zn,i = ∇zS(zn,i). (13)Note that the sheme is only linearly impliit as opposed to the onatenated midpointrule for whih a system of nonlinear equations must be solved in eah time step. Themulti-sympletiity is interpreted in the sense that
δ+
t ωn,i + δ+

x κn,i = 0, (14)where ωn,i = dzn,i−1 ∧M+dzn,i and κn,i = dzn−1,i ∧K+dzn,i. An important observationis that the splitting of the matries is not unique, and we shall see later that the hoieof splitting may strongly e�et the behaviour of the sheme. In general one an write,say K+ = 1
2K + S where S is any symmetri matrix.In the rest of the paper, we will onsider only the Euler box sheme for the sakeof simpliity, although in priniple, any other multi-sympleti sheme ould have beenused.3 Multi-sympleti integrators for the Camassa-HolmequationIn this setion, we will propose two multi-sympleti formulations for the Camassa-Holmequation. The �rst formulation is based on the partial di�erential equation (1) and hasa state variable vetor of dimension 5. The seond formulation has 8 omponents in thevetor of state variables and it is based on (7). With this formulation the resulting multi-sympleti integrator is able to ontinue the onservative solution through a peakon-antipeakon solution.3.1 First multi-sympleti formulationEquation (1) may be rewritten in the form

ut − uxxt +
(3

2
u2 +

1

2
u2

x

)

x
−

(

uux

)

xx
= 0. (15)

7



Setting z = [u, φ,w, v, ν]T we may now derive a multi-sympleti formulation (8) withthe two skew-symmetri matries
M =























0 1
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−1
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0 0 0 0 0
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1
2 0 0 0 0























, K =























0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0























.

The right-hand side of (8) is then given by the gradient of the salar funtion
S(z) = −w u − u3/2 − u ν2/2 + ν v.For onveniene, we also write this system omponentwise

1
2φt −

1
2νt − vx = −w − 3

2u2 − 1
2ν2,

−1
2ut + wx = 0,

φx = u,
−ux = −ν,
−1

2ut = uν − v.To the best of our knowledge, this multi-sympleti formulation of the Camassa-Holmequation is new. However, in the Lagrangian setting a formulation with 6 × 6 matries
M and K has been derived in [31℄ and a formulation with non-onstant matries an befound in [20℄.For this hoie of the skew-symmetri matries M and K, the density funtions de�nedin the introdution are expliitly given by

E(z) =S(z) +
1

2
zT
x Kz =

1

4

(

φtu − uxtu + u3 + uxut + uu2
x − utφ

)

,

F (z) = −
1

2
zT
t Kz =

1

2

(

utv − φtw + φwt − uvt

)

,

G(z) =S(z) +
1

2
zT
t Mz =

1

2
φtu − uxtu − u2uxx + u3 −

1

2
u2

x

+
1

2
uu2

x +
1

2
uxut +

1

4

(

utφ − utν − φtu + νtu
)

,

I(z) = −
1

2
zT
x Mz =

1

4

(

−uxφ + uxν + uφx − uνx

)

.In deriving the orresponding global invariants (11), some are has to be taken withrespet to boundary terms beause φ(x, t) is not periodi (or vanishing at ±∞) even if
u(x, t) is. We integrate the seond loal onservation law ∂tI(z) + ∂xG(z) = 0 over thespatial domain and obtain (using the de�nitions of the additional variables)

1

4

ddt ∫

(

−uxφ + u2
x + u2 − uuxx

) dx +
[

G(z)
]

= 0, (16)8



where the square brakets signify the di�erene of the funtion evaluated at the upper andlower limit of the integral. By periodiity (or the assumption that u and its derivativesat in�nity vanish at in�nity), we have [u] = [ux] = [uxx] = . . . = 0 and [φt] =
∫

φxt dx =
∫

ut dx =
∫

(u2

2 +P )x dx = 0. Hene, after two integrations by parts, it follows from (16)that
1

2

ddt

∫

(u2 + u2
x)dx −

1

4

ddt

[

uφ
]

+
1

4

[

utφ
]

= 0,and thus the momentum ∫

(u2 + u2
x)dx is a global onserved quantity.Similarly, for the energy, we obtain

−2
ddt ∫

(u3 + u2
xu)dx +

ddt[1

4
(φt − 2φxxt − φ2

xx + 3φ2
x − 2φxφxxx)φ

]

+
1

2

[

φwt

]

= 0.By the usual assumption on boundary terms, the two expressions in square braketsanel.Finally, we remark that these two global onserved quantities are equivalent to the twoHamiltonians of the bi-Hamiltonian formulation of the Camassa-Holm equation given forinstane in [32, 34℄:
H1 =

1

2

∫

(u2 + u2
x)dx, (17)

H2 =
1

2

∫

(u3 + uu2
x)dx. (18)Considering now waves traveling from left to right, we have hosen the following split-ting of M and K

M+ =













0 0 0 0 0
−1

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
2 0 0 0 0













, and K+ =













0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.With this partiular hoie, the Euler box sheme (13) reads
1
2δ−t φn,i − 1

2δ−t νn,i −δ+
x vn,i = −wn,i − 3

2(un,i)2 − 1
2 (νn,i)2,

−1
2δ+

t un,i +δ+
x wn,i = 0,

−δ−x φn,i = −un,i,

δ−x un,i = νn,i,

1
2δ+

t un,i = −un,iνn,i + vn,i.There is a potential di�ulty in the omputation of the starting values zn,0 and in thereurrene for φn,i. But fortunately, like in [39℄ for the KdV equation, one may eliminate9



all the additional variables φ,w, v, ν and express the Euler box sheme only in the variable
u. This gives us the following multi-sympleti integrator, resembling the form (15) ofthe Camassa-Holm equation

1
2(δ+

t + Sxδ−t )un,i −1
2δ+

x (δ−x δ−t + δ+
x δ+

t )un,i

+δ+
x (3

2 (un,i)2 + 1
2(δ−x un,i)2 − δ+

x (un,iδ−x un,i)) = 0,
(19)where we have introdued the right shift operator Sxun,i = un+1,i.In the ase that the wave travels in the opposite diretion, one must use a di�erentsplitting of the skew-symmetri matrix K, for example with

K+ =













0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0













.The resulting numerial sheme and its behaviour is very similar to the �rst ase, and wetherefore omit any further disussion of it. In the ase of waves traveling in both diretionssimultaneously, it is possible to make a ompromise between the two above hoies, andset K+ = 1
2K and M+ = 1

2M . The resulting sheme is given below, expressed in termsof just the u variable, using entered divided di�erenes δt, δx only:
δtu

n,i − δ2
xδtu

n,i + δx(
3

2
(un,i)2 +

1

2
(δxun,i)2) − δ2

x(un,iδxun,i) = 0. (20)In Figure 2, we plot the deviation of the invariants (3) from their values on the initialdata along the numerial solution obtained by the Euler box sheme, using the shemes(19) and (20) respetively. We have used smooth initial data (see [1℄)
u0(x) = u(x, 0) = 0.2 + 0.1 cos(2x), for x ∈ [−π, π],and grid parameters ∆x = 0.0042 and ∆t = 0.004 over the time interval [0, 5]. Itis interesting to observe how sensitive the onservation properties are to the hoie ofsplitting of the K-matrix.The Camassa�Holm equation admits a whole family of traveling waves of the type

u(x, t) = f(x − ct),where f is a funtion of one variable and c is the veloity of the wave, see [30℄. It an beheked that smooth traveling waves have to ful�ll the relation
d2f

dx2
= f −

α

(f − c)2
, (21)for some onstant α. To obtain a periodi smooth traveling wave the onstant α annotbe taken arbitrarily, as pointed out by Kalish [29℄. By hoosing c = α = 3 and solving10



0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

energy

momentum

L1−norm

0 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

−3

Time

energy

momentum

L1−normFigure 2: Conservation properties of sheme (19) (left) and the sheme based on enteredsplitting (20) (right) for smooth initial data.

0 1 2 3 4 5 6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 3: Smooth periodi traveling wave.
11



∆x L1-error order estimate2.5272e-02 2.5168e-03 -1.2636e-02 6.2909e-04 2.00036.3179e-03 1.5724e-04 2.00033.1590e-03 3.9311e-05 1.99992.1060e-03 1.7473e-05 1.99981.5795e-03 9.8285e-06 2.00001.2636e-03 6.2903e-06 2.00001.0783e-03 4.5805e-06 1.99998.0869e-04 2.5767e-06 1.9998Table 1: Convergene rate for the smooth traveling wave (21).(21) for f(0) = 1 and f ′(0) = 0, we obtain a periodi smooth traveling wave with period
a=6.469546942524, see Figure 3.We onsider the onvergene of the sheme (20) for a smooth traveling wave with initialdata as in Figure 3. The Courant number p = c∆t

∆x is �xed to the value p = 0.9. Thespae step ∆x is varied and the time step is omputed as ∆t = p∆x/c. Table 1 displaysthe L1-error and an order estimate at time T = 12 for various spae step ∆x. For thissmooth solution, order 2 an be observed.In the following numerial experiment, we study the error for the peakon solution (see[42℄) given by
u0(x) =

{

c
cosh(a/2) cosh(x − x0) |x − x0| ≤ a/2,

c
cosh(a/2) cosh(a − (x − x0)) |x − x0| > a/2,

(22)where x0 = −5, c = 1 and the period a = 30. Figure 4 shows snapshots, for the time
t = 0, 3 and 5, of the exat solution (solid line) and the numerial solution (dashed line)omputed with a time step ∆t = 0.0002 and a spae step ∆x = 0.04 for method (20).Note that even for this relatively small spae step, a small osillatory tail at one end ofthe peak appears in the numerial solution. This phenomenon was also observed in [30℄.We next onsider the rate of onvergene for the problem (22) using again the sheme(20), the Courant number p = c∆t

∆x is �xed to the value p = 0.9. The spae step ∆x isvaried and the time step is omputed as ∆t = p∆x/c. One an see from Figure 5 thatthe order of onvergene is one for this non-smooth solution.3.2 Seond multi-sympleti formulationAs we said in the beginning of this setion, the �rst formulation does not handle peakon-antipeakon ollisions. To remedy to this problem, as explained in the introdution, wehave to onsider the evolution of the energy density and replae equation (2) by (7).However, we �rst have to prove that the two formulations are indeed equivalent. Whenthe solutions are smooth (2) implies (6); the omputation whih is very similar to the12
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one that follows an also be found in [24℄. We want to establish the impliation in theopposite diretion. We onsider a solution (u, α) of (7) with initial data (u0, α0) satisfying
α0(x) = u2

0(x) + u2
0,x(x) and we want to prove that u is solution of (2). It will be thease if we an prove that for any time t > 0, α(x, t) remains equal to u2(x, t) + u2

x(x, t)as the equations (7a) and (7b) beomes then idential to (2). After di�erentiating (7a)and using (7b), we obtain
utx + u2

x + uuxx =
1

2
u2 +

1

2
α − P.We multiply both sides by 2ux and after some manipulations we obtain

(u2
x)t + u(u2

x)x = u2ux + αux − 2Pux − 2u3
x. (23)After multiplying (7a) by 2u, we obtain

(u2)t + u(u2)x + 2Pxu = 0. (24)Let us denote the di�erene α − (u2 + u2
x) by w. Subtrating (23) and (24) to (7), weobtain after some alulations that

wt + uwx = −2uxw. (25)We have w(x, 0) = α0(x) − u2
0(x) + u2

0,x(x) = 0. We laim that w(x, t) = 0 for all t > 0and therefore the systems (2) and (7) are equivalent. Realling the assumption that u issmooth, we an de�ne the harateristis y(ξ, t) as yt(ξ, t) = u(y(ξ, t), t) with y(ξ, 0) = ξand the mapping ξ → y(ξ, t) is a bijetion for all time t. We onsider the quantity
W (ξ, t) = w(y(ξ, t), t). Sine Wt = wt(y, t) + u(y, t)wx(y, t), it follows from (25) that

Wt(ξ, t) = −2ux(y, t)W (ξ, t).Sine we assume that u is smooth, we have C = sup(x,t)∈R×[0,T ] |ux(x, t)| < ∞ and
|Wt| ≤ C |W | .As W (ξ, 0) = w(ξ, 0) = 0, Gronwall's Lemma gives us that W (ξ, t) = 0 for all t and ξand therefore w(x, t) = 0 for all t and x, as laimed. Of ourse, the ondition that u issmooth is a strong limitation sine it does not over the ollision ase, whih was the asewhih motivated the introdution of the system (7). However, one must keep in mindthat the uniqueness of the onservative solutions in [2, 24℄ is only obtained in the newsets of variables where they are de�ned and that there is no uniqueness result - to theknowledge of the authors - on the equation expressed in the original variable u, even ifit would be reasonable to onjeture that the solution of

ut + uux + Px = 0,

P − Pxx = u2 +
1

2
u2

x,

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x14



is unique and given by the onservative solutions. But this is an open problem and fromthis perspetive, the fat that the numerial solutions of (7) we obtain below oinidewith the onservative solutions of the problem reinfore this onjeture.Let us introdue a multi-sympleti formulation based on (7). Let z = [u, β,w, α, φ, γ, P, r],
M =
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and
S = −γu +

u2α

2
−

u4

4
+ Pu2 − αw − P 2 + r2.The multi-sympleti formulation (8) is equivalent to the following system

−
1

2
βt = −γ + uα − u3 + 2Pu,

1

2
ut + wx + Px = 0,

−βx = −α, −
1

2
φt = −w +

u2

2
,

1

2
αt + γx = 0, −φx = −u,

−βx − 2rx = −2P + u2, 2Px = 2r.

(26)We now �nd the energy and momentum orresponding to this multi-sympleti for-mulation. As for the �rst formulation, the density funtions are given by
E(z) = − γφx +

u2α

2
−

u4

4
+ Pu2 − αw − P 2 + P 2

x +
1

2
βx(w + P )

−
1

2
wxβ +

1

2
φxγ −

1

2
γxφ −

1

2
Px(2Px + β) + PxxP,

F (z) = −
1

2
βt(w + P ) +

1

2
wtβ −

1

2
φtγ +

1

2
γtφ +

1

2
Pt(2Px + β) − PxtP,

G(z) = − γφx +
u2α

2
−

u4

4
+ Pu2 − αw − P 2 + P 2

x −
1

4

(

utβ − βtu + αtφ − φtα
)

,

I(z) =
1

4

(

uxβ − βxu + αxφ − φxα
)

.The �rst onservation law ∂tE(z) + ∂xF (z) = 0 yieldsddt ∫

(

−γφx +
1

2
φxγ −

1

2
γxφ − βxw +

1

2
βxw −

1

2
wxβ −

1

2
Pxβ

+
u2α

2
−

u4

4
+ Pu2 − P 2 + P 2

x +
1

2
αP − P 2

x + PxxP
) dx

+
1

2

[

wtβ + γtφ + Ptβ
]

= 0.15



Integrating the terms −1
2γxφ,−1

2wxβ and −1
2Pxβ by parts, and using the periodiity (orvanishing at in�nity) of the funtions u, P,w, φt, βt, we obtain thatddt ∫

(

(

u2 +
u2

x

2

)

P +
u2

4

(

u2 + 2u2
x

)

) dx = 0.The seond loal onservation law ∂tI(z) + ∂xG(z) = 0 leads to
1

4

ddt ∫

(

uxβ − αu + αxφ − αu
) dx +

[

G(z)
]

= 0.And two integrations by parts give the global onservation of ∫

(u3 + u2
xu)dx. We thusobtain the following two global onserved quantities

H2 =

∫

(u3 + u2
xu)dx, (27)

H3 =

∫

(

(

u2 +
u2

x

2

)

P +
u2

4

(

u2 + 2u2
x

)

) dx, (28)whih orrespond to the third and fourth Hamiltonian in the series of onstant of motionof the Camassa-Holm equation.Considering again (26), we see that after eliminating the intermediate variables β, w,
φ, γ and r, the system (7) is reovered. The omputation is idential to the disretease whih is treated below. We use symmetri splittings of M and K and take M+ =
M− = 1

2M and K+ = K− = 1
2K. The Euler box sheme is then obtained from (26) byreplaing the exat derivatives, ∂t and ∂x, by their disrete symmetri ounterparts, δtand δx. We have

−
1

2
δtβ

n,i = −γn,i + un,iαn,i − (un,i)3 + 2Pn,iun,i,
1

2
δtu

n,i + δxwn,i + δxPn,i = 0,(29a)
− δxβn,i = −αn,i, −

1

2
δtφ

n,i = −wn,i +
(un,i)2

2
,(29b)

− δxφn,i = −un,i,
1

2
δtα

n,i + δxγn,i = 0, (29)
− δxβn,i − 2δxrn,i = −2Pn,i + (un,i)2, 2δxPn,i = 2rn,i. (29d)As for the �rst multi-sympleti formulation, we eliminate the intermediate variables.Applying δx to both sides of the �rst equation in (29a), we obtain

−
1

2
δxδtβ

n,i = −δxγn,i + δx(un,iαn,i − (un,i)3 + 2Pn,iun,i). (30)The operators δt and δx ommute. Plugging δxβn,i = αn,i and δxγn,i = −1
2δtα

n,i into(30) we obtain
δtα

n,i + δx(un,iαn,i) = δx((un,i)3 − 2Pn,iun,i), (31)16



whih orresponds to the disretised version of (7). Combining the �rst equation in(29b) and the two in (29d), we obtain
Pn,i − δxδxPn,i =

1

2
(un,i)2 +

1

2
αn,i, (32)whih orresponds to the disretised version of (7b). After applying δx to the seondequation in (29b), we obtain

δxwn,i =
1

2
δtδxφn,i + δx

((un,i)2

2

)

.Plugging this into the seond equation in (29a), sine δxφn,i = un,i from the �rst equationin (29), we �nally get
δtu

n,i + δx

( (un,i)2

2

)

+ δxPn,i = 0, (33)whih is the disretised version of (7a). Gathering (33), (32) and (31), we obtain thefollowing numerial sheme
δtu

n,i + δx(
(un,i)2

2
) + δxPn,i = 0, (34a)

Pn,i − δxδxPn,i =
1

2
(un,i)2 +

1

2
αn,i, (34b)

δtα
n,i + δx(un,iαn,i) = δx((un,i)3 − 2Pn,iun,i). (34)The numerial sheme (34) is the multi-sympleti Euler box sheme derived from themulti-sympleti formulation (8) and therefore it enjoys the onservation law (14). Ithas also to be noted that the sheme an be derived diretly from (7) by taking thesymmetri disretisation of the derivative - both with respet to time and spae - whihappear in the system.We onsider the rate of onvergene for the smooth traveling wave (21) using thesheme (34), the Courant number p = c∆t

∆x is �xed to the value p = 0.9. The spae step
∆x is varied and the time step is omputed as ∆t = p∆x/c. Table 2 displays the L1-errorand an order estimate at time T = 12. This table an be ompared to Table 1.We next onsider the onvergene of the sheme (34) to the single-peakon problemwith initial data (22) using x0 = 0, a = 6, and c = 1. One again, the Courant number
p = c∆t/∆x is �xed to the value 0.9 and we vary ∆x. A plot of the error at time T = 2and T = 5 an be found in Figure 6.We want to study the behaviour of the numerial sheme when dealing with a ollision.First we derive a referene solution for the antisymmetri peakon ollision. We adaptthe formulae derived in [25℄ to the periodi ase. Let a denote the period. We onsiderthe antisymmetri ase and the positions of the peaks are given by

y2i(t) = −y(t) + ia and y2i+1(t) = y(t) + ia (35)17



∆x L1-error order estimate2.5272e-02 2.6017e-03 -1.2636e-02 6.5045e-04 1.99996.3179e-03 1.6256e-04 2.00043.1590e-03 4.0644e-05 1.99992.1060e-03 1.8066e-05 1.99981.5795e-03 1.0162e-05 2.00011.2636e-03 6.5036e-06 1.99991.0783e-03 4.7358e-06 2.00008.0869e-04 2.6640e-06 1.9998Table 2: Convergene rate for the smooth traveling wave (21) for the sheme (34).
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Figure 6: L1-error of the entered sheme at T = 2 and T = 5 applied to the single-peakon problem with initial data (22) using x0 = 0, a = 6, and c = 1. Thedashed lines have slopes 1 and 2.
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while their height are given by
u2i(t) = −u(t) and u2i+1(t) = u(t) (36)for i = 0,±1,±2, . . .. We denote the energy ontained between the i-th and i+1-th peakby δHi(t), that is, when the peaks do not oinide,

δHi(t) =

∫ yi+1

yi

(u2(x, t) + u2
x(x, t))dx. (37)In (37), u(x, t) denotes the solution of (1) and not the height of the peak given in (36).Between two peaks, the funtion u(x, t) is given as a linear ombination of e−x and exand therefore the integral in (37) an be omputed. We obtain

δHi(t) =
(u2

i + u2
i+1) cosh(yi+1 − yi) − 2uiui+1

sinh(yi+1 − yi)
.Note that when there is a ollision, yi+1 = yi, but this is a property of the quantity

δHi that it remains well-de�ned for all time. Note also that, at ollision time, we have
δHi > 0 and not δHi = 0 as (37) ould indiate. In [25℄, the variable δHi is onsideredas an independent variable and the equations that governs (yi, Ui, δHi) are given byddtyi = ui, (38a)ddtui = −Qi, (38b)ddtδHi = u3

i+1 − u3
i − 2Pi+1ui+1 + 2Piui, (38)where

Pi =
∞
∑

j=−∞

Pi,j, and Qi = −
∞
∑

j=−∞

κijPi,j, (39)with
Pi,j =

exp(−κijyi) exp(κij
yj+yj+1

2 )

8 cosh(
yj+1−yj

2 )

(

2δHj cosh2(
yj+1 − yj

2
)

+ 2κij(u
2
j+1 − u2

j ) sinh2(
yj+1 − yj

2
) + (uj+1 + uj)

2 tanh(
yj+1 − yj

2
)
) (40)and

κij =

{

−1 if j ≥ i

1 otherwise.Due to the periodiity of the solution, δH2i does not depend on i and we set h = δH2i.We denote by E the energy over one period, that is, for times where no ollision ours,
E =

∫ a

0

(

u2(x, t) + u2
x(x, t)

) dx. (41)19



The quantity E is onserved and the energy ontained between the 2i+1-th and 2i+2-thpeaks is given by δH2i+1 = E −h. Plugging (35) and (36) we obtain from (40) and (39),after some alulation, that
Q2i = −Q2i+1 = −E

cosh(a
2 − y) sinh(y)

4 sinh(a
2 )

+
h

4
(42)and

Pi = E
cosh(a

2 − y) cosh(y)

4 sinh(a
2 )

.Then, (38) yields
yt = u, (43a)
ut = −E

cosh(a
2 − y) sinh(y)

4 sinh(a
2 )

+
h

4
, (43b)

ht = 2
(

u3 − Eu
cosh(a

2 − y) cosh(y)

2 sinh(a
2 )

)

. (43)For the times when there is no ollision, that is, when y is di�erent from 0 or a
2 , it ispossible to ompute expliitely the energy h and E from (41) and (37). We obtain

E = 2u2 sinh(a
2 )

sinh(y) sinh(a
2 − y)

, (44)and
h = 2u2 cosh(y)

sinh(y)
. (45)These expressions are not well-de�ned when y = 0 or y = a

2 but, after plugging (45) into(44), we get
h = E

sinh(a
2 − y) cosh(y)

sinh(a
2 )

, (46)whih is well-de�ned even when ollisions our. Thus, we obtain an expression for h asa funtion only of y. In this simple ase of an antisymmetri peakon-antipeakon ollision,we did not integrate diretly (38), we use the fat that for almost every time, the densityenergy is given u2 + u2
x dx and therefore (37) and (41) hold. Of ourse, it is possible toderive (44) and (46) from the governing equation (43). To do that, one an introduethe quantities

w1 = E sinh(
a

2
− y) cosh(y) − h sinh(

a

2
)and

w2 = E sinh(y) sinh(
a

2
− y) − 2u2 sinh(

a

2
).From (43), after some omputations, we obtain that

w′
1 = uw2,

w′
2 = uw1.20
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t=12.Hene, if (44) and (46) hold at time 0, that is w1(0) = w2(0) = 0, then, by Gronwall'sLemma, w1(t) = w2(t) = 0 for all t, that is, (44) and (46) hold for all time.Finally, after plugging (46) into (42), equations (38a) and (38b) yield

ytt =
E sinh(a

2 − 2y)

4 sinh(a
2 )

. (47)We were not able to solve this equation analytially and therefore we will onsider anumerial approximation of the solution omputed with very high auray. From theposition of the peaks (given by y) and their height (given by u), we reonstrut thesolution u(x, t) on the entire spae domain onsider the solution as a linear ombinationof ex and e−x between the peaks. The solution obtained this way will be onsideredas the referene solution. In the following numerial test, the initial values are set to
y(0) = a/4 and yt(0) = u(0) = −1. From (44), we have E = 4 tanh−1(a

4 ).We apply the multi-sympleti sheme (34) to the antisymmetri peakon ollision withinitial data from Figure 1. The problem is integrated on the time interval [0, 12] and thespatial domain is [0, 20]. In Figure 7, we an see that the sheme onverges and that themain part of the error is onentrated around the point of ollision, x = 10.Figure 8 shows the simulation in 4 snapshots taken just before and after the ollisiontakes plae and we observe strong osillations.21
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∑

k δa
2
+ka(x)or E

∑

k δka(x), see Figure 9. Hene, the variable α, whih stands for the energy density,has very low regularity as it beomes a Dira funtion at ollision time.Finally, we plot the deviation in momentum (27) and energy (28), along the numerialsolution of method (34), from the respetive values for the initial data. Note that in theevaluation of these integrals, we ompute u2
x by means of α rather than using a �nitedi�erene approximation. Good onservation properties are observed for this sheme,even through the ollision point.4 ConlusionWith this paper, we have tried to see if the multi-sympleti philosophy ould be useful forthe Camassa-Holm equation. We have presented two new multi-sympleti formulationsfor this nonlinear partial di�erential equation. Basi linearly impliit multi-sympletishemes were also derived, one allowing to desribe peakon-antipeakon ollisions.So far, numerial tests have been onduted only with the Euler box sheme. It remainsto try out and analyze impliit shemes like the Preissman box sheme or some multi-sympleti Runge-Kutta olloation methods. It would also be interesting to understandwhether this formalism an be ombined with the tehniques found in the literature forapproximating non-smooth solution, i.e. if multi-sympleti variants of suh shemes anbe found.Sine the multi-sympleti formulation of a partial di�erential equation is not unique,one an also try to �nd other suh formulations of the Camassa-Holm equation andthen derive other numerial shemes. Questions that immediately arise, is whether other23
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