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2 David Cohen, Magdalena Siggnot small 
ompared to ε, that is, all the eigenvalues of 1

ε2
A are away fromzero. We will also assume that the norm of the matrix B ∈ R

d×m is small
ompared to the norm of the fast for
e F (x) = 1

ε2
Ax. At this point, we wouldlike to add, that we 
an also 
onsider the 
ase, where the matrix A has zero aseigenvalues. For ease of presentation, this will be shown only in the last se
tionof the paper. Here and in the following we will work with the Eu
lidean normor with norms indu
ed by the Eu
lidean norm.We are interested in numeri
al methods that 
an attain good a

ura
y withstep sizes whose produ
t with the large frequen
ies in (1) need not to be small.So that the error bounds in the position of the methods should be independentof the produ
t of the step size with the frequen
ies of our problem.The proposed s
hemes 
an be viewed as a sto
hasti
 generalisation of thetrigonometri
 methods (or exponential integrators) for highly os
illatory de-terministi
 problems (see [2℄, [5, Chapter XIII℄ and referen
es therein) andappeared for the �rst time in [1℄ for the numeri
al dis
retisation of s
alarsto
hasti
 os
illators with a high frequen
y. Sin
e a key building-blo
k in thedevelopment of sto
hasti
 trigonometri
 methods is the variation-of-
onstantsformula, we begin by rewriting (1) as a system of �rst order SDE (setting

X1
t := Xt, X2

t := Ẋt and Ω :=
1

ε
A1/2):

(

dX1
t

dX2
t

)

=

(

0 1
−Ω2 0

)(

X1
t

X2
t

)

dt+

(

0
g(X1

t )

)

dt+

(

0
B

)

dWt. (2)The variation-of-
onstants formula for the above equation will then suggest the
onstru
tion of the sto
hasti
 trigonometri
 s
hemes (see Se
tion 2 for detailson the derivation of the numeri
al methods). After that, we will present themain theorems on the 
onvergen
e of the s
hemes in Se
tion 3 and Se
tion 4. Itturns out that the proposed s
hemes o�er additional features similar to the oneof the exa
t solution of (2). This will be studied in more details in Se
tion 5.Numeri
al experiments demonstrating the 
onvergen
e and the good long-timebehaviour of the sto
hasti
 trigonometri
 s
hemes are presented in the �nalse
tion.Let us mention that the use of the variation-of-
onstants formula to de-rive e�
ient numeri
al s
hemes for large sti� systems of �rst order di�erentialequations is not new. In the deterministi
 setting, one may 
onsult, for ex-ample, [6℄, [13℄ and more re
ently the review [7℄ on exponential integrators.Sto
hasti
 exponential integrators were also 
onsidered for the numeri
al ap-proximation of paraboli
 sto
hasti
 partial di�erential equations in [14℄, [9℄,[10℄ and referen
es therein.We 
on
lude the introdu
tion by mentioning that there are only few nu-meri
al works in the literature to solve sti� systems of the form (1). We areonly aware of the work [17℄. The results given in this arti
le are, in the spirit,
losely related to ours; the te
hniques and the equation 
onsidered here arehowever di�erent. Let us �nally mention, that for the linear s
alar 
ase andwith a frequen
y 1/ε = 1 (non-sti� problems), we are only aware of the works



Trigonometri
 methods for sti� se
ond-order SDEs 3[8℄, [16℄ and [18℄. For a numeri
al 
omparison between these s
hemes and thesto
hasti
 trigonometri
 methods, we refer to [1℄.2 Sto
hasti
 trigonometri
 methodsIn this se
tion we re
all the de�nition of the (sto
hasti
) trigonometri
 s
hemes.For details on the derivations we refer to [5, Chapter XIII℄ for the deterministi

ase and to [1℄ for the sto
hasti
 s
alar 
ase.As stated in the introdu
tion, the main building-blo
k for the 
onstru
-tion of the sto
hasti
 trigonometri
 integrators is the variation-of-
onstantsformula. The exa
t solution of (2) with initial values X1
0 = x0 and X2

0 = y0satis�es
(

X1
t

X2
t

)

=

(

cos(tΩ) Ω−1 sin(tΩ)
−Ω sin(tΩ) cos(tΩ)

)(

x0
y0

)

+

∫ t

0

(

Ω−1 sin
(

(t− s)Ω
)

cos
(

(t− s)Ω
)

)

g(X1
s )ds+

∫ t

0

(

Ω−1 sin
(

(t− s)Ω
)

cos
(

(t− s)Ω
)

)

BdWs.We will sometimes use the notation t sin
(tΩ) for Ω−1 sin(tΩ), whi
h is de�nedfor arbitrary matri
es Ω.We now dis
retise the above deterministi
 and Ito integrals and therebyobtain a family of expli
it trigonometri
 numeri
al integrators:
(

X1
n+1

X2
n+1

)

=

(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

)(

X1
n

X2
n

)

+





h2

2
Ψg(ΦX1

n)
h

2

(

Ψ0g(ΦX
1
n) + Ψ1g(ΦX

1
n+1)

)



+

(

Ω−1 sin(hΩ)B∆Wn

cos(hΩ)B∆Wn

)

,(3)where h denotes the step size of the s
heme and ∆Wn =W (tn+1)−W (tn) theWiener in
rements. Here Ψ = ψ(hΩ) and Φ = φ(hΩ), where the �lter fun
tions
ψ, φ are even, real-valued fun
tions with ψ(0) = φ(0) = 1. Moreover, we have
Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ) with even fun
tions ψ0, ψ1 satisfying ψ0(0) =
ψ1(0) = 1. The purpose of these �lter fun
tions is to attenuate numeri
alresonan
es, see [5, Chapter XIII℄ for the deterministi
 
ase. The 
hoi
e ofthe �lter fun
tions may also have a substantial in�uen
e on the long-timeproperties of the method. We will not deal with these issues in the presentpaper. We note that the family of integrators (3) redu
es (in the symmetri

ase) to the Störmer-Verlet s
heme for Ω = B = 0 and give the exa
t solutionfor g = 0 and B = 0.Example 1 Repla
ing the deterministi
 integral in the variation-of-
onstantsformula for the exa
t solution by its trapezoidal rule approximation yields the



4 David Cohen, Magdalena Siggfollowing expli
it s
heme (see [3℄ for the deterministi
 
ase):
(

X1
n+1

X2
n+1

)

=

(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

)(

X1
n

X2
n

)

+
h

2

(

Ω−1 sin(hΩ)gn
gn+1 + cos(hΩ)gn

)

+

(

Ω−1 sin(hΩ)B∆Wn

cos(hΩ)B∆Wn

)

,where gn = g(X1
n). This is exa
tly method (3) for the 
hoi
es ψ(ζ) = sin
(ζ), ψ0(ζ) =

cos(ζ), ψ1(ζ) = 1 and φ(ζ) = 1.Example 2 Another possibility is to use only the left-hand endpoint to dis-
retise the deterministi
 integral. This gives us the following �lter fun
tions:
ψ(ζ) = 2 sin
(ζ), ψ0(ζ) = 2 cos(ζ), ψ1(ζ) = 0 and φ(ζ) = 1. Note that we donot have ψ1(0) = 1. One re
ognises the exponential Euler s
heme for paraboli
problems from [14℄. Another dis
retisation of the deterministi
 integral (with�lter fun
tions ψ(ζ) = 2(1 − cos(ζ))/ζ2, ψ0(ζ) = 2 sin
(ζ), ψ1(ζ) = 0 and
φ(ζ) = 1) gives us the exponentially �tted Euler s
heme from [9℄. We remarkthat the sto
hasti
 part in the s
heme presented in [9℄ is not treated in the sameway as in (3). Moreover, a ni
e feature of the numeri
al integrator proposedin [9℄ is that it takes advantage of a smoothing e�e
t of a linear fun
tional ofthe noise-term.Remark 1 Other dis
retisations of the sto
hasti
 integral present in the variation-of-
onstants formula are possible and will lead to various numeri
al s
hemes.We 
an for example use the following approximation:

∫ h

0

(

Ω−1 sin
(

(h− s)Ω
)

cos
(

(h− s)Ω
)

)

BdWs ≈

(

Ω−1 sin(φ̃(hΩ))B∆W0

cos(φ̃(hΩ))B∆W0

)

.Taking the trivial 
hoi
e φ̃ ≡ 0, one obtains the numeri
al s
heme proposedby To
ino in [18℄ for s
alar linear se
ond-order SDE Ẍt +Xt = αẆt. Howevera more natural and appropriate dis
retisation of the integral is by taking theRiemann left-end points, that is with the 
hoi
e φ̃(x) = x, and thus obtain theapproximation present in method (3). We will only 
onsider this dis
retisationin the present paper.Sin
e we are interested in using large step sizes, we will 
onsider the numer-i
al solution of (1) by method (3) with a step size h ≤ h0 (with a su�
ientlysmall h0 independent of ε) for whi
h
h

ε
≥ c0 > 0.3 Mean-square 
onvergen
e analysisIn this se
tion, we will derive mean-square error bounds over �nite time inter-vals for the family of sto
hasti
 trigonometri
 methods derived in Se
tion 2.To do so, we �rst look at the mean-square error for linear problems, that is



Trigonometri
 methods for sti� se
ond-order SDEs 5equation (1) with g ≡ 0. The proofs follow the lines of the s
alar 
ase givenin [1℄. Combining these results with the results from [4℄, this then permits usto derive order one mean-square error bounds, for the position 
omponent,independent of the produ
t of the step size with the large frequen
ies presentin our problem.Let us �rst re
all the de�nition of mean-square 
onvergen
e, see for example[11℄.De�nition 1 A numeri
al method {Yn} with step size h 
onverges in themean-square sense with order β > 0 to the solution Ytn of an SDE at time
tn = nh if β is the largest value su
h that there exists a positive 
onstant C,whi
h does not depend on h, and an h0 > 0 su
h that

(

E
[

‖Ytn − Yn‖
2
]

)1/2

≤ Chβfor all h ∈ (0, h0).We now show that the lo
al mean-square error in the position of oursto
hasti
 trigonometri
 integrator is of order O(h3/2) for linear problems.Lemma 1 Consider the numeri
al solution of (1) with g ≡ 0 by method (3)with a step size h ≤ h0 (with a su�
iently small h0 independent of ε) for whi
h
h/ε ≥ c0 > 0 holds. The mean-square errors after one step of the numeri
als
heme satisfy

(

E
[

‖X1
1 −X1

h‖
2
]

)1/2

≤ Cεh1/2 ≤ Ch3/2

(

E
[

‖X2
1 −X2

h‖
2
]

)1/2

≤ Ch1/2,where the 
onstant C depends on the norm of the matrix B, but is independentof ε and h. That is, the lo
al errors are of order (at least) 1/2 uniformly inthe frequen
ies.Proof Let us start with the lo
al mean-square error in the position. By de�-nition of the method and by the variation-of-
onstants formula for the exa
tsolution, we obtain
E
[

‖X1
1 −X1

h‖
2
]

= E
[

‖

∫ h

0

Ω−1(sin(hΩ)− sin((h− s)Ω))BdWs‖
2
]

.Using the Ito isometry and the triangle inequality, we get
E
[

‖X1
1 −X1

h‖
2
]

≤ ‖B‖2‖Ω−1‖2
∫ h

0

‖sin(hΩ)− sin((h− s)Ω)‖2ds

≤ C‖Ω−1‖2h.



6 David Cohen, Magdalena SiggUsing the de�nition of the matrix Ω, we end up with the stated bounds forthe lo
al error in the position 
omponent. The estimate for the error in thevelo
ity 
omponent is obtained in a similar way: we have
E
[

‖X2
1 −X2

h‖
2
]

= E
[

‖

∫ h

0

(cos(hΩ)− cos((h− s)Ω))BdWs‖
2
]

≤ ‖B‖2
∫ h

0

‖cos(hΩ)− cos((h− s)Ω)‖2ds

≤ Ch.

⊓⊔We now turn our attention to the global mean-square error of the sto
hasti
trigonometri
 integrator (3) for linear systems. We obtain the following result.Proposition 1 Consider the numeri
al solution of (1) with g ≡ 0 by method(3) with a step size h ≤ h0 (with a su�
iently small h0 independent of ε) forwhi
h h/ε ≥ c0 > 0 holds. The mean-square errors of the numeri
al s
hemesatisfy
(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ Cε ≤ Ch

(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ CT 1/2 for nh ≤ T,where the 
onstant C is independent of ε, h and n with nh ≤ T . That is,the global error in the position 
omponent is of order 1 uniformly in the fre-quen
ies. Unfortunately, we obtain a non-uniform global error in the velo
ity
omponent.Remark 2 We would like to point out, that it is not surprising to obtain anon-uniform global error in the velo
ity in the sto
hasti
 
ase. This was alsoobserved in [17℄.Proof We start by substituting the exa
t solution into the numeri
al s
heme(3) and obtain
(

X1
tn+1

X2
tn+1

)

= R ·

(

X1
tn

X2
tn

)

+

(

Ω−1 sin(hΩ)B∆Wn

cos(hΩ)B∆Wn

)

+

(

d1n
d2n

)

, (4)where tn = nh, the matrix R =

(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

) and the defe
ts
d1n =

∫ tn+1

tn

Ω−1 sin((tn+1 − s)Ω)BdWs −Ω−1 sin(hΩ)B∆Wn ∈ R
d

d2n =

∫ tn+1

tn

cos((tn+1 − s)Ω)BdWs − cos(hΩ)B∆Wn ∈ R
d.



Trigonometri
 methods for sti� se
ond-order SDEs 7By Lemma 1 and properties of the Ito integral, we have the following estimatesfor the defe
ts
E
[

d1n
]

= E
[

d2n
]

= 0, E
[

‖d1n‖
2
]

= O(ε2h), E
[

‖d2n‖
2
]

= O(h).We now de�ne the errors ejn = Xj
tn −Xj

n ∈ R
d, for j = 1, 2. A subtra
tion of(4) from the de�nition of the s
heme gives us

En+1 = R · En + dn,where En =

(

e1n
e2n

) and dn =

(

d1n
d2n

). A re
ursion leads to the following formulafor the errors:
En+1 = Rn+1E0 +

n
∑

j=0

Rn−jdj =

n
∑

j=0

Rn−jdj ,with the matrix Rn−j =

(

cos((n− j)hΩ) Ω−1 sin((n− j)hΩ)
−Ω sin((n− j)hΩ) cos((n− j)hΩ)

).All together and the independen
e of the Wiener in
rements give:
E
[

‖e1n+1‖
2
]

= E
[

‖
n
∑

j=0

(cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j )‖
2
]

=

n
∑

j=0

E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

+ 2
∑

j<ℓ

E
[(

cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j
)T

(

cos((n− ℓ)hΩ)d1ℓ +Ω−1 sin((n− ℓ)hΩ)d2ℓ
)]

=

n
∑

j=0

E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

.On
e again using the Ito isometry, we obtain
E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

= E
[

∫ tj+1

tj

|| cos((n− j)hΩ)Ω−1(sin((tj+1 − s)Ω)− sin(hΩ))B

+ Ω−1 sin((n− j)hΩ)(cos((tj+1 − s)Ω)− cos(hΩ))B||2ds
]

.Similar to the proof of Lemma 1, we 
an bound the above term with:
E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

= O(hε2).Finally summing up, using the fa
t that h/ε ≥ c0 and that nh ≤ T give thedesired bound for the position 
omponent:
E
[

‖e1n‖
2
]

= E
[

‖X1
n −X1

nh‖
2
]

≤ CTε2 ≤ CTh2.The bound for the velo
ity 
omponent is obtained in a similar way. ⊓⊔



8 David Cohen, Magdalena SiggIt is now time to 
onsider the nonlinear 
ase (2). Our 
onvergen
e proofheavily relies on the main result given in [4℄ for the 
orresponding deterministi

ase. For ease of reading we �rst re
all the main theorem of [4℄:Theorem 1 (Theorem 1 in [4℄) Let us 
onsider the deterministi
 problem
ẍ + Ax = g(x), with A a positive semi-de�nite symmetri
 matrix, and thenumeri
al solution given by (3) with B = 0. Under the following assumptions:1. Suppose that g, g′ and g′′ are bounded.2. Assume that the exa
t solution satis�es 1

2
‖ẋ(t)‖2 +

1

2
‖Ωx(t)‖2 ≤

1

2
K2 for

0 ≤ t ≤ T .3. The �lter fun
tions have to satisfy the following assumptions:
max
ξ≥0

|χ(ξ)| ≤M1, for χ = φ, ψ, ψ0, ψ1 (5)for some 
onstantM1. There exist further 
onstants M2, M3, M4, M5, M6and M7 su
h that
max
ξ≥0

∣

∣

∣

∣

φ(ξ)− 1

ξ

∣

∣

∣

∣

≤M2, (6)
max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

1

sin

(

ξ

2

)

( sin
2 ( ξ

2

)

− ψ(ξ)
)

∣

∣

∣

∣

∣

∣

∣

≤M3, (7)
max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

1

ξ sin

(

ξ

2

) ( sin
(ξ)− χ(ξ))

∣

∣

∣

∣

∣

∣

∣

≤M4, χ = φ, ψ0, ψ1, (8)
max
ξ≥0

|ξψ(ξ)| ≤M5, max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

ξ

sin

(

ξ

2

)

( sin
2 ( ξ

2

)

− ψ(ξ)
)

∣

∣

∣

∣

∣

∣

∣

≤M6 and (9)
max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

1

sin

(

ξ

2

) ( sin
(ξ)− ψi(ξ))

∣

∣

∣

∣

∣

∣

∣

≤M7, i = 0, 1. (10)Moreover, let us de�ne M := max
i=1,...,7

Mi.Then the error in the position satis�es
‖xtn − xn‖ ≤ Ch2, 0 ≤ tn = nh ≤ T. (11)The 
onstant C only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, butnot on ε. If, in addition, (9) and (10) are satis�ed, then
‖ẋtn − ẋn‖ ≤ C̃h, 0 ≤ tn = nh ≤ T. (12)The 
onstant C̃ only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, butnot on ε.



Trigonometri
 methods for sti� se
ond-order SDEs 9As already noted in [4℄, these error bounds are independent of the dimension ofthe problem and the 
onstant C (resp. C̃) does not depend on the large normof the matrix present in our problem. These properties are very desirable, forexample if the system (1) results from a semi-dis
retisation of a nonlinear waveequation. In this 
ase, the bounds are independent of the mesh size used forthe spatial dis
retisation.Example 3 The following 
hoi
es for the �lter fun
tions ful�ll all the above
onditions, [4℄:
φ(ξ) = sin
(ξ), ψ(ξ) = sin
3(ξ), ψ0(ξ) = cos(ξ) sin
2(ξ), and ψ1(ξ) = sin
2(ξ).We 
an now give the main result of this se
tion:Theorem 2 Under the assumptions of Proposition 1 and Theorem 1, theglobal mean-square errors satisfy

(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ C(ε2 + h4)1/2 ≤ Ch

(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ CT 1/2 for nh ≤ T,where the 
onstant C only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖,but is independent of ε, h and n with nh ≤ T .Proof Let us introdu
e the following notations for the position 
omponent:
q1 := Ω−1

n−1
∑

j=0

(

cos(jhΩ) sin(hΩ) + sin(jhΩ) cos(hΩ)
)

B△Wn−j−1,

q̂1 := Ω−1
n−1
∑

j=0

(

cos(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)BdWs

+ sin(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)BdWs

)

,

r1 :=

n−1
∑

j=0

(

cos(jhΩ)
h

2
hΨgn−j−1 +Ω−1 sin(jhΩ)

h

2
Ψ1gn−j

+ Ω−1 sin(jhΩ)
h

2
Ψ0gn−j−1

)

r̂1 := Ω−1
n−1
∑

j=0

(

cos(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)g(X1
s )ds

+ sin(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s )ds

)

,



10 David Cohen, Magdalena Siggwhere gn = g(ΦX1
n). For the velo
ity 
omponent, we set

q2 :=

n−1
∑

j=0

(

sin(jhΩ) sin(hΩ)− cos(jhΩ) cos(hΩ)
)

B△Wn−j−1,

q̂2 := −

n−1
∑

j=0

(

sin(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)BdWs

+ cos(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)BdWs

)

,

r2 := −

n−1
∑

j=0

(

sin(jhΩ)
h

2
hΩΨgn−j−1 − cos(jhΩ)

h

2
Ψ1gn−j

− cos(jhΩ)
h

2
Ψ0gn−j−1

)

r̂2 := −

n−1
∑

j=0

(

sin(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)g(X1
s )ds

− cos(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s )ds

)

.The nth iterate of the numeri
al s
heme (3) thus reads
X1

n = cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 + q1 + r1

X2
n = −Ω sin(nhΩ)X1

0 + cos(nhΩ)X2
0 + q2 + r2,and for the exa
t solution we have

X1
nh = cos(nhΩ)X1

0 +Ω−1 sin(nhΩ)X2
0 + q̂1 + r̂1

X2
nh = −Ω sin(nhΩ)X1

0 + cos(nhΩ)X2
0 + q̂2 + r̂2.We thus get, for the global mean-square error in the position:

E
[

‖X1
n −X1

nh‖
2
]

= E
[

‖q1 + r1 − q̂1 − r̂1‖
2
]

≤ 2E
[

‖q1 − q̂1‖
2
]

+ 2E
[

‖r1 − r̂1‖
2
]

.The �rst term on the right-hand side is the global mean-square error in thelinear 
ase (see Proposition 1) and the se
ond one is the global error in thedeterministi
 
ase (see Theorem 1). We �nally obtain
E
[

‖X1
n −X1

nh‖
2
]

≤ 2E
[

‖q1 − q̂1‖
2
]

+ 2E
[

‖r1 − r̂1‖
2
]

≤ C(ε2 + h4).The bound for the velo
ity 
omponent is obtained in a similar way. ⊓⊔We 
on
lude this se
tion by mentioning the fa
t, that for �xed ε, the numeri
als
hemes still 
onverge as the step size goes to zero.



Trigonometri
 methods for sti� se
ond-order SDEs 11Remark 3 In this 
ase Taylor expansions of the expressions in the proof ofLemma 1 
an be used to determine the mean-square errors after one step. Wehave
E
[

‖X1
1 −X1

h‖
2
]

≤ ‖B‖2‖Ω−1‖2
∫ h

0

‖sin(hΩ)− sin((h− s)Ω)‖2ds

= ‖B‖2‖Ω−1‖2
∫ h

0

‖sin(hΩ)−
∑

n≥0

sin(n)(hΩ)
(−sΩ)n

n!
‖2ds

≤ Ch3and similarly
E
[

‖X2
1 −X2

h‖
2
]

≤ Ch5.Hen
e, for a �xed ε, we obtain, instead of Theorem 2, the following errorbounds
(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ Ch

(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ Ch for nh ≤ T.4 Convergen
e in the se
ond momentIn this se
tion, we will derive error bounds for the sto
hasti
 trigonometri
methods in the se
ond moment. Let us qui
kly restate the de�nition.De�nition 2 A numeri
al method {Yn} with step size h 
onverges in these
ond moment with order γ > 0 to the solution Ytn of an SDE at time
tn = nh if γ is the largest value su
h that there exists a positive 
onstant C,whi
h does not depend on h, and an h0 > 0 su
h that

|E
[

‖Ytn‖
2
]

− E
[

‖Yn‖
2
]

| ≤ Chγfor all h ∈ (0, h0).We �rst show that the lo
al error in the se
ond moment for the position ofour sto
hasti
 trigonometri
 integrator is of order O(h3) for linear problems.Lemma 2 Consider the numeri
al solution of (1) with g ≡ 0 by method (3)with a step size h ≤ h0 (with a su�
iently small h0 independent of ε) forwhi
h h/ε ≥ c0 > 0 holds. The errors in the se
ond moment after one step ofthe numeri
al s
heme satisfy
|E
[

‖X1
1‖

2
]

− E
[

‖X1
h‖

2
]

| ≤ Chε2 ≤ Ch3

|E
[

‖X2
1‖

2
]

− E
[

‖X2
h‖

2
]

| ≤ Cε ≤ Ch,where the 
onstant C is independent of ε and h. That is, the lo
al errors areof order (at least) one uniformly in the frequen
ies.



12 David Cohen, Magdalena SiggProof Let us start with the error in the position. By de�nitions of the s
heme,of the exa
t solution, and using some properties of the Wiener in
rements andthe Ito isometry, we obtain
|E
[

‖X1
1‖

2
]

− E
[

‖X1
h‖

2
]

| = |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

− E
[

‖

∫ h

0

Ω−1 sin((h− s)Ω)BdWs‖
2
]

|

= |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

−

∫ h

0

‖Ω−1 sin((h− s)Ω)B‖2ds|

≤ Chε2.Similarly, 
on
erning the error in the se
ond 
omponent, we have
|E
[

‖X2
1‖

2
]

− E
[

‖X2
h‖

2
]

| = |E
[

‖cos(hΩ)B∆W0‖
2
]

− E
[

‖

∫ h

0

cos((h− s)Ω)BdWs‖
2
]

|

= |E
[

‖cos(hΩ)B∆W0‖
2
]

−

∫ h

0

‖cos((h− s)Ω)B‖2ds|

≤ Ch.

⊓⊔We 
an now derive global error bounds for the linear 
ase. We obtain thefollowing result.Proposition 2 Consider the numeri
al solution of (1) with g ≡ 0 by method(3) with a step size h ≤ h0 (with a su�
iently small h0 independent of ε) forwhi
h h/ε ≥ c0 > 0 holds. The errors in the se
ond moment of the numeri
als
heme satisfy
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ Cε2T ≤ Ch2

|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT for nh ≤ T,where the 
onstant C is independent of ε, h and n with nh ≤ T . That is,the global error in the position 
omponent is of order two uniformly in thefrequen
ies.Proof In order to determine the global order of 
onvergen
e in the position,we study the expression |E
[

‖X1
n‖

2
]

−E
[

‖X1
nh‖

2
]

|. Using the notations of The-orem 2, we obtain
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| = |E
[

‖cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 + q1‖
2
]

− E
[

‖cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 + q̂1‖
2
]

|.
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 methods for sti� se
ond-order SDEs 13Using properties of the Wiener in
rements and of the Ito integral, we get
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| = |E
[

‖q1‖
2
]

− E
[

‖q̂1‖
2
]

|

= |
n−1
∑

j=0

E
[

‖Ω−1(cos(jhΩ) sin(hΩ) + sin(jhΩ) cos(hΩ))B∆Wn−j−1‖
2
]

−

n−1
∑

j=0

∫ tn−j

tn−j−1

‖Ω−1(cos(jhΩ) sin((tn−j − s)Ω) + sin(jhΩ) cos((tn−j − s)Ω))B‖2ds|

≤ Cε2nh ≤ Cε2T.Analogously we get for the global order of 
onvergen
e in the velo
ity
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| = |E
[

‖q2‖
2
]

− E
[

‖q̂2‖
2
]

|

= |

n−1
∑

j=0

E
[

‖(sin(jhΩ) sin(hΩ)− cos(jhΩ) cos(hΩ))B∆Wn−j−1‖
2
]

+

n−1
∑

j=0

∫ tn−j

tn−j−1

‖(sin(jhΩ) sin((tn−j − s)Ω) + cos(jhΩ) cos((tn−j − s)Ω))B‖2ds|

≤ Cnh ≤ CTor the boundedness of the global error in the velo
ity. ⊓⊔We 
an now state the main result of this se
tion:Theorem 3 Under the assumptions of Proposition 2 and Theorem 1, theglobal errors in the se
ond moment satisfy
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ C(ε2 + (h+ ε)2 + h2 + (hε+ ε2)) ≤ Ch2

|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ C(T + h) ≤ CT for nh ≤ T,where the 
onstant C only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖,but is independent of ε, h and n with nh ≤ T .Proof Let us �rst de�ne the following quantities
p1 = cos(nhΩ)X1

0+Ω
−1 sin(nhΩ)X2

0 and p2 = −Ω sin(nhΩ)X1
0+cos(nhΩ)X2

0so that the numeri
al s
heme 
an be written as
X1

n = p1 + q1 + r1 and X2
n = p2 + q2 + r2.For the error in the se
ond moment for the position, we thus obtain

|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| = |E
[

2pT1 q1 + 2pT1 r1 + qT1 q1 + 2qT1 r1 + rT1 r1

− q̂T1 q̂1 − r̂T1 r̂1 − 2pT1 r̂1 − 2pT1 q̂1 − 2q̂T1 r̂1
]

|

≤ |E
[

‖q1‖
2 − ‖q̂1‖

2
]

|+ |E
[

‖r1‖
2 − ‖r̂1‖

2
]

|

+ 2E
[

|pT1 (r1 − r̂1)|
]

+ 2|E
[

qT1 r1 − q̂T1 r̂1
]

|



14 David Cohen, Magdalena Siggdue to the fa
t that E[∆Wn−j−1

]

= 0 and due to the martingale property ofthe Ito integral. We will now estimate the four terms on the right. Thanks toProposition 2, we have
|E
[

‖q1‖
2 − ‖q̂1‖

2
]

| ≤ CTε2.Using the bounds for the fun
tion g, the bounds for the �lter fun
tions andthe triangle inequality, we get
|E
[

‖r1‖
2 − ‖r̂1‖

2
]

| ≤ E
[

‖r1‖
2
]

+ E
[

‖r̂1‖
2
]

≤ (Cn(h2 + hε))2 + (Cnhε)2

≤ CT 2(h+ ε)2.The Cau
hy-S
hwarz inequality and Theorem 1 give us the bounds
2E
[

|pT1 (r1 − r̂1)|
]

≤ 2‖p1‖E
[

‖r1 − r̂1‖
]

≤ Ch2.For the last term, we obtain
E
[

|qT1 r1| ≤ E
[

‖r1‖‖q1‖
]

≤ CT (h+ ε)E
[

‖q1‖
]

≤ CT (h+ ε)
√

E
[

‖q1‖2
]

≤ CT (h+ ε)εthanks to the Cau
hy-S
hwarz inequality, the bounds for the fun
tion g andProposition 2. This �nally gives us
2|E
[

qT1 r1 − q̂T1 r̂1
]

| ≤ CT (hε+ ε2).All together, we obtain the bounds for the position
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ C(ε2 + (h+ ε)2 + h2 + (hε+ ε2)).For the velo
ity 
omponent we 
onsider the expression
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ |E
[

‖q2‖
2 − ‖q̂2‖

2
]

|+ |E
[

‖r2‖
2 − ‖r̂2‖

2
]

|

+ 2E
[

|pT2 (r2 − r̂2)|
]

+ 2|E
[

qT2 r2 − q̂T2 r̂2
]

|.Similarly, we get the following bounds for the individual terms on the right
|E
[

‖q2‖
2 − ‖q̂2‖

2
]

| = O(T ), |E
[

‖r2‖
2 − ‖r̂2‖

2
]

| = O(T ),
2E
[

|pT2 (r2 − r̂2)|
]

= O(h), 2|E
[

qT2 r2 − q̂T2 r̂2
]

| = O(T ).This yields for the whole expression
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ C(T + h)or the boundedness of the global error in the se
ond moment for the velo
ity.
⊓⊔As in the mean-square 
ase, we 
on
lude this se
tion by looking at the 
on-vergen
e for a �xed ε.



Trigonometri
 methods for sti� se
ond-order SDEs 15Remark 4 We thus �x ε and let h tend to zero in order to illustrate the 
onver-gen
e behaviour. Therefore Taylor expansions of the expressions in the proofof Lemma 2 
an be used to determine the errors in the se
ond moment afterone step.
|E
[

‖X1
1‖

2
]

− E
[

‖X1
h‖

2
]

| = |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

−

∫ h

0

‖Ω−1 sin((h− s)Ω)B‖2ds|

= |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

−

∫ h

0

‖Ω−1
∑

n≥0

sin(n)(hΩ)
(−sΩ)n

n!
B‖2ds|

≤ Ch3and similarly
|E
[

‖X2
1‖

2
]

− E
[

‖X2
h‖

2
]

| ≤ Ch.Hen
e, for a �xed ε, we obtain, instead of Theorem 3, the following errorbounds
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ Ch

|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT for nh ≤ T.5 Growth rate of the expe
ted energyThe exa
t solution of our problem (2) with a smooth gradient nonlinearity
g(x) = −∇U(x) has the following interesting geometri
 property:Applying Ito's formula, it is known (see for example [15℄) that the expe
tedvalue of the energy has a linear growth in time:
E
[1

2

(

||X2
t ||

2+ ||ΩX1
t ||

2
)

+U(X1
t )
]

=
1

2

(

||y0||
2+ ||Ωx0||

2
)

+U(x0)+
Tr(BBT )

2
t,(13)where X1

0 = x0 and X2
0 = y0 are the initial position, resp. velo
ity for theproblem (2).In a geometri
 numeri
al integration approa
h (see the monographs [5,12℄for the deterministi
 
ase), one would seek numeri
al s
hemes that reprodu
egeometri
 properties of the exa
t solution of the di�erential equation. We willsee that the proposed s
hemes 
apture almost the 
orre
t energy growth rate.In order to show the almost-linear growth rate of the expe
ted value of theenergy for the numeri
al solution, we need the following lemma:Lemma 3 Under the assumptions of Theorem 2 we have

E
[

‖Ω(r1 − r̂1)‖
]

≤ Ch for nh ≤ T,where r1 and r̂1 are de�ned in the proof of Theorem 2.



16 David Cohen, Magdalena SiggProof Writing down the de�nitions of r1 and r̂1 we get
‖Ω(r1 − r̂1)‖ = ||

n−1
∑

j=0

(

cos(jhΩ)
h

2
hΩΨgn−j−1 + sin(jhΩ)

h

2
Ψ1gn−j + sin(jhΩ)

h

2
Ψ0gn−j−1

)

−
n−1
∑

j=0

(

cos(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)g(X1
s ) ds

+ sin(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds

)

||

= ||

n−1
∑

j=0

Ω cos(jhΩ)en−j−1 +

n−1
∑

j=0

sin(jhΩ)e′n−j−1||

≤ ||

n−1
∑

j=0

Ω cos(jhΩ)en−j−1||+ ||

n−1
∑

j=0

sin(jhΩ)e′n−j−1||,where
en−j−1 =

h

2
hΨgn−j−1 −

∫ tn−j

tn−j−1

Ω−1 sin((tn−j − s)Ω)g(X1
s ) ds and

e′n−j−1 =
h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds.We will now use some lemmas from [4℄ to estimate the above expressions. Webegin by the term with en−j−1. We write

en−j−1 =
h

2
hΨg(ΦX1

tn−j−1
)−

∫ tn−j

tn−j−1

Ω−1 sin((tn−j − s)Ω)g(X1
s ) ds

[

3pt
]

+
1

2
h2Ψgn−j−1 −

1

2
h2Ψg(ΦX1

tn−j−1
).Using Lemma 1 from [4℄, we get

en−j−1 = −
1

2
h2
( sin
2 (hΩ

2

)

− Ψ
)

g(ΦX1
tn−j−1

)−h3zn−j−1+
1

2
h2Ψgn−j−1−

1

2
h2Ψg(ΦX1

tn−j−1
)with ‖zn−j−1‖ ≤ C and ‖hΩzn−j−1‖ ≤ C. It follows, see also Lemma 5 from[4℄, that

‖

n−1
∑

j=0

Ω cos(jhΩ)en−j−1‖ ≤ ‖
1

2
vn−1‖+ ‖h2

n−1
∑

j=0

hΩ cos(jhΩ)zn−j−1‖

+ ‖
1

2
h

n−1
∑

j=0

hΩ cos(jhΩ)Ψ(gn−j−1 − g(ΦX1
tn−j−1

))‖,



Trigonometri
 methods for sti� se
ond-order SDEs 17where vn−1 is de�ned as
vn−1 =

1

2
h

n−1
∑

j=0

hΩ cos(jhΩ)
( sin
2 (hΩ

2

)

− Ψ
)

g(ΦX1
tn−j−1

)and 
an be written as (see Lemma 5 from [4℄)
vn−1 = E′

n−1(hΩ)g(ΦX1
0 ) +

n−2
∑

j=0

E′
j(hΩ)(g(ΦX1

tn−j−1
)− g(ΦX1

tn−j−2
)),where

E′
j(ξ) :=

−ξ

2 sin

(

ξ

2

)

( sin
2 ( ξ

2

)

− ψ(ξ)
) (

sin
(

jξ +
ξ

2

)

− sin
(

ξ

2

))

.Due to (9) and Lemma 5 from [4℄, E′
j are bounded and so is vn−1. It thusfollows that

‖

n−1
∑

j=0

Ω cos(jhΩ)en−j−1‖ ≤ Ch+Ch2n+‖
1

2
h

n−1
∑

j=0

hΩ cos(jhΩ)Ψ(gn−j−1−g(ΦX
1
tn−j−1

))‖.Using the bounds (5) and (9) for the �lter fun
tions together with the mean-square error bounds in the position, we obtain
E
[

‖

n−1
∑

j=0

Ω cos(jhΩ)en−j−1‖
]

≤ Ch.Now, we have to estimate ‖
n−1
∑

j=0

sin(jhΩ)e′n−j−1‖. To do this, we �rst rewrite
e′n−j−1 as
e′n−j−1 =

h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds

=
h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

h

2
Ψ1g(ΦX

1
tn−j

)−
h

2
Ψ0g(ΦX

1
tn−j−1

)

−

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds+

h

2
Ψ1g(ΦX

1
tn−j

) +
h

2
Ψ0g(ΦX

1
tn−j−1

)

=
h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

h

2
Ψ1g(ΦX

1
tn−j

)−
h

2
Ψ0g(ΦX

1
tn−j−1

)

−
1

2
h( sin
(hΩ)− Ψ0)g(ΦX

1
tn−j−1

)−
1

2
h( sin
(hΩ) − Ψ1)g(ΦX

1
tn−j

)

−
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j−1
)) ds

−
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j
)) ds



18 David Cohen, Magdalena Siggusing Lemma 2 from [4℄. The triangle inequality gives us
E
[

‖

n−1
∑

j=0

sin(jhΩ)e′n−j−1‖
]

≤ E
[

‖

n−1
∑

j=0

sin(jhΩ)
h

2
Ψ1(gn−j − g(ΦX1

tn−j
))‖
]

+ E
[

‖
n−1
∑

j=0

sin(jhΩ)
h

2
Ψ0(gn−j−1 − g(ΦX1

tn−j−1
)‖
]

+ E
[

‖
n−1
∑

j=0

sin(jhΩ) · d′n−j−1‖
]

,where d′n−j−1 is de�ned as
d′n−j−1 =

1

2
h( sin
(hΩ) − Ψ0)g(ΦX

1
tn−j−1

) +
1

2
h( sin
(hΩ)− Ψ1)g(ΦX

1
tn−j

)

+
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j−1
)) ds

+
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j
)) ds.Repla
ing cos(jhΩ) by sin(jhΩ) in Lemma 6 from [4℄ (with a shift in theindi
es) permits us to bound the terms 
ontaining the fa
tors sin
(hΩ) − Ψifor i = 0, 1. For the terms 
ontaining the integrals, we use the mean-valuetheorem and �nally, an appli
ation of Theorem 2 gives us the desired bound

E
[

‖

n−1
∑

j=0

sin(jhΩ)e′n−j−1‖
]

≤ Ch.We thus �nally obtain the estimate
E
[

‖Ω(r1 − r̂1)‖
]

≤ Ch.

⊓⊔Theorem 4 Under the assumptions of Theorem 2, the numeri
al solution (3)of the sto
hasti
 os
illator (2) with a smooth gradient nonlinearity g(x) =
−∇U(x) satis�es
E
[1

2

(

||X2
n||

2+||ΩX1
n||

2
)

+U(X1
n)
]

=
1

2

(

||y0||
2+||Ωx0||

2
)

+U(x0)+
Tr(BBT )

2
tn+O(h),where tn = nh ≤ T . The 
onstant symbolised by the O-notation only dependson T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but is independent of ε, h and nwith nh ≤ T .Remark 5 One 
an show that the energy of the numeri
al solution (3) hasexa
tly the same growth rate as the exa
t solution of (1) in the 
ase where

g(x) ≡ 0. The proof is an adaptation of the proof of Theorem 2.2 in [1℄.
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ond-order SDEs 19Proof Instead of the expe
ted value of the energy
E
[1

2
‖ΩX1

n‖
2 +

1

2
‖X2

n‖
2 + U(X1

n)
]we will 
al
ulate and estimate the expression

1

2
E
[

‖ΩX1
n‖

2 − ‖ΩX1
nh‖

2 + ‖X2
n‖

2 − ‖X2
nh‖

2
]

+ E
[

U(X1
n)− U(X1

nh)
]

+E
[1

2
‖ΩX1

nh‖
2 +

1

2
‖X2

nh‖
2 + U(X1

nh)
]

.Sin
e the last term is the expe
ted value of the total energy along the exa
tsolution of our problem, it is thus equal to the initial energy plus the drift:
E
[1

2
‖ΩX1

nh‖
2+

1

2
‖X2

nh‖
2+U(X1

nh)
]

=
1

2
‖Ωx0‖

2+
1

2
‖y0‖

2+U(x0)+
Tr(BBT )

2
nh.For the 
entral term, we use the mean-value theorem and Theorem 2 to obtain

E
[

U(X1
n)− U(X1

nh)
]

= ∇U(ζ)TE
[

X1
n −X1

nh

]

= O(h).Finally, using the notations of Theorem 2, we obtain for the �rst term:
E
[

‖ΩX1
n‖

2 − ‖ΩX1
nh‖

2 + ‖X2
n‖

2 − ‖X2
nh‖

2
]

= E
[

‖Ωq1‖
2 + ‖q2‖

2 − ‖Ωq̂1‖
2

− ‖q̂2‖
2
]

+ 2(Ωp1)
T
E
[

Ω(r1 − r̂1)
]

+ 2pT2 E
[

r2 − r̂2
]

+ E
[

‖Ωr1‖
2 − ‖Ωr̂1‖

2
]

+ E
[

‖r2‖
2 − ‖r̂2‖

2
]

+ 2E
[

(Ωq1)
T (Ω(r1 − r̂1))

]

+ 2E
[

qT2 (r2 − r̂2)
]

.We will now estimate ea
h of the above terms. Let us begin with
E
[

‖Ωq1‖
2 + ‖q2‖

2
]

= E
[

n−1
∑

j=0

∆WT
n−j−1B

T (sin2(hΩ) cos2(jhΩ)

+ sin2(hΩ) sin2(jhΩ))B∆Wn−j−1

+ ∆WT
n−j−1B

T (cos2(hΩ) sin2(jhΩ)

+ cos2(hΩ) cos2(jhΩ))B∆Wn−j−1

]

= E
[

n∆WT
n−j−1B

TB∆Wn−j−1

]

= Tr(BBT )nh.Analogously we �nd E
[

‖Ωq̂1‖
2 + ‖q̂2‖

2
]

= Tr(BBT )nh and thus
E
[

‖Ωq1‖
2 + ‖q2‖

2 − ‖Ωq̂1‖
2 − ‖q̂2‖

2
]

= 0.Next, using Lemma 3 and Theorem 1 we get
2(Ωp1)

T
E
[

Ω(r1 − r̂1)
]

+ 2pT2 E
[

r2 − r̂2
]

= O(h).For the following term, the Cau
hy-S
hwarz inequality together with Lemma 3and Theorem 1 give us the bounds
E
[

‖Ωr1‖
2 − ‖Ωr̂1‖

2
]

+ E
[

‖r2‖
2 − ‖r̂2‖

2
]

= E
[

(Ω(r1 − r̂1))
T (Ω(r1 + r̂1))

]

+ E
[

(r2 − r̂2)
T (r2 + r̂2)

]

= O(h).



20 David Cohen, Magdalena SiggFinally, for the last term, we have
2(Ωq1)

T (Ω(r1 − r̂1)) + 2qT2 (r2 − r̂2) ≤ 2‖Ωq1‖‖Ω(r1 − r̂1)‖ + 2‖q2‖‖r2 − r̂2‖by the Cau
hy-S
hwarz inequality. Using Lemma 3 and Theorem 2 we thusobtain
E
[

2(Ωq1)
T (Ω(r1 − r̂1)) + 2qT2 (r2 − r̂2)

]

= O(h).This 
on
ludes the proof. ⊓⊔6 Numeri
al experimentsIn this �nal se
tion, we will 
onsider two problems in order to illustrate therobustness of the sto
hasti
 trigonometri
 s
hemes.6.1 The sto
hasti
 Fermi-Pasta-Ulam problemThe deterministi
 Fermi-Pasta-Ulam (FPU) problem is often used as a modelfor highly os
illatory problems. For more details on the deterministi
 
asewe refer to [5, Chapters I, XIII℄. In this se
tion, we will look at a sto
hasti
FPU problem in order to demonstrate the growth rate in the energy and the
onvergen
e behaviour of the sto
hasti
 trigonometri
 method.The deterministi
 FPU problem des
ribes a 
hain of 2m̃ mass points, 
on-ne
ted with alternating soft nonlinear and sti� linear springs (with angularfrequen
y ω :=
1

ε
≫ 1). The variables q1, . . . , q2m̃ denote the displa
ementsof the mass points, the variables pi = q̇i their velo
ities. The behaviour ofthe system is des
ribed by a Hamiltonian system wherein the total energyis 
onserved. After a 
hange of 
oordinates we obtain the new Hamiltonianfun
tion

H(y, x) =
1

2

2m̃
∑

i=1

y2i +
ω2

2

m̃
∑

i=1

x2m̃+i +
1

4

(

(x1 − xm̃+1)
4+

+
m̃−1
∑

i=1

(xi+1 − xm̃+i+1 − xi − xm̃+i)
4 + (xm̃ + x2m̃)4

)

,where xi, i = 1, . . . , m̃ represents a s
aled displa
ement of the ith sti� spring,
xm̃+i a s
aled expansion of the ith sti� spring and yi and ym̃+i their velo
ities.Furthermore, in the deterministi
 
ase, another quantity is almost 
on-served, the os
illatory energy. Let

Ij(xm̃+j , ym̃+j) =
1

2
(y2m̃+j + ω2x2m̃+j)
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ond-order SDEs 21denote the energy of the jth sti� spring. As time passes, there is an ex
hangeof energy between the sti� springs, but the total os
illatory energy of ourproblem
I =

m̃
∑

i=1

Ijremains almost 
onserved.Writing down the Hamiltonian equations, we obtain the following se
ondorder di�erential equation:
ẍ+Ω2x = g(x) with Ω =

(

0 0
0 ωI

)

, (14)where I is the m̃× m̃ identity matrix and the frequen
y ω is supposed to belarge.Now we will turn to the sto
hasti
 Fermi-Pasta-Ulam problem. By addinga noise term to the equation (14) we get the system
Ẍt +Ω2Xt = g(Xt) +BẆt. (15)Sin
e the matrix Ω is not positive-de�nite, the 
onvergen
e of the sto
hasti
trigonometri
 methods is not obvious. However, setting Ω = 0, the expressionfor the mean-square error in the position in the proof of Proposition 1 redu
esto

E
[

‖X1
n −X1

nh‖
2
]

=

n
∑

j=0

E
[

‖(d1j + ((n− j)h)d2j)‖
2
]

=

n
∑

j=0

E
[

∫ tj+1

tj

‖(tj+1 − s− h)B‖2ds
]

= ‖B‖2
n
∑

j=0

∫ tj+1

tj

(tj − s)2ds

=
1

3
‖B‖2

n
∑

j=0

h3sin
e d2j = 0 and thus we obtain
(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ Ch,for tn = nh ≤ T . For the mean-square error in the velo
ity we �nd analogously
(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ Ch.



22 David Cohen, Magdalena SiggFor the expression for the error in the se
ond moment for the position in theproof of Proposition 2 we obtain in the 
ase Ω = 0:
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

|

= |

n−1
∑

j=0

E
[

‖(h+ jh)B∆Wn−j−1‖
2
]

−

n−1
∑

j=0

∫ tn−j

tn−j−1

‖(tn−j − s+ jh)B‖2ds|

= |

n−1
∑

j=0

(h+ jh)2h‖B‖2 −

n−1
∑

j=0

∫ tn−j

tn−j−1

(tn−j − s+ jh)2‖B‖2ds|

= |

n−1
∑

j=0

‖B‖2
(

h(h+ jh)2 +
1

3
(jh)3 −

1

3
(jh+ h)3

)

|

= |

n−1
∑

j=0

‖B‖2
(

jh3 + 2/3h3
)

|

≤ Ch.Analogously we get for the velo
ity 
omponent
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT.Due to the blo
k stru
ture of the matrix Ω we 
an split the equation (15) intotwo equations and write X1
t = (X1

t,1 X
1
t,2)

T and X2
t = (X2

t,1 X
2
t,2)

T , where
X1

t,1, X2
t,1, X

1
t,2, X

2
t,2 ∈ R

m̃. The slow 
omponent of the system will thus be
X1

t,1 and the fast one X1
t,2. Therefore we obtain for the mean-square error inposition

(

E
[

‖X1
n−X

1
nh‖

2
]

)1/2

=
(

E
[

‖X1
n,1−X

1
nh,1‖

2
]

+E
[

‖X1
n,2−X

1
nh,2‖

2
]

)1/2

≤ Chand similarly for the velo
ity 
omponent
(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ CT 1/2.For the errors in the se
ond moment, we get
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ Ch, |E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT.For our numeri
al experiments, we will take 2m̃ = 6 mass points, a spring
onstant ω = 50, and we will 
onsider
x1(0) = 1, y1(0) = 1, x4(0) = ω−1, y4(0) = 1and zero for the remaining initial values. For the sto
hasti
 term we 
hoose

B = (0 1 0.5 5 0 0.01)T .We �nally want to note that all the expe
ted values are 
omputed numeri
allyusing sample averages. In order to make these approximations as a

urate asne
essary, we took enough sample paths in all our numeri
al experiments.
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ond-order SDEs 23Figure 1 displays the linear growth rate of the expe
tation of the energyalong the numeri
al solution of the sto
hasti
 trigonometri
 method (3) with�lters given in Example 3 and along the numeri
al solution given by the Euler-Maruyama s
heme. The growth rate given by Theorem 4 is observed and onthe 
ontrary, if we solve (15) by the Euler-Maruyama method, the expe
tationof the total energy of the system grows exponentially.
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Fig. 1 The sto
hasti
 trigonometri
 method (3) with step size h = 0.1 and M = 10000sample paths reprodu
es the linear growth of the energy almost exa
tly (left pi
ture), whilethe numeri
al energy obtained by the Euler-Maruyama method with step size h = 10−4 and
M = 10000 sample paths grows exponentially (right pi
ture).In Figure 2 we noti
e a linear growth of the total os
illatory energy inthe sto
hasti
 
ase. As a 
omparison, we plot the os
illatory energy of thedeterministi
 FPU problem. Both in the deterministi
 and in the sto
hasti

ase, there is an ex
hange of energy between the sti� springs.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

I

I
1

I
2

I
3

0 50 100 150 200
0

500

1000

1500

2000

2500

Time

E[I]

E[I
1
]

E[I
2
]

E[I
3
]Fig. 2 In the deterministi
 
ase the total os
illatory energy is almost 
onserved, while thesti� springs ex
hange energy among ea
h other (left pi
ture). In the sto
hasti
 
ase thereis also an ex
hange of energy between the sti� springs, but the expe
ted value of the totalos
illatory energy obtained by method (3) with step size h = 0.01 and M = 10000 samplepaths grows linearly (right pi
ture).The 
onvergen
e behaviour of the method is illustrated in Figures 3 and 4.We 
al
ulated M = 20000 sample paths for the mean-square 
onvergen
e and
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onvergen
e in the se
ond moment. For the error in the se
ond momentin the velo
ity 
omponent we 
hose ω = 10 in order to avoid the large numberof samples that would be required for ω = 50.
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Fig. 3 Mean-square error in the position (left pi
ture) and in the velo
ity (right pi
ture)for the sto
hasti
 FPU problem (15). The dashed lines have slope one.
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Fig. 4 Error in the se
ond moment for the position (left pi
ture) and for the velo
ity (rightpi
ture) 
omponent for the sto
hasti
 FPU problem (15). The dashed lines have slope one.Finally, in order to illustrate the fa
t that our error bounds are independentof the large parameter ω, we 
hose ω = 500 in Figure 5 and observe the sameorders of 
onvergen
e for the position 
omponent as for smaller ω.6.2 Semi-dis
retisation of a semi-linear sto
hasti
 wave equationAs a �nal example, we 
onsider the pseudo-spe
tral semi-dis
retisation (usingthe eigenfun
tions en(x) =
√

2/π sin(nx)) of the semi-linear sto
hasti
 waveequation from [15℄:
utt(x, t) = σ2uxx(x, t) + (a0 − a2|u(x, t)|

2
L2)u(x, t) + bξ,where (x, t) ∈ (0, π) × (0,∞) and ξ is white in time and spatially 
orrelated.We impose homogeneous boundary 
onditions u(0, t) = u(π, t) = 0. This gives
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Fig. 5 Mean-square error (left pi
ture) and error in the se
ond moment (right pi
ture) forthe position 
omponent for the sto
hasti
 FPU problem (15) with ω = 500. The dashedlines have slope one.us the following system of SDEs for the Fourier 
oe�
ients cn = cn(t):
c̈n + (σ2n2 − a0)cn + a2

(

∞
∑

m=1

c2m
)

cn = bnẆn.Trun
ating this system at NF Fourier modes, we end up with a system of theform (1).To illustrate the ex
ellent long-time behaviour of the sto
hasti
 trigono-metri
 s
heme (3) with �lter fun
tions given by Example 3, we 
ompute theexpe
ted energy from Theorem 4, i.e. the tra
e formula in [15℄:
E
[1

2

NF
∑

n=1

(

vn(t)
2 + (σ2n2 − a0)cn(t)

2
)

+
a2

4

(

NF
∑

n=1

cn(t)
2
)2]

=

1

2

NF
∑

n=1

(

vn(0)
2 + (σ2n2 − a0)cn(0)

2
)

+
a2

4

(

NF
∑

n=1

cn(0)
2
)2

+

NF
∑

n=1

b2n
t

2
,where NF is the number of Fourier modes and vn(t) = ċn(t). Figure 6 showsthe expe
ted value of the energy for the following parameters: NF = 1024Fourier-modes, σ = 1, a0 = 0.5, a2 = 0.2, bn = 1, M = 1000 samples, h = 0.2time step and initial values cn(0) = 0 and vn(0) = 0 ex
ept for the �rst 500Fourier modes, where we set cn(0) = 0.01. The time interval ranges from

T = 0 to T = 100. We also display one sample traje
tory of the numeri
alsolution to the wave equation. A detailed analysis of the good behaviour of thesto
hasti
 trigonometri
 methods for the time dis
retisation of the sto
hasti
wave equation will be presented in a forth
oming publi
ation.7 A
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