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Abstract We study a class of numerical methods for a system of second-order
SDE driven by a linear fast force generating high frequency oscillatory solu-
tions. The proposed schemes permit the use of large step sizes, have uniform
global error bounds in the position (i.e. independent of the large frequencies
present in the SDE) and offer various additional properties. This new family
of numerical integrators for SDE can be viewed as a stochastic generalisation
of the trigonometric integrators for highly oscillatory deterministic problems.
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1 Introduction

In this article we present an error analysis for a family of numerical schemes
for the solution of the (d-dimensional) stiff second-order SDE

' 1 .
X+ ?AXt = g(Xy) + BW, (1)

where ¢ < 1 is a small parameter, the nonlinearity g(z) € R? is a smooth real
function and Wy = (W1 (t),..., W,,(¢))T is a standard m-dimensional Wiener
process. We will assume that the matrix A € R%*4 which does not depend
on ¢, is a symmetric positive definite matrix such that the norm of A~! is
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not small compared to e, that is, all the eigenvalues of %A are away from
&

Rdxm

zero. We will also assume that the norm of th(le matrix B € is small

compared to the norm of the fast force F'(z) = < Az. At this point, we would
15

like to add, that we can also consider the case, where the matrix A has zero as
eigenvalues. For ease of presentation, this will be shown only in the last section
of the paper. Here and in the following we will work with the Euclidean norm
or with norms induced by the Euclidean norm.

We are interested in numerical methods that can attain good accuracy with
step sizes whose product with the large frequencies in (1) need not to be small.
So that the error bounds in the position of the methods should be independent
of the product of the step size with the frequencies of our problem.

The proposed schemes can be viewed as a stochastic generalisation of the
trigonometric methods (or exponential integrators) for highly oscillatory de-
terministic problems (see [2], [5, Chapter XIII] and references therein) and
appeared for the first time in [1] for the numerical discretisation of scalar
stochastic oscillators with a high frequency. Since a key building-block in the
development of stochastic trigonometric methods is the variation-of-constants
formula, we begin by rewriting (1) as a system of first order SDE (setting

X} = X;, X? := X, and 2 := 1 AV/2);
€

1 1

(ixt) = (o) (33) 2+ () o (5)
The variation-of-constants formula for the above equation will then suggest the
construction of the stochastic trigonometric schemes (see Section 2 for details
on the derivation of the numerical methods). After that, we will present the
main theorems on the convergence of the schemes in Section 3 and Section 4. It
turns out that the proposed schemes offer additional features similar to the one
of the exact solution of (2). This will be studied in more details in Section 5.
Numerical experiments demonstrating the convergence and the good long-time
behaviour of the stochastic trigonometric schemes are presented in the final
section.

Let us mention that the use of the variation-of-constants formula to de-
rive efficient numerical schemes for large stiff systems of first order differential
equations is not new. In the deterministic setting, one may consult, for ex-
ample, [6], [13] and more recently the review [7] on exponential integrators.
Stochastic exponential integrators were also considered for the numerical ap-
proximation of parabolic stochastic partial differential equations in [14], [9],
[10] and references therein.

We conclude the introduction by mentioning that there are only few nu-
merical works in the literature to solve stiff systems of the form (1). We are
only aware of the work [17]. The results given in this article are, in the spirit,
closely related to ours; the techniques and the equation considered here are
however different. Let us finally mention, that for the linear scalar case and
with a frequency 1/e = 1 (non-stiff problems), we are only aware of the works
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[8], [16] and [18]. For a numerical comparison between these schemes and the
stochastic trigonometric methods, we refer to [1].

2 Stochastic trigonometric methods

In this section we recall the definition of the (stochastic) trigonometric schemes.
For details on the derivations we refer to [5, Chapter XIII| for the deterministic
case and to [1] for the stochastic scalar case.

Asg stated in the introduction, the main building-block for the construc-
tion of the stochastic trigonometric integrators is the variation-of-constants
formula. The exact solution of (2) with initial values X} = z¢ and X3 = yo
satisfies

() = (omnien o) ()
N /Ot <rzlsin((ts)rz)) g(Xj)dH/Ot <lein((t5)(2)) Baw,

cos((t — 5)02) cos((t — 5)02)

We will sometimes use the notation ¢ sinc(£2) for 271 sin(#£2), which is defined
for arbitrary matrices (2.

We now discretise the above deterministic and Ito integrals and thereby
obtain a family of explicit trigonometric numerical integrators:

Xy [ cos(h$2) Q7 tsin(h2)\ (X}
X2,,)  \—02sin(hf2) cos(h$2) X2
h2

7@(@){5) (_Ql sin(hQ)BAWn> 3)
h 9
5 (Pog(PX) + V1g(PX 1 44)) cos(h{2) BAW:,
where h denotes the step size of the scheme and AW,, = W (t,,41) — W(t,,) the
Wiener increments. Here ¥ = )(h{2) and & = ¢(h{2), where the filter functions
1, ¢ are even, real-valued functions with ¢(0) = ¢(0) = 1. Moreover, we have
Uy = Po(h$2), U1 = 1 (h2) with even functions g, 1)1 satisfying 1o(0) =
11(0) = 1. The purpose of these filter functions is to attenuate numerical
resonances, see [5, Chapter XIII|] for the deterministic case. The choice of
the filter functions may also have a substantial influence on the long-time
properties of the method. We will not deal with these issues in the present
paper. We note that the family of integrators (3) reduces (in the symmetric

case) to the Stormer-Verlet scheme for 2 = B = 0 and give the exact solution
for g =0 and B = 0.

Ezample 1 Replacing the deterministic integral in the variation-of-constants
formula for the exact solution by its trapezoidal rule approximation yields the
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following explicit scheme (see [3] for the deterministic case):

X2\ ( cos(h2) Q7 lsin(h2)) (X}
X2.,)  \-0sin(h2) cos(h$2) X2
h{ 27 tsin(h$2)g, 2~ tsin(h2)BAW,,
2 \gni1 + cos(h82) g, cos(h2)BAW,, )’

where g, = g(X!). This is exactly method (3) for the choices 1(¢) = sinc(¢), 1o (¢) =
cos(¢),¥1(¢) =1 and ¢(¢) = 1.

Example 2 Another possibility is to use only the left-hand endpoint to dis-
cretise the deterministic integral. This gives us the following filter functions:
P(¢) = 2sinc(C), o (¢) = 2cos((),¥1(¢) = 0 and ¢(¢) = 1. Note that we do
not have 11 (0) = 1. One recognises the exponential Euler scheme for parabolic
problems from [14]. Another discretisation of the deterministic integral (with
filter functions ¥(¢) = 2(1 — cos(€))/¢?,%0(¢) = 2sinc(¢),¥1(¢{) = 0 and
¢(¢) = 1) gives us the exponentially fitted Euler scheme from [9]. We remark
that the stochastic part in the scheme presented in [9] is not treated in the same
way as in (3). Moreover, a nice feature of the numerical integrator proposed
in [9] is that it takes advantage of a smoothing effect of a linear functional of
the noise-term.

Remark 1 Other discretisations of the stochastic integral present in the variation-
of-constants formula are possible and will lead to various numerical schemes.
We can for example use the following approximation:

/h (lem((h - s)rz)> BV ~ (91 sin(¢(h9))BAWO)
0 cos((h — s)02) ST\ cos(p(h2)BAW, )

Taking the trivial choice Q; = 0, one obtains the numerical scheme proposed
by Tocino in [18] for scalar linear second-order SDE Xt + X = aWt. However
a more natural and appropriate discretisation of the integral is by taking the
Riemann left-end points, that is with the choice ¢(z) = z, and thus obtain the
approximation present in method (3). We will only consider this discretisation
in the present paper.

Since we are interested in using large step sizes, we will consider the numer-
ical solution of (1) by method (3) with a step size h < hy (with a sufficiently
small hy independent of ¢) for which

h
~ >y > 0.
15

3 Mean-square convergence analysis

In this section, we will derive mean-square error bounds over finite time inter-
vals for the family of stochastic trigonometric methods derived in Section 2.
To do so, we first look at the mean-square error for linear problems, that is
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equation (1) with ¢ = 0. The proofs follow the lines of the scalar case given
in [1]. Combining these results with the results from [4], this then permits us
to derive order one mean-square error bounds, for the position component,
independent of the product of the step size with the large frequencies present
in our problem.

Let us first recall the definition of mean-square convergence, see for example
[11].

Definition 1 A numerical method {Y,,} with step size h converges in the
mean-square sense with order 5 > 0 to the solution Y;, of an SDE at time

t, = nh if § is the largest value such that there exists a positive constant C,
which does not depend on &, and an hg > 0 such that

1/2
(E[IYe, - val?]) "~ < on”

for all h € (0, ho).

We now show that the local mean-square error in the position of our
stochastic trigonometric integrator is of order O(h*/?) for linear problems.

Lemma 1 Consider the numerical solution of (1) with g =0 by method (3)
with a step size h < hg (with a sufficiently small ho independent of £) for which

h/e > ¢o > 0 holds. The mean-square errors after one step of the numerical
scheme satisfy

1/2
(B[IXE - x317]) < cent/? < on?2
1/2
(BlIxX2-x217) < on,
where the constant C' depends on the norm of the matriz B, but is independent
of € and h. That is, the local errors are of order (at least) 1/2 uniformly in
the frequencies.
Proof Let us start with the local mean-square error in the position. By defi-

nition of the method and by the variation-of-constants formula for the exact
solution, we obtain

h
BIX! - X!P) = B[] [ 07 Gin(he) —sin(h - )2) BaW. ]
0
Using the Ito isometry and the triangle inequality, we get

h
E[IXy - X;]%] < IIBIIQIIQ’lIIQ/0 Isin(g2) — sin((h — 5)02)|[*ds

< C|1271*h.
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Using the definition of the matrix {2, we end up with the stated bounds for
the local error in the position component. The estimate for the error in the
velocity component is obtained in a similar way: we have

h
E[|X? - X;]*] =E[| /O (cos(h2) — cos((h — $)02)) BdW|?]

h
SHMF/deMD—wdw—@Qm%S
0
< Ch.
O

We now turn our attention to the global mean-square error of the stochastic
trigonometric integrator (3) for linear systems. We obtain the following result.

Proposition 1 Consider the numerical solution of (1) with g =0 by method
(3) with a step size h < hqy (with a sufficiently small hy independent of ) for
which h/e > ¢ > 0 holds. The mean-square errors of the numerical scheme
satisfy

1/2
(BlIx: - x5 0%) " < ce < on
1/2
(E[”X?l B XZh”QD <cr'/? for nh <T,

where the constant C' is independent of ¢, h and n with nh < T. That is,
the global error in the position component is of order 1 uniformly in the fre-
quencies. Unfortunately, we obtain a non-uniform global error in the velocity
component.

Remark 2 We would like to point out, that it is not surprising to obtain a
non-uniform global error in the velocity in the stochastic case. This was also
observed in [17].

Proof We start, by substituting the exact solution into the numerical scheme
(3) and obtain

Xt X} Q- 1sin(h2) BAW,, dl
(anﬂ = X7 * cos(h2)BAW,, T d2 ) (4)

cos(hf2) 27 1sin(h$2)

where ¢, = nh, the matrix R = (Qsin(hﬁ) cos(h{2)

) and the defects

tnt1
dl = / Q7 Vsin((tny1 — 5)02)BdW, — 27 sin(h2) BAW,, € R?
t

n

tna1
2 = / cos((tnsr — 5)2)BdW, — cos(h2)BAW,, € R
t

n
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By Lemma 1 and properties of the Ito integral, we have the following estimates
for the defects

E[d,] =E[d;] =0, E[||d,[|”] = O(c*h), E[l|d;]*] = O(h).

We now define the errors e}, = X{ — Xj € R% for j = 1,2. A subtraction of
(4) from the definition of the scheme gives us
En+1 =R-E, +dy,

1 1
where F,, = (Zg) and d,, = (Z’g) . A recursion leads to the following formula

for the errors:
Epi = RnJrlEo + Z Rnijdj = Z Rnijdj,
=0 =0

cos((n —j)h2) Q7 'sin((n— j)hQ))

. : n—j __
with the matrix R = (Qsin((n TR0 cos((n— j)h)

All together and the independence of the Wiener increments give:

n

E[llens1?] = E[IIY_(cos((n — )h2)d; + 27 sin((n — Hh2)d})|]

Jj=0

=Y E[llcos((n — j)h2)d} + 27" sin((n — j)h2)d?||?]
j=0

+2 ZZE[(COS((TL — HhQ)d} + 2 sin((n — j)h2)d2)"
(cjo<s((n — O)h§2)dy + 27 sin((n — £)h$2)dy) ]
= iE[Hcos((n — H)h)d; + 27 sin((n — j)hs2)d7|?].
Once again using t}i;OIto isometry, we obtain
E[|lcos((n — j)h§2)d; + 27" sin((n — j)he2)d7|?]
_ ]E[/:j“ | cos((n — J)h2) 2~ (sin((t; 11 — )02) — sin(h2)) B

J

+ 27 sin((n — j)h82)(cos((tj41 — 5)82) — cos(h§2))B||*ds].
Similar to the proof of Lemma 1, we can bound the above term with:
E[|lcos((n — j)h82)d; + 2" sin((n — j)h$2)dF||*] = O(he?).

Finally summing up, using the fact that h/e > ¢¢ and that nh < T give the
desired bound for the position component:

Ef|lel]?] = B[] X} — X}, |1?] < CTe* < CThA.
n n nh

The bound for the velocity component is obtained in a similar way. O
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It is now time to consider the nonlinear case (2). Our convergence proof
heavily relies on the main result given in [4] for the corresponding deterministic
case. For ease of reading we first recall the main theorem of [4]:

Theorem 1 (Theorem 1 in [4]) Let us consider the deterministic problem
@+ Az = g(x), with A a positive semi-definite symmetric matriz, and the
numerical solution given by (3) with B = 0. Under the following assumptions:

1. Suppose that g, ¢’ and g’ are bounded.

2. Assume that the exact solution satisfies %||:E(t)||2 + %||Qz(t)||2 < %KQ for
0<t<T.
3. The filter functions have to satisfy the following assumptions:
I?>3§|X(f)| S Mla f07" X = ¢’ wa 1/103 1/11 (5)

for some constant My. There exist further constants Ms, Mz, My, Ms, Mg

and M~ such that

P(§) — 1
13

max

<
e < Mo, (6)

(sinc2 (%) - 1/)(5)) < M3, (7)

max mb(smc@m(s» <M;, i=0,1. (10)
2

Moreover, let us define M := max M;.

i=1,...,
Then the error in the position satisfies
|z, —anl| < CH%, 0<t, =nh<T. (11)

The constant C' only depends on T', K, My,..., My, |gll, ¢’ and ||¢"||, but
not on e. If, in addition, (9) and (10) are satisfied, then

|&s, — dnll < Ch, 0<t,=nh<T. (12)

The constant C' only depends on T, K, My, ..., My, |lgll, |l¢'ll and ||g"]|, but
not on €.
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As already noted in [4], these error bounds are independent of the dimension of
the problem and the constant C' (resp. C') does not depend on the large norm
of the matrix present in our problem. These properties are very desirable, for
example if the system (1) results from a semi-discretisation of a nonlinear wave
equation. In this case, the bounds are independent of the mesh size used for
the spatial discretisation.

Exzample 3 The following choices for the filter functions fulfill all the above
conditions, [4]:

¢(€) = sinc(§), 9 (€) = sinc®(€),vo(€) = cos(¢) sinc?(€), and ¢y (€) = sinc®(¢).

We can now give the main result of this section:

Theorem 2 Under the assumptions of Proposition 1 and Theorem 1, the
global mean-square errors satisfy

1/2
(BIIXE - X3IP)) < O + )2 < on
1/2
(E[”Xﬁ - X?m”ﬂ) <cr'/? for nh < T,

where the constant C' only depends on T, K, My, ..., Ma, ||g]l, ||| and ||g"||,
but is independent of €, h and n with nh <T.

Proof Let us introduce the following notations for the position component:

|
-

n

g = 27" (cos(jhe2) sin(he2) + sin(jhe2) cos(h$2)) BAW,,_;_1,
=0
n—1 tnj

G =71 cos(th)/ sin((tp—; — $)2)BdW;
j=0 tn—j—1

+ sin(jhe2) /tn’j cos((tp—j — s)Q)BdWS> ,

tn—j—1
1
(cos(jhrz)ghwgn,j,l + 7 sin(jh) Mg,

S
|

T

<
Il
o

+ !?7lshﬂjhi?)gdbgn7jfl)

n—1 tn—j
Fpi= 071 Z (cos(jhﬂ)/ sin((t,—; — 5)2)g(X1)ds
j=0 tn—j—1

tn—j—1

+ sin(th)/nij cos((tn—; —s)Q)g(Xj)ds),
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where g, = g(®X}). For the velocity component, we set

g2 : Z sin(jh{2) sin(h§2) — cos(jhi2) cos(h2)) BAW,,_;_1,
j=0

n—1 tn_j
Go = — Z (sm(]hﬂ)/ sin((tp—; — $)2)BdW;
j=0

tn—j—1

+ cos(jhe2) /tnj cos((tp—; — s)Q)BdWS> ,

tn—j—1

n—1
. . h . h
Ty = — Z (sm(]hQ)EhQWgn,j,l - cos(jh.Q)Engn,j
j=0

. h
- COS(Jh-Q)*WOQn—jfl)

Fo 1= — Z (sm Jjhi2) / sin((t,—; — 5)2)g(X1)ds
tpn—j—1
tn—j
- cos(jhﬂ)/ cos((tp—; — s)Q)g(Xi)ds) .
tn—j—1
The nth iterate of the numerical scheme (3) thus reads

X} = cos(nh2)X§ + 27 sin(nh2) X3 + q1 + 11
X2 = —Qsin(nh2) X} + cos(nh§2)XZ + gz + 72,

and for the exact solution we have

X} = cos(nh§2) X + 27 sin(nh2) X3 + G1 + 71
X2, = —02sin(nhs2) X} + cos(nhf2) X2 + Go + 7.

We thus get, for the global mean-square error in the position:
E[Xn = XanllP] = Elllar +m1 — @ = #1)*] < 2E[llgr — @] + 2E[[lre — 71]%].
The first term on the right-hand side is the global mean-square error in the
linear case (see Proposition 1) and the second one is the global error in the
deterministic case (see Theorem 1). We finally obtain

E[[1X; = Xanl?] < 2E[llgr — @[] +2E [ — 71[|*] < C(e* + 1Y),
The bound for the velocity component is obtained in a similar way. O

We conclude this section by mentioning the fact, that for fixed e, the numerical
schemes still converge as the step size goes to zero.
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Remark 3 In this case Taylor expansions of the expressions in the proof of
Lemma 1 can be used to determine the mean-square errors after one step. We
have

h
E[lX7 - X;[%) < IIBIIQIIQ”IIQ/0 Isin(s2) — sin((h — 5)62)|*ds

h n
:anﬂur*n{/|mmawn——§jﬁnwkhnﬁiﬂ?des
0 "s0 n!
< COn?

and similarly
E[|x? - X7IP] < on®.

Hence, for a fixed ¢, we obtain, instead of Theorem 2, the following error
bounds

1 1 2 1/2
(BIx: - x50%) < cn

(E[||X2 - X2 ||2})1/2 < Ch for nh < T
n nh = Y

4 Convergence in the second moment

In this section, we will derive error bounds for the stochastic trigonometric
methods in the second moment. Let us quickly restate the definition.

Definition 2 A numerical method {Y,,} with step size h converges in the
second moment with order v > 0 to the solution Y; of an SDE at time
tn, = nh if v is the largest value such that there exists a positive constant C,
which does not depend on &, and an hg > 0 such that

[E1Yz, 7] = E[IYal"]] < O
for all h € (0, ho).

We first show that the local error in the second moment for the position of
our stochastic trigonometric integrator is of order O(h?®) for linear problems.

Lemma 2 Consider the numerical solution of (1) with g =0 by method (3)
with a step size h < hg (with a sufficiently small ho independent of €) for
which h/e > ¢o > 0 holds. The errors in the second moment after one step of
the numerical scheme satisfy

E[IX711?] - E[IX4%]] < Che® < O
E[IXT1?] - E[IXEI*])] < Ce < Ch,

where the constant C is independent of € and h. That is, the local errors are
of order (at least) one uniformly in the frequencies.
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Proof Let us start with the error in the position. By definitions of the scheme,
of the exact solution, and using some properties of the Wiener increments and
the Ito isometry, we obtain

E[IX1117] = E[IX,1%]] = [E[|27" sin(h2) BAW,|?]
~E[l "0t sin((h — 5)2)BaW, 7]
= |I[£[||;2’1 Sin(hQ)BAWOHﬂ
— /h||rz—1 sin((h — s)2)B||*ds|
< C?}LEQ.
Similarly, concerning the error in the second component, we have
E[IXTI7] - E[IX717]] = [E[llcos(hs2) BAW||?]

h
_ E[H/O cos((h — S)Q)BdWs||2]|

= |E[||cos(h$2) BAW, ||?]

h

7/ [cos((h — 5)12) B||*ds|
0

< Ch.

O

We can now derive global error bounds for the linear case. We obtain the
following result.

Proposition 2 Consider the numerical solution of (1) with g =0 by method
(3) with a step size h < hqy (with a sufficiently small hy independent of ) for
which h/e > ¢y > 0 holds. The errors in the second moment of the numerical
scheme satisfy

E[IXa17] = E[ Xnnll?]| < C*T < Ch?
E[IXA11°] - E[IlXaa)%] < CT for nh < T,
where the constant C' is independent of €, h and n with nh < T. That is,

the global error in the position component is of order two uniformly in the
frequencies.

Proof In order to determine the global order of convergence in the position,
we study the expression [E[||X}[|?] —E[||X},[/*]|. Using the notations of The-
orem 2, we obtain
E[IXalP] = E[IXall?]| = [E[llcos(nhi2) X + 27" sin(nh2) X3 + q1]?]
— E[||cos(nh$2) X + 27 ' sin(nh2) X + ¢1]]|.
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Using properties of the Wiener increments and of the Ito integral, we get

IE[IIX%HQ] E[IXnul?]l = [E[llgall*] = E[lld1]I]]

= |ZIE (227 (cos(jhs2) sin(h2) + sin(jhe2) cos(h2)) BAW,, ;1 ||*]
oo
/ 927 (cos(jh82) sin((tp—; — 5)02) + sin(jh82) cos((t,—; — s)2))B|*ds|

< CE ntfzgj éEQT.
Analogously we get for the global order of convergence in the velocity

|E£||1X§IIQ] E[IX54 1] = [E[lgl”] — E[llg211%]]
= Z E[||(sin(jhs2) sin(hs2) — cos(jhe2) cos(h$2)) BAW,_;_1|?]

+ Z/ (sin (1) sin((tn_; — $)2) + cos(7h2) cos((tn_; — 5)2))B|2ds|
tn j—1
< C’nh <CT
or the boundedness of the global error in the velocity. O

We can now state the main result of this section:

Theorem 3 Under the assumptions of Proposition 2 and Theorem 1, the
global errors in the second moment satisfy

E[IXMP] = E[IXanl?]l < C(€* + (h+)* + h* + (he + €2)) < CI?
E[IX2]1%] - E[IX2,%]] < C(T +h) < CT for nh < T,

where the constant C' only depends on T, K, My, ..., My, ||g]l, ||| and |lg
but is independent of £, h and n with nh < T.

I/||
)

Proof Let us first define the following quantities
p1 = cos(nh2) X +02 L sin(nh2)XZ and  py = —2sin(nh§2) X +cos(nh2) X3
so that the numerical scheme can be written as
X)=pi+q+r and X =p;+q+r.
For the error in the second moment for the position, we thus obtain
E[IXA1%] = B[ Xanl?] = [E[2pT a1 + 20771 + af ¢1 + 2¢] 1+ {11

— 4{ Gy — 7171 = 2p1 1 = 2p 41 — 241 1]

< [E[lqul® = gl + E [l = lI717]|

+ 2E([|p (r1 — 71)[] +2[E[q{ 1 — ¢i 1]
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due to the fact that E{AW,,_;_1] = 0 and due to the martingale property of
the ITto integral. We will now estimate the four terms on the right. Thanks to
Proposition 2, we have

E[llqa]? = lld1l*]] < CTe>.

Using the bounds for the function g, the bounds for the filter functions and
the triangle inequality, we get

E{llr1* = 7112 < E[llra[1?] + E[I#1]%] < (Cn(h? + he))? + (Cnhe)?
< CT?*(h+¢)?.

The Cauchy-Schwarz inequality and Theorem 1 give us the bounds
2E([|p] (r1 —#1)|] < 2[p1|E[[lr1 — 1] < Ch%.

For the last term, we obtain

Ellgi 1| <E[[rlllall] < CT(h+o)E[[q]l] < CT(h+e)\/E[llq]|?]
< CT(h+e¢)

thanks to the Cauchy-Schwarz inequality, the bounds for the function g and
Proposition 2. This finally gives us

2[E[q{ 1 — ¢ #1]| < CT(he + ).
All together, we obtain the bounds for the position
E[IXA07] = E[IXI1P]] < C(® + (h+2)* + h* + (he +&?)).
For the velocity component we consider the expression

EIX21P] — E[I1X2.01%] 1 < [E{llg2ll* = [Ig207]] + [E[llr21* = [I7211]]
+ 2E([|p5 (ra — 72)|] + 2[E[g3 2 — 43 2] .

Similarly, we get the following bounds for the individual terms on the right

Elllg2]* = lg211?]| = OT),  [E[||r2ll”* = [|72]*]| = O(T),
2E[[p3 (r2 — 72)|] = O(h), 2|E[qd r2 — G5 72| = O(T).

This yields for the whole expression
E[IX21%) = E[IX2AlP] | < O(T + h)

or the boundedness of the global error in the second moment for the velocity.
O

As in the mean-square case, we conclude this section by looking at the con-
vergence for a fixed e.
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Remark / We thus fix € and let h tend to zero in order to illustrate the conver-
gence behaviour. Therefore Taylor expansions of the expressions in the proof
of Lemma 2 can be used to determine the errors in the second moment after
one step.

E[IX11?] = E[IXal%]| = [E[|| 27" sin(h2) BAW, ||?]
h
/O |2~ sin((h — s)2)B||*ds|

= [E[||27" sin(h2) BAW, ||°]

h (n) (—s2)™
—1 - (n - 2
/0 [|£2 g sin (hQ)TBH ds|

n>0

< Ch?

and similarly
E[IX71%) - E[I X517 < Ch.

Hence, for a fixed ¢, we obtain, instead of Theorem 3, the following error
bounds

[ X, 1%] = E[| Xanl?]] < Ch
E[IXAI17] = E[IX5ulI°]l < CT for nh <T.

5 Growth rate of the expected energy

The exact solution of our problem (2) with a smooth gradient nonlinearity
g(x) = =VU(x) has the following interesting geometric property:

Applying Ito’s formula, it is known (see for example [15]) that the expected
value of the energy has a linear growth in time:

Tr(BBT) "

(13)
where X¢ = xp and Xg = yo are the initial position, resp. velocity for the
problem (2).

In a geometric numerical integration approach (see the monographs [5,12]
for the deterministic case), one would seek numerical schemes that reproduce
geometric properties of the exact solution of the differential equation. We will
see that the proposed schemes capture almost the correct energy growth rate.

In order to show the almost-linear growth rate of the expected value of the
energy for the numerical solution, we need the following lemma:

E[L (X212 +112X0P) +UXD] = 2 (llvolP + 1120 ]1?) + Ulzo) +

Lemma 3 Under the assumptions of Theorem 2 we have
E[92(ry —#1)||]] < Ch  for nh <T,

where 1 and 71 are defined in the proof of Theorem 2.
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Proof Writing down the definitions of 1 and 7; we get

n—1

N . h . . h . . h
120 — ) =11 (COS(]hQ)EhQWgn,]—,1 +sin(jhe2) Mg, + sm(]hrz)g%gn,j,l)
j=0

- i (cos(jhﬂ)/ o sin((t,—; — 8)2)g(X1)ds
§=0

tn—j—1

+sm(jh9)/"7j c08((tn; s)n)g(xg)ds> I

th—j—1
n—1 n—1

=Y Qcos(jh2)en_j1+ Y _ sin(jh2)el, ;||
j=0 j=0
n—1 n—1

<D Rcos(ih2)en— ||+ | Y sin(Gh2)el,_; ],
j=0 j=0

where

tn—j
En_j_1 = gthn,j,l 7/ Q7 Vsin((th—j — 8)2)g(X})ds and

tn—j—1

(&)

t o
h h "
1= §W1gn7j + Eglognfjfl */ cos((tn—; — 5)2)g(X]) ds.

tn—j—1

We will now use some lemmas from [4] to estimate the above expressions. We
begin by the term with e,_;_;. We write

t o
h " —1 .
en_j_1 = Ehlpg(@lelnqu) - / Q7 sin((t,—j — s)2)g(X1) ds
tn—j—1
1 1
[3pt] + 5fﬂy?gn,j,l — 5h?y'/g(@(l ).

tn—j—1

Using Lemma 1 from [4], we get

1 . h{2 1 1
enjo1 = =50 (sin? (U2) = 0) g(@X} )W znmjoat WG 1~ W2TG(@X] )
with [|zp,—;—1|| < C and ||h§2z,,—;_1]| < C. It follows, see also Lemma 5 from

[4], that

n—1 n—1
. 1 .
1D 2cos(Ghen—j-1ll < ll5vn-1l + B> Y h2cos(jh)zn—j1|
7=0 7=0
1 n—1
+ 1283 h2cos(Gh2) W (gn—s-1 — g(@X} )]

Jj=0
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where v,,_1 is defined as
1, he
. . 2 1
Vp1 = 5hz h{2 cos(jh2) (smc (7) - LT/) g(@thﬂ;l)
j=0

and can be written as (see Lemma 5 from [4])

n—2

vne1 = By (h2)g(@Xg) + Y Ej(h2)(9(@X,, )~ 9(@X; ),

Jj=0

where
B}(€) = ﬁ (sine” (5) — () (sin (& + §) —sin (5))
2

Due to (9) and Lemma 5 from [4], £ are bounded and so is v,,—1. It thus
follows that

n—1 n—1

. 1 .
1D 2cos(jh)en—j-1]| < Ch+Ch*nt||Sh Y hi2 cos(jhW (gn-j-1—9(2X,_ )]
=0 =0

Using the bounds (5) and (9) for the filter functions together with the mean-
square error bounds in the position, we obtain

n—1
IE[HZ 2 cos(jh2)en—j—1] < Ch.

=0

n—1

Now, we have to estimate || > sin(jh{2)e;,_;_;[[. To do this, we first rewrite
=0

as

tn—j

h h

Cpjo1 = Ewlgn—j + Ewogn—j—l —/ cos((tn—j — $)92)g(X 1) ds
tn—j—1

h h h h
= S¥9n—j + S¥0gn—j-1 — E%Q@thn,j) - E%Q@thn,j,l)
tn;
_ / cos((tn—; — s)Q)g(Xél) ds + gllllg(@thnij) + g%g@thn,j,l)
tn—j—1
h h h h
= 54pignr—j'+ Egpognr-j—l'_ §4pig(¢lX?;,j)'_ iipog(gp)(l )

tn—j—1

) = 3h(sinc(hs2) — v1)g(@X} )

tn—j—1

— Sh(sinc(h2) — Wo)g(@X}

— b [ eos((h =) Do(XL, ) —9(@XL,, ) ds

= g [ os((h =B 2@l ) = 0(@X, ) ds
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using Lemma 2 from [4]. The triangle inequality gives us

n—1 n—1

. . h

E[IID sin(ih)el, ;1] < E[ID sin(ih2) 501 (gn-; — 9(@X;, )]

=0 =0
n—1

Ny h

+ E[IIZO sin(j62) 3% (gn—j—1 — 9(PX; )]
=

n—1
+ E[”Z sin(jh2) - dj,_;_1 ],
=0

where dj,_;_; is defined as
1, . 1, .
1= 5h(smc(h_Q) - Q/O)g(éthn,j,l) + 5h(smc(hﬂ) - Wl)g(éﬁthnij)

1

1

30 [ cos((h - B DXL, )~ 9(@XE, ) ds
0

1
1
3 [ eos(( - )G, n) — 9(@XE, ) s
0
Replacing cos(jh{2) by sin(jhs2) in Lemma 6 from [4] (with a shift in the
indices) permits us to bound the terms containing the factors sinc(h{?) — ¥;
for ¢ = 0,1. For the terms containing the integrals, we use the mean-value
theorem and finally, an application of Theorem 2 gives us the desired bound

n—1

E[IY sin(jh2)é,_;_,[] < Ch.

j=0
We thus finally obtain the estimate
E[l92(r1 — #1)]|] < Ch.
O

Theorem 4 Under the assumptions of Theorem 2, the numerical solution (3)
of the stochastic oscillator (2) with a smooth gradient nonlinearity g(z) =
—VU(z) satisfies

Tr(BBT)

5 t,+O(h),

1 1
E[S (IXaIP+H12X,11%) +U (X)) = 3 (lyol*+[£220][*) +U (z0)+
where t,, = nh < T. The constant symbolised by the O-notation only depends
on T, K, My,...,My, |lgll, |¢'l| and ||g”||, but is independent of ¢, h and n
with nh < T.

Remark 5 One can show that the energy of the numerical solution (3) has
exactly the same growth rate as the exact solution of (1) in the case where
g(z) = 0. The proof is an adaptation of the proof of Theorem 2.2 in [1].
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Proof Instead of the expected value of the energy
B[S 2X 817 + S 1X2)2 + U(X})]
we will calculate and estimate the expression
—E[||9X1||2 — 12X, 17 + IX21% = X2, 1°] + E[U(X,) = U(X,,)]
[ 192X5,1% + —IIX onll? + UX5,)]-

Since the last term is the expected value of the total energy along the exact
solution of our problem, it is thus equal to the initial energy plus the drift:

Tr(BBT)
2

E[S 12X 0245 I X220 (X00)] = 21120 ]2+ lyoll>+U (o) + nh.
For the central term, we use the mean-value theorem and Theorem 2 to obtain
E[U(X,) = U(X,n)] = VU E[X; — X, ] = O(h).

Finally, using the notations of Theorem 2, we obtain for the first term:
E[I2X3012 = 12X3,12 + 1 X207 — 1 X2,0%] = E[ll2a )% + ll2l? — [124:]1?
= [l6211?] + 2(2p1)"E[Q2(r1 — 71)] + 2p3 E[r2 — 2] + E[[| 211 — [|271]?]
+ E[llr2)l? = [172]1?] + 2E[(2q1)" (2(r1 = #1))] + 2E[gF (r2 — 72)].

We will now estimate each of the above terms. Let us begin with

E[[192g:]1% + llg2lI”] Z AW,y BT (sin®(h42) cos® (jhs2)
+ sin (hQ) sin®(jh2)) BAW,,_;_1
+ AW BT (cos?(hs2) sin 2(jhe2)
+ cos?(hs2) cos®(jhi2)) BAW,,—;_1 ]|
— E[nAWZ_,_ | BTBAW,_; 1] = Tr(BBT )nh.
Analogously we find E[[|£241]|* + ||¢2*] = Tr(BB”)nh and thus

E[ll12q% + llgz2l1* — [124]1% — llg2]1?] =
Next, using Lemma, 3 and Theorem 1 we get
2(02p1) E[2(r1 — #1)] + 2p5 E[ro — #2] = O(h).

For the following term, the Cauchy-Schwarz inequality together with Lemma 3
and Theorem 1 give us the bounds

E[[|2r1]? = |271]17] +E[llr2]* = [I72]1?] = E[(2(r1 — 71))" (2(r1 + 71))]
+ E[(Tg — 722)T(7“2 + 722)} = O(h)
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Finally, for the last term, we have
2(02q1)" (2(r1 — 1)) 4 2q5 (ra — 2) < 2| 2q1][[|2(r1 — 1)l + 2l g2 72 — 72|

by the Cauchy-Schwarz inequality. Using Lemma 3 and Theorem 2 we thus
obtain

E[2(02¢1)" (2(r1 — 1)) + 2q5 (r2 — F2)] = O(h).

This concludes the proof. O

6 Numerical experiments

In this final section, we will consider two problems in order to illustrate the
robustness of the stochastic trigonometric schemes.

6.1 The stochastic Fermi-Pasta-Ulam problem

The deterministic Fermi-Pasta-Ulam (FPU) problem is often used as a model
for highly oscillatory problems. For more details on the deterministic case
we refer to [5, Chapters I, XIII]. In this section, we will look at a stochastic
FPU problem in order to demonstrate the growth rate in the energy and the
convergence behaviour of the stochastic trigonometric method.

The deterministic FPU problem describes a chain of 2/m mass points, con-
nected with alternating soft nonlinear and stiff linear springs (with angular
frequency w := = > 1). The variables ¢, ..., ¢2m denote the displacements
of the mass poirfts, the variables p; = ¢; their velocities. The behaviour of
the system is described by a Hamiltonian system wherein the total energy
is conserved. After a change of coordinates we obtain the new Hamiltonian
function

m
2 WP 2 1
H(y,(E) :Ezyz + 72‘1'771—1-1 + Z((‘rl _'Tﬁri-l) +

i=1 i=1

m—1
+ (Tit1 — Tiptit1 — Ti — Tings)” + (5 + T2m) )a
i=1
where x;, i = 1,..., 7 represents a scaled displacement of the ith stiff spring,

ZTm4i @ scaled expansion of the ith stiff spring and y; and y7 4 their velocities.
Furthermore, in the deterministic case, another quantity is almost con-
served, the oscillatory energy. Let

1
L (@it Yints) = 5 Wiy + 0 2515)
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denote the energy of the jth stiff spring. As time passes, there is an exchange
of energy between the stiff springs, but the total oscillatory energy of our
problem

I = ilj
i=1

remains almost conserved.
Writing down the Hamiltonian equations, we obtain the following second
order differential equation:

i+ 2% = g(x) with 2= (8 a?[) ) (14)

where [ is the m x m identity matrix and the frequency w is supposed to be
large.

Now we will turn to the stochastic Fermi-Pasta-Ulam problem. By adding
a noise term to the equation (14) we get the system

Since the matrix (2 is not positive-definite, the convergence of the stochastic
trigonometric methods is not obvious. However, setting {2 = 0, the expression
for the mean-square error in the position in the proof of Proposition 1 reduces
to

E[|I X5 = Xanll?] = D_E[II(d] + ((n = 5)h)d3)||°]
j=0

n ti+1 )
-} N [CREREEIRS
j=0 t

J

o [ 2
—IBIPY. / (t; — 5)%ds

j=0"1ti
1 n
_ 2 3
= YpRyon
i=0

since d3 = 0 and thus we obtain
1/2
(BlIX: = XL0%) < on,
for t,, = nh < T. For the mean-square error in the velocity we find analogously

2 2 2 1/2
(BlIX2 - Xx2,%]) " < cn.
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For the expression for the error in the second moment for the position in the
proof of Proposition 2 we obtain in the case 2 = 0:

I]E[UX%IIQ] — B[ X511

n—

n—1 tnj
= 1> E[[l(h+ i) BAW, ;1 [P] = / [(tn—j — s + jh)B|]*ds|
7=0

=0 tn—j-1

n—1 n—1 tn—j
= |Z(h+jh)2h||3||2—2/t (ta—j — s+ jh)?||B||*ds|
i=0 §=0 =i

n—1
— 2 - 2 1 . 371 . 3
*'ZO”B” (hh+ )2 + L1 = LGk + )]
J:
n—1

=Y _IBI? (jh* +2/31°)]
§=0
< Ch.
Analogously we get for the velocity component

E[IX217] - E[IX5.07] < CT.

Due to the block structure of the matrix {2 we can split the equation (15) into
two equations and write X} = (X}, X/,)7 and X7 = (X7, X?,)", where
X}, X2, X}, X2, € R™. The slow component of the system will thus be
X/, and the fast one X/,. Therefore we obtain for the mean-square error in
position

1/2 1/2
(BOXE=X207) " = (B[IXE, — XL P +E[IXE - X al?]) T < Ch
and similarly for the velocity component

1/2
(BlIx2 - x2,0%) " < o1V,
For the errors in the second moment, we get
E[IX,1%] = E[IXanll?]| < Ch, [E[IXZ1?] = E[IX74lIP]| < OT.

For our numerical experiments, we will take 2m = 6 mass points, a spring
constant w = 50, and we will consider

21(0) =1, $1(0) =1, 24(0)=w™", 1(0)=1
and zero for the remaining initial values. For the stochastic term we choose
B=(010.5500.01)T.

We finally want to note that all the expected values are computed numerically
using sample averages. In order to make these approximations as accurate as
necessary, we took enough sample paths in all our numerical experiments.
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Figure 1 displays the linear growth rate of the expectation of the energy
along the numerical solution of the stochastic trigonometric method (3) with
filters given in Example 3 and along the numerical solution given by the Euler-
Maruyama scheme. The growth rate given by Theorem 4 is observed and on
the contrary, if we solve (15) by the Euler-Maruyama method, the expectation
of the total energy of the system grows exponentially.

600
— Exact Exact
—#— Stochastic Trigonometric Method —+#— Euler-Maruyama

500

400
400
E[H] EMH] 44,

200

100

0 10 20 30 40 50 4 2 4 6 8 10
Time Time

Fig. 1 The stochastic trigonometric method (3) with step size h = 0.1 and M = 10000
sample paths reproduces the linear growth of the energy almost exactly (left picture), while
the numerical energy obtained by the Euler-Maruyama method with step size h = 10~% and
M = 10000 sample paths grows exponentially (right picture).

In Figure 2 we notice a linear growth of the total oscillatory energy in
the stochastic case. As a comparison, we plot the oscillatory energy of the
deterministic FPU problem. Both in the deterministic and in the stochastic
case, there is an exchange of energy between the stiff springs.

14 2500
E[l]

2000

1500

1000
Bl
500 E[I3]

Ell,)

0 50 100 150 200 0 50 100 150 200
Time Time

Fig. 2 In the deterministic case the total oscillatory energy is almost conserved, while the
stiff springs exchange energy among each other (left picture). In the stochastic case there
is also an exchange of energy between the stiff springs, but the expected value of the total

oscillatory energy obtained by method (3) with step size h = 0.01 and M = 10000 sample
paths grows linearly (right picture).

The convergence behaviour of the method is illustrated in Figures 3 and 4.
We calculated M = 20000 sample paths for the mean-square convergence and
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for the convergence in the second moment. For the error in the second moment
in the velocity component we chose w = 10 in order to avoid the large number
of samples that would be required for w = 50.

Fig. 3 Mean-square error in the position (left picture) and in the velocity (right picture)
for the stochastic FPU problem (15). The dashed lines have slope one.

-—-h

Fig. 4 Error in the second moment for the position (left picture) and for the velocity (right
picture) component for the stochastic FPU problem (15). The dashed lines have slope one.

Finally, in order to illustrate the fact that our error bounds are independent
of the large parameter w, we chose w = 500 in Figure 5 and observe the same
orders of convergence for the position component as for smaller w.

6.2 Semi-discretisation of a semi-linear stochastic wave equation

As a final example, we consider the pseudo-spectral semi-discretisation (using
the eigenfunctions e, (x) = \/2/7sin(nz)) of the semi-linear stochastic wave
equation from [15]:

Uit (2, 1) = 02 uga (2, ) + (ag — aglu(z, t)|32)u(z, t) + bE,

where (x,t) € (0,7) x (0,00) and £ is white in time and spatially correlated.
We impose homogeneous boundary conditions u(0,¢) = u(w,t) = 0. This gives
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-—-h

Fig. 5 Mean-square error (left picture) and error in the second moment (right picture) for
the position component for the stochastic FPU problem (15) with w = 500. The dashed
lines have slope one.

us the following system of SDEs for the Fourier coefficients ¢,, = ¢, (¢):

o0

én + (0'27’L2 — ao)Cn + GQ(Z C?n)cn = ann

m=1

Truncating this system at N F' Fourier modes, we end up with a system of the
form (1).

To illustrate the excellent long-time behaviour of the stochastic trigono-
metric scheme (3) with filter functions given by Example 3, we compute the
expected energy from Theorem 4, i.e. the trace formula in [15]:

. NF NF )
E[§ Z(%(UQ + (0®n? — ao)cn(t)Q) + %(Z cn(t)z) ] _
. Z:l(vn(o)2 + (0?0 — ag)en (0)?) + %(Z:lcn(o)zy + Z:lbi%

where NF is the number of Fourier modes and v, (t) = ¢,(t). Figure 6 shows
the expected value of the energy for the following parameters: NF = 1024
Fourier-modes, 0 = 1, ag = 0.5, as = 0.2, b, = 1, M = 1000 samples, h = 0.2
time step and initial values ¢, (0) = 0 and v,(0) = 0 except for the first 500
Fourier modes, where we set ¢,(0) = 0.01. The time interval ranges from
T =0 to T = 100. We also display one sample trajectory of the numerical
solution to the wave equation. A detailed analysis of the good behaviour of the
stochastic trigonometric methods for the time discretisation of the stochastic
wave equation will be presented in a forthcoming publication.
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