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2 David Cohen, Magdalena Siggnot small ompared to ε, that is, all the eigenvalues of 1

ε2
A are away fromzero. We will also assume that the norm of the matrix B ∈ R

d×m is smallompared to the norm of the fast fore F (x) = 1

ε2
Ax. At this point, we wouldlike to add, that we an also onsider the ase, where the matrix A has zero aseigenvalues. For ease of presentation, this will be shown only in the last setionof the paper. Here and in the following we will work with the Eulidean normor with norms indued by the Eulidean norm.We are interested in numerial methods that an attain good auray withstep sizes whose produt with the large frequenies in (1) need not to be small.So that the error bounds in the position of the methods should be independentof the produt of the step size with the frequenies of our problem.The proposed shemes an be viewed as a stohasti generalisation of thetrigonometri methods (or exponential integrators) for highly osillatory de-terministi problems (see [2℄, [5, Chapter XIII℄ and referenes therein) andappeared for the �rst time in [1℄ for the numerial disretisation of salarstohasti osillators with a high frequeny. Sine a key building-blok in thedevelopment of stohasti trigonometri methods is the variation-of-onstantsformula, we begin by rewriting (1) as a system of �rst order SDE (setting

X1
t := Xt, X2

t := Ẋt and Ω :=
1

ε
A1/2):

(

dX1
t

dX2
t

)

=

(

0 1
−Ω2 0

)(

X1
t

X2
t

)

dt+

(

0
g(X1

t )

)

dt+

(

0
B

)

dWt. (2)The variation-of-onstants formula for the above equation will then suggest theonstrution of the stohasti trigonometri shemes (see Setion 2 for detailson the derivation of the numerial methods). After that, we will present themain theorems on the onvergene of the shemes in Setion 3 and Setion 4. Itturns out that the proposed shemes o�er additional features similar to the oneof the exat solution of (2). This will be studied in more details in Setion 5.Numerial experiments demonstrating the onvergene and the good long-timebehaviour of the stohasti trigonometri shemes are presented in the �nalsetion.Let us mention that the use of the variation-of-onstants formula to de-rive e�ient numerial shemes for large sti� systems of �rst order di�erentialequations is not new. In the deterministi setting, one may onsult, for ex-ample, [6℄, [13℄ and more reently the review [7℄ on exponential integrators.Stohasti exponential integrators were also onsidered for the numerial ap-proximation of paraboli stohasti partial di�erential equations in [14℄, [9℄,[10℄ and referenes therein.We onlude the introdution by mentioning that there are only few nu-merial works in the literature to solve sti� systems of the form (1). We areonly aware of the work [17℄. The results given in this artile are, in the spirit,losely related to ours; the tehniques and the equation onsidered here arehowever di�erent. Let us �nally mention, that for the linear salar ase andwith a frequeny 1/ε = 1 (non-sti� problems), we are only aware of the works



Trigonometri methods for sti� seond-order SDEs 3[8℄, [16℄ and [18℄. For a numerial omparison between these shemes and thestohasti trigonometri methods, we refer to [1℄.2 Stohasti trigonometri methodsIn this setion we reall the de�nition of the (stohasti) trigonometri shemes.For details on the derivations we refer to [5, Chapter XIII℄ for the deterministiase and to [1℄ for the stohasti salar ase.As stated in the introdution, the main building-blok for the onstru-tion of the stohasti trigonometri integrators is the variation-of-onstantsformula. The exat solution of (2) with initial values X1
0 = x0 and X2

0 = y0satis�es
(

X1
t

X2
t

)

=

(

cos(tΩ) Ω−1 sin(tΩ)
−Ω sin(tΩ) cos(tΩ)

)(

x0
y0

)

+

∫ t

0

(

Ω−1 sin
(

(t− s)Ω
)

cos
(

(t− s)Ω
)

)

g(X1
s )ds+

∫ t

0

(

Ω−1 sin
(

(t− s)Ω
)

cos
(

(t− s)Ω
)

)

BdWs.We will sometimes use the notation t sin(tΩ) for Ω−1 sin(tΩ), whih is de�nedfor arbitrary matries Ω.We now disretise the above deterministi and Ito integrals and therebyobtain a family of expliit trigonometri numerial integrators:
(

X1
n+1

X2
n+1

)

=

(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

)(

X1
n

X2
n

)

+





h2

2
Ψg(ΦX1

n)
h

2

(

Ψ0g(ΦX
1
n) + Ψ1g(ΦX

1
n+1)

)



+

(

Ω−1 sin(hΩ)B∆Wn

cos(hΩ)B∆Wn

)

,(3)where h denotes the step size of the sheme and ∆Wn =W (tn+1)−W (tn) theWiener inrements. Here Ψ = ψ(hΩ) and Φ = φ(hΩ), where the �lter funtions
ψ, φ are even, real-valued funtions with ψ(0) = φ(0) = 1. Moreover, we have
Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ) with even funtions ψ0, ψ1 satisfying ψ0(0) =
ψ1(0) = 1. The purpose of these �lter funtions is to attenuate numerialresonanes, see [5, Chapter XIII℄ for the deterministi ase. The hoie ofthe �lter funtions may also have a substantial in�uene on the long-timeproperties of the method. We will not deal with these issues in the presentpaper. We note that the family of integrators (3) redues (in the symmetriase) to the Störmer-Verlet sheme for Ω = B = 0 and give the exat solutionfor g = 0 and B = 0.Example 1 Replaing the deterministi integral in the variation-of-onstantsformula for the exat solution by its trapezoidal rule approximation yields the



4 David Cohen, Magdalena Siggfollowing expliit sheme (see [3℄ for the deterministi ase):
(

X1
n+1

X2
n+1

)

=

(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

)(

X1
n

X2
n

)

+
h

2

(

Ω−1 sin(hΩ)gn
gn+1 + cos(hΩ)gn

)

+

(

Ω−1 sin(hΩ)B∆Wn

cos(hΩ)B∆Wn

)

,where gn = g(X1
n). This is exatly method (3) for the hoies ψ(ζ) = sin(ζ), ψ0(ζ) =

cos(ζ), ψ1(ζ) = 1 and φ(ζ) = 1.Example 2 Another possibility is to use only the left-hand endpoint to dis-retise the deterministi integral. This gives us the following �lter funtions:
ψ(ζ) = 2 sin(ζ), ψ0(ζ) = 2 cos(ζ), ψ1(ζ) = 0 and φ(ζ) = 1. Note that we donot have ψ1(0) = 1. One reognises the exponential Euler sheme for paraboliproblems from [14℄. Another disretisation of the deterministi integral (with�lter funtions ψ(ζ) = 2(1 − cos(ζ))/ζ2, ψ0(ζ) = 2 sin(ζ), ψ1(ζ) = 0 and
φ(ζ) = 1) gives us the exponentially �tted Euler sheme from [9℄. We remarkthat the stohasti part in the sheme presented in [9℄ is not treated in the sameway as in (3). Moreover, a nie feature of the numerial integrator proposedin [9℄ is that it takes advantage of a smoothing e�et of a linear funtional ofthe noise-term.Remark 1 Other disretisations of the stohasti integral present in the variation-of-onstants formula are possible and will lead to various numerial shemes.We an for example use the following approximation:

∫ h

0

(

Ω−1 sin
(

(h− s)Ω
)

cos
(

(h− s)Ω
)

)

BdWs ≈

(

Ω−1 sin(φ̃(hΩ))B∆W0

cos(φ̃(hΩ))B∆W0

)

.Taking the trivial hoie φ̃ ≡ 0, one obtains the numerial sheme proposedby Toino in [18℄ for salar linear seond-order SDE Ẍt +Xt = αẆt. Howevera more natural and appropriate disretisation of the integral is by taking theRiemann left-end points, that is with the hoie φ̃(x) = x, and thus obtain theapproximation present in method (3). We will only onsider this disretisationin the present paper.Sine we are interested in using large step sizes, we will onsider the numer-ial solution of (1) by method (3) with a step size h ≤ h0 (with a su�ientlysmall h0 independent of ε) for whih
h

ε
≥ c0 > 0.3 Mean-square onvergene analysisIn this setion, we will derive mean-square error bounds over �nite time inter-vals for the family of stohasti trigonometri methods derived in Setion 2.To do so, we �rst look at the mean-square error for linear problems, that is



Trigonometri methods for sti� seond-order SDEs 5equation (1) with g ≡ 0. The proofs follow the lines of the salar ase givenin [1℄. Combining these results with the results from [4℄, this then permits usto derive order one mean-square error bounds, for the position omponent,independent of the produt of the step size with the large frequenies presentin our problem.Let us �rst reall the de�nition of mean-square onvergene, see for example[11℄.De�nition 1 A numerial method {Yn} with step size h onverges in themean-square sense with order β > 0 to the solution Ytn of an SDE at time
tn = nh if β is the largest value suh that there exists a positive onstant C,whih does not depend on h, and an h0 > 0 suh that

(

E
[

‖Ytn − Yn‖
2
]

)1/2

≤ Chβfor all h ∈ (0, h0).We now show that the loal mean-square error in the position of ourstohasti trigonometri integrator is of order O(h3/2) for linear problems.Lemma 1 Consider the numerial solution of (1) with g ≡ 0 by method (3)with a step size h ≤ h0 (with a su�iently small h0 independent of ε) for whih
h/ε ≥ c0 > 0 holds. The mean-square errors after one step of the numerialsheme satisfy

(

E
[

‖X1
1 −X1

h‖
2
]

)1/2

≤ Cεh1/2 ≤ Ch3/2

(

E
[

‖X2
1 −X2

h‖
2
]

)1/2

≤ Ch1/2,where the onstant C depends on the norm of the matrix B, but is independentof ε and h. That is, the loal errors are of order (at least) 1/2 uniformly inthe frequenies.Proof Let us start with the loal mean-square error in the position. By de�-nition of the method and by the variation-of-onstants formula for the exatsolution, we obtain
E
[

‖X1
1 −X1

h‖
2
]

= E
[

‖

∫ h

0

Ω−1(sin(hΩ)− sin((h− s)Ω))BdWs‖
2
]

.Using the Ito isometry and the triangle inequality, we get
E
[

‖X1
1 −X1

h‖
2
]

≤ ‖B‖2‖Ω−1‖2
∫ h

0

‖sin(hΩ)− sin((h− s)Ω)‖2ds

≤ C‖Ω−1‖2h.



6 David Cohen, Magdalena SiggUsing the de�nition of the matrix Ω, we end up with the stated bounds forthe loal error in the position omponent. The estimate for the error in theveloity omponent is obtained in a similar way: we have
E
[

‖X2
1 −X2

h‖
2
]

= E
[

‖

∫ h

0

(cos(hΩ)− cos((h− s)Ω))BdWs‖
2
]

≤ ‖B‖2
∫ h

0

‖cos(hΩ)− cos((h− s)Ω)‖2ds

≤ Ch.

⊓⊔We now turn our attention to the global mean-square error of the stohastitrigonometri integrator (3) for linear systems. We obtain the following result.Proposition 1 Consider the numerial solution of (1) with g ≡ 0 by method(3) with a step size h ≤ h0 (with a su�iently small h0 independent of ε) forwhih h/ε ≥ c0 > 0 holds. The mean-square errors of the numerial shemesatisfy
(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ Cε ≤ Ch

(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ CT 1/2 for nh ≤ T,where the onstant C is independent of ε, h and n with nh ≤ T . That is,the global error in the position omponent is of order 1 uniformly in the fre-quenies. Unfortunately, we obtain a non-uniform global error in the veloityomponent.Remark 2 We would like to point out, that it is not surprising to obtain anon-uniform global error in the veloity in the stohasti ase. This was alsoobserved in [17℄.Proof We start by substituting the exat solution into the numerial sheme(3) and obtain
(

X1
tn+1

X2
tn+1

)

= R ·

(

X1
tn

X2
tn

)

+

(

Ω−1 sin(hΩ)B∆Wn

cos(hΩ)B∆Wn

)

+

(

d1n
d2n

)

, (4)where tn = nh, the matrix R =

(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

) and the defets
d1n =

∫ tn+1

tn

Ω−1 sin((tn+1 − s)Ω)BdWs −Ω−1 sin(hΩ)B∆Wn ∈ R
d

d2n =

∫ tn+1

tn

cos((tn+1 − s)Ω)BdWs − cos(hΩ)B∆Wn ∈ R
d.



Trigonometri methods for sti� seond-order SDEs 7By Lemma 1 and properties of the Ito integral, we have the following estimatesfor the defets
E
[

d1n
]

= E
[

d2n
]

= 0, E
[

‖d1n‖
2
]

= O(ε2h), E
[

‖d2n‖
2
]

= O(h).We now de�ne the errors ejn = Xj
tn −Xj

n ∈ R
d, for j = 1, 2. A subtration of(4) from the de�nition of the sheme gives us

En+1 = R · En + dn,where En =

(

e1n
e2n

) and dn =

(

d1n
d2n

). A reursion leads to the following formulafor the errors:
En+1 = Rn+1E0 +

n
∑

j=0

Rn−jdj =

n
∑

j=0

Rn−jdj ,with the matrix Rn−j =

(

cos((n− j)hΩ) Ω−1 sin((n− j)hΩ)
−Ω sin((n− j)hΩ) cos((n− j)hΩ)

).All together and the independene of the Wiener inrements give:
E
[

‖e1n+1‖
2
]

= E
[

‖
n
∑

j=0

(cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j )‖
2
]

=

n
∑

j=0

E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

+ 2
∑

j<ℓ

E
[(

cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j
)T

(

cos((n− ℓ)hΩ)d1ℓ +Ω−1 sin((n− ℓ)hΩ)d2ℓ
)]

=

n
∑

j=0

E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

.One again using the Ito isometry, we obtain
E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

= E
[

∫ tj+1

tj

|| cos((n− j)hΩ)Ω−1(sin((tj+1 − s)Ω)− sin(hΩ))B

+ Ω−1 sin((n− j)hΩ)(cos((tj+1 − s)Ω)− cos(hΩ))B||2ds
]

.Similar to the proof of Lemma 1, we an bound the above term with:
E
[

‖cos((n− j)hΩ)d1j +Ω−1 sin((n− j)hΩ)d2j‖
2
]

= O(hε2).Finally summing up, using the fat that h/ε ≥ c0 and that nh ≤ T give thedesired bound for the position omponent:
E
[

‖e1n‖
2
]

= E
[

‖X1
n −X1

nh‖
2
]

≤ CTε2 ≤ CTh2.The bound for the veloity omponent is obtained in a similar way. ⊓⊔



8 David Cohen, Magdalena SiggIt is now time to onsider the nonlinear ase (2). Our onvergene proofheavily relies on the main result given in [4℄ for the orresponding deterministiase. For ease of reading we �rst reall the main theorem of [4℄:Theorem 1 (Theorem 1 in [4℄) Let us onsider the deterministi problem
ẍ + Ax = g(x), with A a positive semi-de�nite symmetri matrix, and thenumerial solution given by (3) with B = 0. Under the following assumptions:1. Suppose that g, g′ and g′′ are bounded.2. Assume that the exat solution satis�es 1

2
‖ẋ(t)‖2 +

1

2
‖Ωx(t)‖2 ≤

1

2
K2 for

0 ≤ t ≤ T .3. The �lter funtions have to satisfy the following assumptions:
max
ξ≥0

|χ(ξ)| ≤M1, for χ = φ, ψ, ψ0, ψ1 (5)for some onstantM1. There exist further onstants M2, M3, M4, M5, M6and M7 suh that
max
ξ≥0

∣

∣

∣

∣

φ(ξ)− 1

ξ

∣

∣

∣

∣

≤M2, (6)
max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

1

sin

(

ξ

2

)

( sin2 ( ξ

2

)

− ψ(ξ)
)

∣

∣

∣

∣

∣

∣

∣

≤M3, (7)
max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

1

ξ sin

(

ξ

2

) ( sin(ξ)− χ(ξ))

∣

∣

∣

∣

∣

∣

∣

≤M4, χ = φ, ψ0, ψ1, (8)
max
ξ≥0

|ξψ(ξ)| ≤M5, max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

ξ

sin

(

ξ

2

)

( sin2 ( ξ

2

)

− ψ(ξ)
)

∣

∣

∣

∣

∣

∣

∣

≤M6 and (9)
max
ξ≥0

∣

∣

∣

∣

∣

∣

∣

1

sin

(

ξ

2

) ( sin(ξ)− ψi(ξ))

∣

∣

∣

∣

∣

∣

∣

≤M7, i = 0, 1. (10)Moreover, let us de�ne M := max
i=1,...,7

Mi.Then the error in the position satis�es
‖xtn − xn‖ ≤ Ch2, 0 ≤ tn = nh ≤ T. (11)The onstant C only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, butnot on ε. If, in addition, (9) and (10) are satis�ed, then
‖ẋtn − ẋn‖ ≤ C̃h, 0 ≤ tn = nh ≤ T. (12)The onstant C̃ only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, butnot on ε.



Trigonometri methods for sti� seond-order SDEs 9As already noted in [4℄, these error bounds are independent of the dimension ofthe problem and the onstant C (resp. C̃) does not depend on the large normof the matrix present in our problem. These properties are very desirable, forexample if the system (1) results from a semi-disretisation of a nonlinear waveequation. In this ase, the bounds are independent of the mesh size used forthe spatial disretisation.Example 3 The following hoies for the �lter funtions ful�ll all the aboveonditions, [4℄:
φ(ξ) = sin(ξ), ψ(ξ) = sin3(ξ), ψ0(ξ) = cos(ξ) sin2(ξ), and ψ1(ξ) = sin2(ξ).We an now give the main result of this setion:Theorem 2 Under the assumptions of Proposition 1 and Theorem 1, theglobal mean-square errors satisfy

(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ C(ε2 + h4)1/2 ≤ Ch

(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ CT 1/2 for nh ≤ T,where the onstant C only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖,but is independent of ε, h and n with nh ≤ T .Proof Let us introdue the following notations for the position omponent:
q1 := Ω−1

n−1
∑

j=0

(

cos(jhΩ) sin(hΩ) + sin(jhΩ) cos(hΩ)
)

B△Wn−j−1,

q̂1 := Ω−1
n−1
∑

j=0

(

cos(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)BdWs

+ sin(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)BdWs

)

,

r1 :=

n−1
∑

j=0

(

cos(jhΩ)
h

2
hΨgn−j−1 +Ω−1 sin(jhΩ)

h

2
Ψ1gn−j

+ Ω−1 sin(jhΩ)
h

2
Ψ0gn−j−1

)

r̂1 := Ω−1
n−1
∑

j=0

(

cos(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)g(X1
s )ds

+ sin(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s )ds

)

,



10 David Cohen, Magdalena Siggwhere gn = g(ΦX1
n). For the veloity omponent, we set

q2 :=

n−1
∑

j=0

(

sin(jhΩ) sin(hΩ)− cos(jhΩ) cos(hΩ)
)

B△Wn−j−1,

q̂2 := −

n−1
∑

j=0

(

sin(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)BdWs

+ cos(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)BdWs

)

,

r2 := −

n−1
∑

j=0

(

sin(jhΩ)
h

2
hΩΨgn−j−1 − cos(jhΩ)

h

2
Ψ1gn−j

− cos(jhΩ)
h

2
Ψ0gn−j−1

)

r̂2 := −

n−1
∑

j=0

(

sin(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)g(X1
s )ds

− cos(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s )ds

)

.The nth iterate of the numerial sheme (3) thus reads
X1

n = cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 + q1 + r1

X2
n = −Ω sin(nhΩ)X1

0 + cos(nhΩ)X2
0 + q2 + r2,and for the exat solution we have

X1
nh = cos(nhΩ)X1

0 +Ω−1 sin(nhΩ)X2
0 + q̂1 + r̂1

X2
nh = −Ω sin(nhΩ)X1

0 + cos(nhΩ)X2
0 + q̂2 + r̂2.We thus get, for the global mean-square error in the position:

E
[

‖X1
n −X1

nh‖
2
]

= E
[

‖q1 + r1 − q̂1 − r̂1‖
2
]

≤ 2E
[

‖q1 − q̂1‖
2
]

+ 2E
[

‖r1 − r̂1‖
2
]

.The �rst term on the right-hand side is the global mean-square error in thelinear ase (see Proposition 1) and the seond one is the global error in thedeterministi ase (see Theorem 1). We �nally obtain
E
[

‖X1
n −X1

nh‖
2
]

≤ 2E
[

‖q1 − q̂1‖
2
]

+ 2E
[

‖r1 − r̂1‖
2
]

≤ C(ε2 + h4).The bound for the veloity omponent is obtained in a similar way. ⊓⊔We onlude this setion by mentioning the fat, that for �xed ε, the numerialshemes still onverge as the step size goes to zero.



Trigonometri methods for sti� seond-order SDEs 11Remark 3 In this ase Taylor expansions of the expressions in the proof ofLemma 1 an be used to determine the mean-square errors after one step. Wehave
E
[

‖X1
1 −X1

h‖
2
]

≤ ‖B‖2‖Ω−1‖2
∫ h

0

‖sin(hΩ)− sin((h− s)Ω)‖2ds

= ‖B‖2‖Ω−1‖2
∫ h

0

‖sin(hΩ)−
∑

n≥0

sin(n)(hΩ)
(−sΩ)n

n!
‖2ds

≤ Ch3and similarly
E
[

‖X2
1 −X2

h‖
2
]

≤ Ch5.Hene, for a �xed ε, we obtain, instead of Theorem 2, the following errorbounds
(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ Ch

(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ Ch for nh ≤ T.4 Convergene in the seond momentIn this setion, we will derive error bounds for the stohasti trigonometrimethods in the seond moment. Let us quikly restate the de�nition.De�nition 2 A numerial method {Yn} with step size h onverges in theseond moment with order γ > 0 to the solution Ytn of an SDE at time
tn = nh if γ is the largest value suh that there exists a positive onstant C,whih does not depend on h, and an h0 > 0 suh that

|E
[

‖Ytn‖
2
]

− E
[

‖Yn‖
2
]

| ≤ Chγfor all h ∈ (0, h0).We �rst show that the loal error in the seond moment for the position ofour stohasti trigonometri integrator is of order O(h3) for linear problems.Lemma 2 Consider the numerial solution of (1) with g ≡ 0 by method (3)with a step size h ≤ h0 (with a su�iently small h0 independent of ε) forwhih h/ε ≥ c0 > 0 holds. The errors in the seond moment after one step ofthe numerial sheme satisfy
|E
[

‖X1
1‖

2
]

− E
[

‖X1
h‖

2
]

| ≤ Chε2 ≤ Ch3

|E
[

‖X2
1‖

2
]

− E
[

‖X2
h‖

2
]

| ≤ Cε ≤ Ch,where the onstant C is independent of ε and h. That is, the loal errors areof order (at least) one uniformly in the frequenies.



12 David Cohen, Magdalena SiggProof Let us start with the error in the position. By de�nitions of the sheme,of the exat solution, and using some properties of the Wiener inrements andthe Ito isometry, we obtain
|E
[

‖X1
1‖

2
]

− E
[

‖X1
h‖

2
]

| = |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

− E
[

‖

∫ h

0

Ω−1 sin((h− s)Ω)BdWs‖
2
]

|

= |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

−

∫ h

0

‖Ω−1 sin((h− s)Ω)B‖2ds|

≤ Chε2.Similarly, onerning the error in the seond omponent, we have
|E
[

‖X2
1‖

2
]

− E
[

‖X2
h‖

2
]

| = |E
[

‖cos(hΩ)B∆W0‖
2
]

− E
[

‖

∫ h

0

cos((h− s)Ω)BdWs‖
2
]

|

= |E
[

‖cos(hΩ)B∆W0‖
2
]

−

∫ h

0

‖cos((h− s)Ω)B‖2ds|

≤ Ch.

⊓⊔We an now derive global error bounds for the linear ase. We obtain thefollowing result.Proposition 2 Consider the numerial solution of (1) with g ≡ 0 by method(3) with a step size h ≤ h0 (with a su�iently small h0 independent of ε) forwhih h/ε ≥ c0 > 0 holds. The errors in the seond moment of the numerialsheme satisfy
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ Cε2T ≤ Ch2

|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT for nh ≤ T,where the onstant C is independent of ε, h and n with nh ≤ T . That is,the global error in the position omponent is of order two uniformly in thefrequenies.Proof In order to determine the global order of onvergene in the position,we study the expression |E
[

‖X1
n‖

2
]

−E
[

‖X1
nh‖

2
]

|. Using the notations of The-orem 2, we obtain
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| = |E
[

‖cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 + q1‖
2
]

− E
[

‖cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 + q̂1‖
2
]

|.



Trigonometri methods for sti� seond-order SDEs 13Using properties of the Wiener inrements and of the Ito integral, we get
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| = |E
[

‖q1‖
2
]

− E
[

‖q̂1‖
2
]

|

= |
n−1
∑

j=0

E
[

‖Ω−1(cos(jhΩ) sin(hΩ) + sin(jhΩ) cos(hΩ))B∆Wn−j−1‖
2
]

−

n−1
∑

j=0

∫ tn−j

tn−j−1

‖Ω−1(cos(jhΩ) sin((tn−j − s)Ω) + sin(jhΩ) cos((tn−j − s)Ω))B‖2ds|

≤ Cε2nh ≤ Cε2T.Analogously we get for the global order of onvergene in the veloity
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| = |E
[

‖q2‖
2
]

− E
[

‖q̂2‖
2
]

|

= |

n−1
∑

j=0

E
[

‖(sin(jhΩ) sin(hΩ)− cos(jhΩ) cos(hΩ))B∆Wn−j−1‖
2
]

+

n−1
∑

j=0

∫ tn−j

tn−j−1

‖(sin(jhΩ) sin((tn−j − s)Ω) + cos(jhΩ) cos((tn−j − s)Ω))B‖2ds|

≤ Cnh ≤ CTor the boundedness of the global error in the veloity. ⊓⊔We an now state the main result of this setion:Theorem 3 Under the assumptions of Proposition 2 and Theorem 1, theglobal errors in the seond moment satisfy
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ C(ε2 + (h+ ε)2 + h2 + (hε+ ε2)) ≤ Ch2

|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ C(T + h) ≤ CT for nh ≤ T,where the onstant C only depends on T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖,but is independent of ε, h and n with nh ≤ T .Proof Let us �rst de�ne the following quantities
p1 = cos(nhΩ)X1

0+Ω
−1 sin(nhΩ)X2

0 and p2 = −Ω sin(nhΩ)X1
0+cos(nhΩ)X2

0so that the numerial sheme an be written as
X1

n = p1 + q1 + r1 and X2
n = p2 + q2 + r2.For the error in the seond moment for the position, we thus obtain

|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| = |E
[

2pT1 q1 + 2pT1 r1 + qT1 q1 + 2qT1 r1 + rT1 r1

− q̂T1 q̂1 − r̂T1 r̂1 − 2pT1 r̂1 − 2pT1 q̂1 − 2q̂T1 r̂1
]

|

≤ |E
[

‖q1‖
2 − ‖q̂1‖

2
]

|+ |E
[

‖r1‖
2 − ‖r̂1‖

2
]

|

+ 2E
[

|pT1 (r1 − r̂1)|
]

+ 2|E
[

qT1 r1 − q̂T1 r̂1
]

|



14 David Cohen, Magdalena Siggdue to the fat that E[∆Wn−j−1

]

= 0 and due to the martingale property ofthe Ito integral. We will now estimate the four terms on the right. Thanks toProposition 2, we have
|E
[

‖q1‖
2 − ‖q̂1‖

2
]

| ≤ CTε2.Using the bounds for the funtion g, the bounds for the �lter funtions andthe triangle inequality, we get
|E
[

‖r1‖
2 − ‖r̂1‖

2
]

| ≤ E
[

‖r1‖
2
]

+ E
[

‖r̂1‖
2
]

≤ (Cn(h2 + hε))2 + (Cnhε)2

≤ CT 2(h+ ε)2.The Cauhy-Shwarz inequality and Theorem 1 give us the bounds
2E
[

|pT1 (r1 − r̂1)|
]

≤ 2‖p1‖E
[

‖r1 − r̂1‖
]

≤ Ch2.For the last term, we obtain
E
[

|qT1 r1| ≤ E
[

‖r1‖‖q1‖
]

≤ CT (h+ ε)E
[

‖q1‖
]

≤ CT (h+ ε)
√

E
[

‖q1‖2
]

≤ CT (h+ ε)εthanks to the Cauhy-Shwarz inequality, the bounds for the funtion g andProposition 2. This �nally gives us
2|E
[

qT1 r1 − q̂T1 r̂1
]

| ≤ CT (hε+ ε2).All together, we obtain the bounds for the position
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ C(ε2 + (h+ ε)2 + h2 + (hε+ ε2)).For the veloity omponent we onsider the expression
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ |E
[

‖q2‖
2 − ‖q̂2‖

2
]

|+ |E
[

‖r2‖
2 − ‖r̂2‖

2
]

|

+ 2E
[

|pT2 (r2 − r̂2)|
]

+ 2|E
[

qT2 r2 − q̂T2 r̂2
]

|.Similarly, we get the following bounds for the individual terms on the right
|E
[

‖q2‖
2 − ‖q̂2‖

2
]

| = O(T ), |E
[

‖r2‖
2 − ‖r̂2‖

2
]

| = O(T ),
2E
[

|pT2 (r2 − r̂2)|
]

= O(h), 2|E
[

qT2 r2 − q̂T2 r̂2
]

| = O(T ).This yields for the whole expression
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ C(T + h)or the boundedness of the global error in the seond moment for the veloity.
⊓⊔As in the mean-square ase, we onlude this setion by looking at the on-vergene for a �xed ε.



Trigonometri methods for sti� seond-order SDEs 15Remark 4 We thus �x ε and let h tend to zero in order to illustrate the onver-gene behaviour. Therefore Taylor expansions of the expressions in the proofof Lemma 2 an be used to determine the errors in the seond moment afterone step.
|E
[

‖X1
1‖

2
]

− E
[

‖X1
h‖

2
]

| = |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

−

∫ h

0

‖Ω−1 sin((h− s)Ω)B‖2ds|

= |E
[

‖Ω−1 sin(hΩ)B∆W0‖
2
]

−

∫ h

0

‖Ω−1
∑

n≥0

sin(n)(hΩ)
(−sΩ)n

n!
B‖2ds|

≤ Ch3and similarly
|E
[

‖X2
1‖

2
]

− E
[

‖X2
h‖

2
]

| ≤ Ch.Hene, for a �xed ε, we obtain, instead of Theorem 3, the following errorbounds
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ Ch

|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT for nh ≤ T.5 Growth rate of the expeted energyThe exat solution of our problem (2) with a smooth gradient nonlinearity
g(x) = −∇U(x) has the following interesting geometri property:Applying Ito's formula, it is known (see for example [15℄) that the expetedvalue of the energy has a linear growth in time:
E
[1

2

(

||X2
t ||

2+ ||ΩX1
t ||

2
)

+U(X1
t )
]

=
1

2

(

||y0||
2+ ||Ωx0||

2
)

+U(x0)+
Tr(BBT )

2
t,(13)where X1

0 = x0 and X2
0 = y0 are the initial position, resp. veloity for theproblem (2).In a geometri numerial integration approah (see the monographs [5,12℄for the deterministi ase), one would seek numerial shemes that reproduegeometri properties of the exat solution of the di�erential equation. We willsee that the proposed shemes apture almost the orret energy growth rate.In order to show the almost-linear growth rate of the expeted value of theenergy for the numerial solution, we need the following lemma:Lemma 3 Under the assumptions of Theorem 2 we have

E
[

‖Ω(r1 − r̂1)‖
]

≤ Ch for nh ≤ T,where r1 and r̂1 are de�ned in the proof of Theorem 2.



16 David Cohen, Magdalena SiggProof Writing down the de�nitions of r1 and r̂1 we get
‖Ω(r1 − r̂1)‖ = ||

n−1
∑

j=0

(

cos(jhΩ)
h

2
hΩΨgn−j−1 + sin(jhΩ)

h

2
Ψ1gn−j + sin(jhΩ)

h

2
Ψ0gn−j−1

)

−
n−1
∑

j=0

(

cos(jhΩ)

∫ tn−j

tn−j−1

sin((tn−j − s)Ω)g(X1
s ) ds

+ sin(jhΩ)

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds

)

||

= ||

n−1
∑

j=0

Ω cos(jhΩ)en−j−1 +

n−1
∑

j=0

sin(jhΩ)e′n−j−1||

≤ ||

n−1
∑

j=0

Ω cos(jhΩ)en−j−1||+ ||

n−1
∑

j=0

sin(jhΩ)e′n−j−1||,where
en−j−1 =

h

2
hΨgn−j−1 −

∫ tn−j

tn−j−1

Ω−1 sin((tn−j − s)Ω)g(X1
s ) ds and

e′n−j−1 =
h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds.We will now use some lemmas from [4℄ to estimate the above expressions. Webegin by the term with en−j−1. We write

en−j−1 =
h

2
hΨg(ΦX1

tn−j−1
)−

∫ tn−j

tn−j−1

Ω−1 sin((tn−j − s)Ω)g(X1
s ) ds

[

3pt
]

+
1

2
h2Ψgn−j−1 −

1

2
h2Ψg(ΦX1

tn−j−1
).Using Lemma 1 from [4℄, we get

en−j−1 = −
1

2
h2
( sin2 (hΩ

2

)

− Ψ
)

g(ΦX1
tn−j−1

)−h3zn−j−1+
1

2
h2Ψgn−j−1−

1

2
h2Ψg(ΦX1

tn−j−1
)with ‖zn−j−1‖ ≤ C and ‖hΩzn−j−1‖ ≤ C. It follows, see also Lemma 5 from[4℄, that

‖

n−1
∑

j=0

Ω cos(jhΩ)en−j−1‖ ≤ ‖
1

2
vn−1‖+ ‖h2

n−1
∑

j=0

hΩ cos(jhΩ)zn−j−1‖

+ ‖
1

2
h

n−1
∑

j=0

hΩ cos(jhΩ)Ψ(gn−j−1 − g(ΦX1
tn−j−1

))‖,



Trigonometri methods for sti� seond-order SDEs 17where vn−1 is de�ned as
vn−1 =

1

2
h

n−1
∑

j=0

hΩ cos(jhΩ)
( sin2 (hΩ

2

)

− Ψ
)

g(ΦX1
tn−j−1

)and an be written as (see Lemma 5 from [4℄)
vn−1 = E′

n−1(hΩ)g(ΦX1
0 ) +

n−2
∑

j=0

E′
j(hΩ)(g(ΦX1

tn−j−1
)− g(ΦX1

tn−j−2
)),where

E′
j(ξ) :=

−ξ

2 sin

(

ξ

2

)

( sin2 ( ξ

2

)

− ψ(ξ)
) (

sin
(

jξ +
ξ

2

)

− sin
(

ξ

2

))

.Due to (9) and Lemma 5 from [4℄, E′
j are bounded and so is vn−1. It thusfollows that

‖

n−1
∑

j=0

Ω cos(jhΩ)en−j−1‖ ≤ Ch+Ch2n+‖
1

2
h

n−1
∑

j=0

hΩ cos(jhΩ)Ψ(gn−j−1−g(ΦX
1
tn−j−1

))‖.Using the bounds (5) and (9) for the �lter funtions together with the mean-square error bounds in the position, we obtain
E
[

‖

n−1
∑

j=0

Ω cos(jhΩ)en−j−1‖
]

≤ Ch.Now, we have to estimate ‖
n−1
∑

j=0

sin(jhΩ)e′n−j−1‖. To do this, we �rst rewrite
e′n−j−1 as
e′n−j−1 =

h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds

=
h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

h

2
Ψ1g(ΦX

1
tn−j

)−
h

2
Ψ0g(ΦX

1
tn−j−1

)

−

∫ tn−j

tn−j−1

cos((tn−j − s)Ω)g(X1
s ) ds+

h

2
Ψ1g(ΦX

1
tn−j

) +
h

2
Ψ0g(ΦX

1
tn−j−1

)

=
h

2
Ψ1gn−j +

h

2
Ψ0gn−j−1 −

h

2
Ψ1g(ΦX

1
tn−j

)−
h

2
Ψ0g(ΦX

1
tn−j−1

)

−
1

2
h( sin(hΩ)− Ψ0)g(ΦX

1
tn−j−1

)−
1

2
h( sin(hΩ) − Ψ1)g(ΦX

1
tn−j

)

−
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j−1
)) ds

−
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j
)) ds



18 David Cohen, Magdalena Siggusing Lemma 2 from [4℄. The triangle inequality gives us
E
[

‖

n−1
∑

j=0

sin(jhΩ)e′n−j−1‖
]

≤ E
[

‖

n−1
∑

j=0

sin(jhΩ)
h

2
Ψ1(gn−j − g(ΦX1

tn−j
))‖
]

+ E
[

‖
n−1
∑

j=0

sin(jhΩ)
h

2
Ψ0(gn−j−1 − g(ΦX1

tn−j−1
)‖
]

+ E
[

‖
n−1
∑

j=0

sin(jhΩ) · d′n−j−1‖
]

,where d′n−j−1 is de�ned as
d′n−j−1 =

1

2
h( sin(hΩ) − Ψ0)g(ΦX

1
tn−j−1

) +
1

2
h( sin(hΩ)− Ψ1)g(ΦX

1
tn−j

)

+
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j−1
)) ds

+
1

2
h

∫ 1

0

cos((h− hs)Ω)(g(X1
tn−j−1+hs)− g(ΦX1

tn−j
)) ds.Replaing cos(jhΩ) by sin(jhΩ) in Lemma 6 from [4℄ (with a shift in theindies) permits us to bound the terms ontaining the fators sin(hΩ) − Ψifor i = 0, 1. For the terms ontaining the integrals, we use the mean-valuetheorem and �nally, an appliation of Theorem 2 gives us the desired bound

E
[

‖

n−1
∑

j=0

sin(jhΩ)e′n−j−1‖
]

≤ Ch.We thus �nally obtain the estimate
E
[

‖Ω(r1 − r̂1)‖
]

≤ Ch.

⊓⊔Theorem 4 Under the assumptions of Theorem 2, the numerial solution (3)of the stohasti osillator (2) with a smooth gradient nonlinearity g(x) =
−∇U(x) satis�es
E
[1

2

(

||X2
n||

2+||ΩX1
n||

2
)

+U(X1
n)
]

=
1

2

(

||y0||
2+||Ωx0||

2
)

+U(x0)+
Tr(BBT )

2
tn+O(h),where tn = nh ≤ T . The onstant symbolised by the O-notation only dependson T , K, M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but is independent of ε, h and nwith nh ≤ T .Remark 5 One an show that the energy of the numerial solution (3) hasexatly the same growth rate as the exat solution of (1) in the ase where

g(x) ≡ 0. The proof is an adaptation of the proof of Theorem 2.2 in [1℄.



Trigonometri methods for sti� seond-order SDEs 19Proof Instead of the expeted value of the energy
E
[1

2
‖ΩX1

n‖
2 +

1

2
‖X2

n‖
2 + U(X1

n)
]we will alulate and estimate the expression

1

2
E
[

‖ΩX1
n‖

2 − ‖ΩX1
nh‖

2 + ‖X2
n‖

2 − ‖X2
nh‖

2
]

+ E
[

U(X1
n)− U(X1

nh)
]

+E
[1

2
‖ΩX1

nh‖
2 +

1

2
‖X2

nh‖
2 + U(X1

nh)
]

.Sine the last term is the expeted value of the total energy along the exatsolution of our problem, it is thus equal to the initial energy plus the drift:
E
[1

2
‖ΩX1

nh‖
2+

1

2
‖X2

nh‖
2+U(X1

nh)
]

=
1

2
‖Ωx0‖

2+
1

2
‖y0‖

2+U(x0)+
Tr(BBT )

2
nh.For the entral term, we use the mean-value theorem and Theorem 2 to obtain

E
[

U(X1
n)− U(X1

nh)
]

= ∇U(ζ)TE
[

X1
n −X1

nh

]

= O(h).Finally, using the notations of Theorem 2, we obtain for the �rst term:
E
[

‖ΩX1
n‖

2 − ‖ΩX1
nh‖

2 + ‖X2
n‖

2 − ‖X2
nh‖

2
]

= E
[

‖Ωq1‖
2 + ‖q2‖

2 − ‖Ωq̂1‖
2

− ‖q̂2‖
2
]

+ 2(Ωp1)
T
E
[

Ω(r1 − r̂1)
]

+ 2pT2 E
[

r2 − r̂2
]

+ E
[

‖Ωr1‖
2 − ‖Ωr̂1‖

2
]

+ E
[

‖r2‖
2 − ‖r̂2‖

2
]

+ 2E
[

(Ωq1)
T (Ω(r1 − r̂1))

]

+ 2E
[

qT2 (r2 − r̂2)
]

.We will now estimate eah of the above terms. Let us begin with
E
[

‖Ωq1‖
2 + ‖q2‖

2
]

= E
[

n−1
∑

j=0

∆WT
n−j−1B

T (sin2(hΩ) cos2(jhΩ)

+ sin2(hΩ) sin2(jhΩ))B∆Wn−j−1

+ ∆WT
n−j−1B

T (cos2(hΩ) sin2(jhΩ)

+ cos2(hΩ) cos2(jhΩ))B∆Wn−j−1

]

= E
[

n∆WT
n−j−1B

TB∆Wn−j−1

]

= Tr(BBT )nh.Analogously we �nd E
[

‖Ωq̂1‖
2 + ‖q̂2‖

2
]

= Tr(BBT )nh and thus
E
[

‖Ωq1‖
2 + ‖q2‖

2 − ‖Ωq̂1‖
2 − ‖q̂2‖

2
]

= 0.Next, using Lemma 3 and Theorem 1 we get
2(Ωp1)

T
E
[

Ω(r1 − r̂1)
]

+ 2pT2 E
[

r2 − r̂2
]

= O(h).For the following term, the Cauhy-Shwarz inequality together with Lemma 3and Theorem 1 give us the bounds
E
[

‖Ωr1‖
2 − ‖Ωr̂1‖

2
]

+ E
[

‖r2‖
2 − ‖r̂2‖

2
]

= E
[

(Ω(r1 − r̂1))
T (Ω(r1 + r̂1))

]

+ E
[

(r2 − r̂2)
T (r2 + r̂2)

]

= O(h).



20 David Cohen, Magdalena SiggFinally, for the last term, we have
2(Ωq1)

T (Ω(r1 − r̂1)) + 2qT2 (r2 − r̂2) ≤ 2‖Ωq1‖‖Ω(r1 − r̂1)‖ + 2‖q2‖‖r2 − r̂2‖by the Cauhy-Shwarz inequality. Using Lemma 3 and Theorem 2 we thusobtain
E
[

2(Ωq1)
T (Ω(r1 − r̂1)) + 2qT2 (r2 − r̂2)

]

= O(h).This onludes the proof. ⊓⊔6 Numerial experimentsIn this �nal setion, we will onsider two problems in order to illustrate therobustness of the stohasti trigonometri shemes.6.1 The stohasti Fermi-Pasta-Ulam problemThe deterministi Fermi-Pasta-Ulam (FPU) problem is often used as a modelfor highly osillatory problems. For more details on the deterministi asewe refer to [5, Chapters I, XIII℄. In this setion, we will look at a stohastiFPU problem in order to demonstrate the growth rate in the energy and theonvergene behaviour of the stohasti trigonometri method.The deterministi FPU problem desribes a hain of 2m̃ mass points, on-neted with alternating soft nonlinear and sti� linear springs (with angularfrequeny ω :=
1

ε
≫ 1). The variables q1, . . . , q2m̃ denote the displaementsof the mass points, the variables pi = q̇i their veloities. The behaviour ofthe system is desribed by a Hamiltonian system wherein the total energyis onserved. After a hange of oordinates we obtain the new Hamiltonianfuntion

H(y, x) =
1

2

2m̃
∑

i=1

y2i +
ω2

2

m̃
∑

i=1

x2m̃+i +
1

4

(

(x1 − xm̃+1)
4+

+
m̃−1
∑

i=1

(xi+1 − xm̃+i+1 − xi − xm̃+i)
4 + (xm̃ + x2m̃)4

)

,where xi, i = 1, . . . , m̃ represents a saled displaement of the ith sti� spring,
xm̃+i a saled expansion of the ith sti� spring and yi and ym̃+i their veloities.Furthermore, in the deterministi ase, another quantity is almost on-served, the osillatory energy. Let

Ij(xm̃+j , ym̃+j) =
1

2
(y2m̃+j + ω2x2m̃+j)



Trigonometri methods for sti� seond-order SDEs 21denote the energy of the jth sti� spring. As time passes, there is an exhangeof energy between the sti� springs, but the total osillatory energy of ourproblem
I =

m̃
∑

i=1

Ijremains almost onserved.Writing down the Hamiltonian equations, we obtain the following seondorder di�erential equation:
ẍ+Ω2x = g(x) with Ω =

(

0 0
0 ωI

)

, (14)where I is the m̃× m̃ identity matrix and the frequeny ω is supposed to belarge.Now we will turn to the stohasti Fermi-Pasta-Ulam problem. By addinga noise term to the equation (14) we get the system
Ẍt +Ω2Xt = g(Xt) +BẆt. (15)Sine the matrix Ω is not positive-de�nite, the onvergene of the stohastitrigonometri methods is not obvious. However, setting Ω = 0, the expressionfor the mean-square error in the position in the proof of Proposition 1 reduesto

E
[

‖X1
n −X1

nh‖
2
]

=

n
∑

j=0

E
[

‖(d1j + ((n− j)h)d2j)‖
2
]

=

n
∑

j=0

E
[

∫ tj+1

tj

‖(tj+1 − s− h)B‖2ds
]

= ‖B‖2
n
∑

j=0

∫ tj+1

tj

(tj − s)2ds

=
1

3
‖B‖2

n
∑

j=0

h3sine d2j = 0 and thus we obtain
(

E
[

‖X1
n −X1

nh‖
2
]

)1/2

≤ Ch,for tn = nh ≤ T . For the mean-square error in the veloity we �nd analogously
(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ Ch.



22 David Cohen, Magdalena SiggFor the expression for the error in the seond moment for the position in theproof of Proposition 2 we obtain in the ase Ω = 0:
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

|

= |

n−1
∑

j=0

E
[

‖(h+ jh)B∆Wn−j−1‖
2
]

−

n−1
∑

j=0

∫ tn−j

tn−j−1

‖(tn−j − s+ jh)B‖2ds|

= |

n−1
∑

j=0

(h+ jh)2h‖B‖2 −

n−1
∑

j=0

∫ tn−j

tn−j−1

(tn−j − s+ jh)2‖B‖2ds|

= |

n−1
∑

j=0

‖B‖2
(

h(h+ jh)2 +
1

3
(jh)3 −

1

3
(jh+ h)3

)

|

= |

n−1
∑

j=0

‖B‖2
(

jh3 + 2/3h3
)

|

≤ Ch.Analogously we get for the veloity omponent
|E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT.Due to the blok struture of the matrix Ω we an split the equation (15) intotwo equations and write X1
t = (X1

t,1 X
1
t,2)

T and X2
t = (X2

t,1 X
2
t,2)

T , where
X1

t,1, X2
t,1, X

1
t,2, X

2
t,2 ∈ R

m̃. The slow omponent of the system will thus be
X1

t,1 and the fast one X1
t,2. Therefore we obtain for the mean-square error inposition

(

E
[

‖X1
n−X

1
nh‖

2
]

)1/2

=
(

E
[

‖X1
n,1−X

1
nh,1‖

2
]

+E
[

‖X1
n,2−X

1
nh,2‖

2
]

)1/2

≤ Chand similarly for the veloity omponent
(

E
[

‖X2
n −X2

nh‖
2
]

)1/2

≤ CT 1/2.For the errors in the seond moment, we get
|E
[

‖X1
n‖

2
]

− E
[

‖X1
nh‖

2
]

| ≤ Ch, |E
[

‖X2
n‖

2
]

− E
[

‖X2
nh‖

2
]

| ≤ CT.For our numerial experiments, we will take 2m̃ = 6 mass points, a springonstant ω = 50, and we will onsider
x1(0) = 1, y1(0) = 1, x4(0) = ω−1, y4(0) = 1and zero for the remaining initial values. For the stohasti term we hoose

B = (0 1 0.5 5 0 0.01)T .We �nally want to note that all the expeted values are omputed numeriallyusing sample averages. In order to make these approximations as aurate asneessary, we took enough sample paths in all our numerial experiments.



Trigonometri methods for sti� seond-order SDEs 23Figure 1 displays the linear growth rate of the expetation of the energyalong the numerial solution of the stohasti trigonometri method (3) with�lters given in Example 3 and along the numerial solution given by the Euler-Maruyama sheme. The growth rate given by Theorem 4 is observed and onthe ontrary, if we solve (15) by the Euler-Maruyama method, the expetationof the total energy of the system grows exponentially.
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Fig. 1 The stohasti trigonometri method (3) with step size h = 0.1 and M = 10000sample paths reprodues the linear growth of the energy almost exatly (left piture), whilethe numerial energy obtained by the Euler-Maruyama method with step size h = 10−4 and
M = 10000 sample paths grows exponentially (right piture).In Figure 2 we notie a linear growth of the total osillatory energy inthe stohasti ase. As a omparison, we plot the osillatory energy of thedeterministi FPU problem. Both in the deterministi and in the stohastiase, there is an exhange of energy between the sti� springs.
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24 David Cohen, Magdalena Siggfor the onvergene in the seond moment. For the error in the seond momentin the veloity omponent we hose ω = 10 in order to avoid the large numberof samples that would be required for ω = 50.
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Fig. 3 Mean-square error in the position (left piture) and in the veloity (right piture)for the stohasti FPU problem (15). The dashed lines have slope one.
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Fig. 4 Error in the seond moment for the position (left piture) and for the veloity (rightpiture) omponent for the stohasti FPU problem (15). The dashed lines have slope one.Finally, in order to illustrate the fat that our error bounds are independentof the large parameter ω, we hose ω = 500 in Figure 5 and observe the sameorders of onvergene for the position omponent as for smaller ω.6.2 Semi-disretisation of a semi-linear stohasti wave equationAs a �nal example, we onsider the pseudo-spetral semi-disretisation (usingthe eigenfuntions en(x) =
√

2/π sin(nx)) of the semi-linear stohasti waveequation from [15℄:
utt(x, t) = σ2uxx(x, t) + (a0 − a2|u(x, t)|

2
L2)u(x, t) + bξ,where (x, t) ∈ (0, π) × (0,∞) and ξ is white in time and spatially orrelated.We impose homogeneous boundary onditions u(0, t) = u(π, t) = 0. This gives
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Fig. 5 Mean-square error (left piture) and error in the seond moment (right piture) forthe position omponent for the stohasti FPU problem (15) with ω = 500. The dashedlines have slope one.us the following system of SDEs for the Fourier oe�ients cn = cn(t):
c̈n + (σ2n2 − a0)cn + a2

(

∞
∑

m=1

c2m
)

cn = bnẆn.Trunating this system at NF Fourier modes, we end up with a system of theform (1).To illustrate the exellent long-time behaviour of the stohasti trigono-metri sheme (3) with �lter funtions given by Example 3, we ompute theexpeted energy from Theorem 4, i.e. the trae formula in [15℄:
E
[1

2

NF
∑

n=1

(

vn(t)
2 + (σ2n2 − a0)cn(t)

2
)

+
a2

4

(

NF
∑

n=1

cn(t)
2
)2]

=

1

2

NF
∑

n=1

(

vn(0)
2 + (σ2n2 − a0)cn(0)

2
)

+
a2

4

(

NF
∑

n=1

cn(0)
2
)2

+

NF
∑

n=1

b2n
t

2
,where NF is the number of Fourier modes and vn(t) = ċn(t). Figure 6 showsthe expeted value of the energy for the following parameters: NF = 1024Fourier-modes, σ = 1, a0 = 0.5, a2 = 0.2, bn = 1, M = 1000 samples, h = 0.2time step and initial values cn(0) = 0 and vn(0) = 0 exept for the �rst 500Fourier modes, where we set cn(0) = 0.01. The time interval ranges from

T = 0 to T = 100. We also display one sample trajetory of the numerialsolution to the wave equation. A detailed analysis of the good behaviour of thestohasti trigonometri methods for the time disretisation of the stohastiwave equation will be presented in a forthoming publiation.7 AknowledgementWe greatly appreiate the referees' omments and referenes on an earlierversion. We would like to thank Marus Grote, Lu Guyot, Carlo Marinelliand Lluis Quer-Sardanyons for interesting disussions. This work was partially
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