Serie 8

zur 18. KW (27.04. - 03.05.2009)

Aufgabe 1: *

Seien

$$A = \begin{pmatrix} 4 & 8 & 3 \\ 2 & 4 & 5 \\ 6 & 8 & 9 \end{pmatrix}$$
 und $b = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

Bestimmen Sie von Hand die LU-Zerlegung (mit Spaltenpivotsuche) PA = LU von A, und lösen Sie damit das Gleichungssystem Ax = b.

<u>Hinweis:</u> Mit den Matlab-Befehlen [L, U, P] = lu(A) und $x = A \setminus b$ könnten Sie Ihre Lösung verifizieren.

Aufgabe 2:

Sei $L_k \in \mathbb{R}^{n \times n}$ eine untere Dreiecksmatrix der Form

Sei p eine Permutation, die nur Zahlen aus $\{k+1,\ldots,n\}$ permutiert, und \boldsymbol{P} die zugehörige Permutationsmatrix. Zeigen Sie, dass

<u>Hinweis:</u> Schreiben Sie L_k als Summe

Aufgabe 3: (P)(A+B)

Schreiben Sie eine Matlab-Funktion function L = CholeskyDecomp(A), die sich für symmetrische Matrizen $A \in \mathbb{R}^{n \times n}$ wie folgt verhält:

- ullet Ist $m{A}$ positiv definit (d.h. alle Eigenwerte sind positiv), berechnet man den Cholesky-Faktor $m{L}$.
- Anderfalls liefert sie eine Fehlermeldung.

Schreiben Sie eine MATLAB-Routine Test_CholeskyDecomp zur Lösung des linearen Gleichungssystems

mit Hilfe der Cholesky-Zerlegung.

<u>Hinweis:</u> Zur Berechnung der Eingenwerte von \mathbf{A} verwenden Sie den MATLAB-Befehl eig. Zur Lösung des Systems $\mathbf{A}\mathbf{x} = \mathbf{b}$ mit $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ verwenden Sie die MATLAB-Routinen Lsolve und Usolve (siehe Aufgabe 4, Serie 7).

Die Skelette der Codes kann man von der Webseite herunterladen.

Aufgabe 4: (A+B)

Sei $\mathbf{A} = (a_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Beweisen Sie die folgenden Aussagen:

i) **A** ist regulär.

<u>Hinweis:</u> Zeigen Sie, dass rang $\mathbf{A} = n$. Nehmen Sie an, dass rang $\mathbf{A} \neq n$. Dann gibt es einen Vektor $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ so, dass $\mathbf{A}\mathbf{x} = \mathbf{0}$. Betrachten Sie $\mathbf{x}^T \mathbf{A}\mathbf{x}$.

ii) $a_{ii} > 0, i = 1, \ldots, n.$

<u>Hinweis:</u> Betrachten Sie den i-ten kanonischen Einheitsvektor $\mathbf{0} \neq \mathbf{e}_i \in \mathbb{R}^n$ und $\mathbf{e}_i^T A \mathbf{e}_i$.

iii) Alle Eigenwerte von A sind reell und strikt positiv.

<u>Hinweis:</u> Sei $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^n$ ein Eigenvektor von $\mathbf{A} \in \mathbb{R}^{n \times n}$ zum Eigenwert $\lambda \in \mathbb{C}$. Schreiben Sie \mathbf{v} als $\mathbf{v} = \mathbf{v}_1 + i\mathbf{v}_2$ mit $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n$, $\mathbf{v}_1, \mathbf{v}_2 \neq \mathbf{0}$. Betrachten Sie $\mathbf{v}^H \mathbf{A} \mathbf{v}$ und $\mathbf{v}^H \mathbf{v}$.

Bemerkung: Für beliebige $(m \times n)$ -Matrizen $\mathbf{A} = (a_{ij})_{i=1,\dots,m, j=1,\dots,n} \in \mathbb{C}^{m \times n}$ definiert man die Matrix \mathbf{A}^H durch

$$\left(\boldsymbol{A}^{H}\right)_{ij}=\overline{a_{ji}},$$

2

wobei $\overline{a_{ji}}$ die komplex konjugierte Zahl von a_{ji} ist.

Aufgabe 5: (A+B)*

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Zeigen Sie, dass eine eindeutige untere Dreiecksmatrix $\mathbf{L} = (l_{ij})_{i,j=1}^n$ existiert mit $l_{ii} > 0$, i = 1, ..., n, und $\mathbf{A} = \mathbf{L}\mathbf{L}^T$.

<u>Hinweis:</u> Nach Satz 3 im Abschnitt IV.4 des Vorlesungsskript existieren eindeutige Matrizen $\widetilde{\boldsymbol{L}}$ (untere Dreiecksmatrix mit $\widetilde{l}_{ii}=1$) und \boldsymbol{D} (Diagonalmatrix mit $d_{ii}>0$) mit $\boldsymbol{A}=\widetilde{\boldsymbol{L}}\boldsymbol{D}\widetilde{\boldsymbol{L}}^T$. Mit Hilfe von $\boldsymbol{D}^{1/2}$ zerlegen Sie \boldsymbol{D} .

Abgabe: Dienstag, 21. April 2009, bis 17 Uhr im Fach

Allgemeine Informationen zur Vorlesung und Übungsblätter befinden sich auf der Webseite http://www.math.unibas.ch/~cohen