Envariabelanalys 1, HT-2012: Exercises (summary)

Section P4

- You should know the definition of the domain and range of a function.
- A function f is odd if $f(-x)=-f(x)$ for all x in the domain of f.
- A function f is even if $f(-x)=f(x)$ for all x in the domain of f.
- You should be able to sketch the graph of simple functions.

Section P5

- You should know what is the sum/difference, product/division and composition of two given functions. You should also know what is the domain of these new functions.

Chapter 1

- The average velocity of an object moving from x_{1} to x_{2} over a time interval $\left[t_{1}, t_{2}\right]$ is given by the quantity

$$
\frac{\Delta x}{\Delta t}
$$

where $\Delta x=x_{2}-x_{1}$ is the change in the distance and $\Delta t=t_{2}-t_{1}$ is the length of the time interval.

- You should be able to compute limits of the form

$$
\lim _{x \rightarrow a} f(x) \quad \text { or } \quad \lim _{x \rightarrow a+} g(x) \text { or } \lim _{x \rightarrow \infty} h(x) \text { or } \lim _{x \rightarrow a} k(x)=\infty .
$$

For this, multiplication by the conjugate; finding a common factor; the rules for calculating limits; squeezing arguments; or the formula $u^{2}-v^{2}=(u-v)(u+v)$ could be useful.

- You should know the definition of continuity and left and right continuity.
- The Max-Min Theorem (page 82) and the Intermediate-Value Theorem (page 84) are useful results.
- You should know the formal definition of limit with ε and δ (page 88).

Chapter 2

- The tangent line to the graph of a function f at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ has equation

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right),
$$

where the slope of f at x_{0} is defined as

$$
f^{\prime}\left(x_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

- The slope of the normal is $\frac{-1}{\text { slope of the tangent }}$.
- You should be able to use the definition of the derivative of a function f :

$$
f^{\prime}(x):=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

and the notation of differentials

$$
\mathrm{d} y=f^{\prime}(x) \mathrm{d} x
$$

- The rules of differentiation (sums, constant multiples, products, quotients, power rule, chain rule) are useful tools to compute derivatives.
- It is useful to know the derivatives of some classical functions (polynomials, trigonometric, logarithmic, exponential, hyperbolic, ...).
- The Mean-Value Theorem (page 136) is an important result.
- Theorem 12 (page 139) gives you conditions to assert whether a function is increasing or decreasing.
- Knowing the derivative of a function can be useful for applications: antiderivatives $\int F(x) \mathrm{d} x$; initial-value problems $y^{\prime}(x)=F(y), y(0)=a$ like exponential growth models, falling object; optimisation problems like maximisation of an area/volume; rates of change of a quantity $\Delta y \approx y^{\prime} \Delta x$; extreme-value problems; etc.

Chapter 3

- You should be able to compute the inverse of a function f, i.e., the function f^{-1} such that

$$
y=f^{-1}(x) \quad \Longleftrightarrow \quad x=f(y)
$$

with domain of f^{-1} is the range of f and range of f^{-1} is the domain of f.

- You should be able to do some computations with exponential and logarithmic functions. For this, the laws of exponents (page 170), the laws of logarithms (page 171), properties of \ln (page 175) and of the exponential function (page 177) are useful. The fact that (page 183)

In a struggle between a power and an exponential, the exponential wins In a struggle between a power and a logarithm, the power wins is also important.

Chapter 4

- The method of Newton

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

is a powerful tool to find a numerical approximation of a zero of a function, i.e. a value x such that $f(x)=0$. Here, one starts the above iteration with an initial guess x_{0}.

- The rules of l'Hospital (page 228 and page 230) permit to evaluate indeterminate forms of type $[0 / 0]$ or $[\infty / \infty]$.
- In order to sketch the graph of a function f one can use the following informations:

1. Domain of f, asymptotes, symmetries, intercepts points
2. Critical points, i.e points such that $f^{\prime}(x)=0$, in order to find extrema of the function f
3. Intervals where f^{\prime} is positive, resp. negative, in order to show that f is increasing, resp. decreasing
4. Inflection points
5. Look at the positivity of $f^{\prime \prime}$ in order to show that f is concave up (or down) on an interval.

- If a function f is too complicated one can use a linear approximation of f around a value a

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

to understand the main behaviour of f. The error of this approximation is $E(x)=$ $\frac{f^{\prime \prime}(s)}{2}(x-a)^{2}$ for some number s between a and x.

- A better approximation of a function f is given by Taylor polynomials of degree n

$$
f(x) \approx P_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

The error of this approximation is given by $E_{n}(x)=\frac{f^{(n+1)}(s)}{(n+1)!}(x-a)^{n+1}$ for some number s between a and x.

