Fakultät für Mathematik Institut für Angewandte und Numerische Mathematik

Exercise 1:

Show, that the flow of $y^{\prime}(t)=\lambda y(t)$ for $\lambda \in \mathbb{C}$ is a commutative group of mappings acting on arbitrary initial conditions $z \in \mathbb{C}$ in the state space with respect to the composition operation.

Exercise 2:

Show, that the collocation method with collocation points $0 \leq c_{1}<\ldots<c_{s} \leq 1$ is equivalent to the implicit Runge-Kutta method

$$
\begin{array}{c|ccc}
c_{1} & a_{11} & \cdots & a_{1 s} \\
\vdots & \vdots & & \vdots \\
c_{S} & a_{S 1} & \cdots & a_{S S} \\
\hline & b_{1} & \cdots & b_{s}
\end{array}
$$

with coefficients

$$
a_{i j}=\int_{0}^{c_{i}} l_{j}(t) d t, \quad b_{i}=\int_{0}^{1} l_{i}(t) d t, \quad \text { where } \quad l_{i}(t)=\prod_{k=1, k \neq i}^{s} \frac{t-c_{k}}{c_{i}-c_{k}} .
$$

Proceed as follows:
(a) Inquire the degree of the Lagrange polynomials $l_{i}(t)$ and compute $l_{i}\left(c_{j}\right)$.
(b) Use the Lagrange polynomials to represent $u^{\prime}\left(t_{0}+t h\right)$ as an interpolation polynomial through the points, where the collocation condition is fulfilled.
(c) Integrate the polynomial $u^{\prime}\left(t_{0}+t h\right)$ to determine $u\left(t_{0}+t h\right)$. Make sure, that the initial condition is chosen correctly.
(d) Choose $Y_{i}=u\left(t_{0}+c_{i} h\right)$ and $Y_{i}^{\prime}=u^{\prime}\left(t_{0}+c_{i} h\right)$ to conclude the claim.

Exercise 3:

Compute all collocation methods with $s=2$ for arbitrary $0 \leq c_{1}<c_{2} \leq 1$. Analyze the order of the methods. For which collocation points is the method of order 1, 2 or 3 ? Give an example of points, for which the methods is of order 4.

Programming Exercise 1: Pendulum

Consider the Hamiltonian

$$
H(p, q)=\frac{1}{2} p^{2}-\cos (q) .
$$

Write down the Hamiltonian equations of motion. For the initial condition $(p(0), q(0))=(0,1)$, plot the position of the pendulum $q(t)$ over the time interval $[0,50]$ computed with the
(a) Explicit Euler method
(b) Implicit Euler method
(c) Symplectic Euler method
(d) Störmer-Verlet method.

Employ the time step size $h=0.2$ for each of them. In addition, plot the energy $H(p(t), q(t))$ for all methods over the time interval $[0,200]$ using the same time step size $h=0.2$.
Hint: For this particular problem, which yields a partitioned system of equations, the symplectic Euler methods turns out to be explicit, which is not the case in general.

Programming Exercise 2: Kepler problem

Consider the Hamiltonian

$$
H(p, q)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)-\frac{1}{\sqrt{q_{1}^{2}+q_{2}^{2}}} .
$$

Write down the corresponding Hamiltonian equations of motion and consider the initial data

$$
q_{1}(0)=1-e, \quad q_{2}(0)=0, \quad p_{1}(0)=0, \quad p_{2}(0)=\sqrt{\frac{1+e}{1-e}}
$$

where $e=0.6$. In this case, we obtain elliptic trajectories with eccentricity e and periodic motion with period $T=2 \pi$.
(a) Employ the explicit Euler method, the midpoint rule and the symplectic Euler method with time step size $h=2 \cdot 10^{-3}$ for the numerical solution. Plot the position of the first body $q_{1}(t)$ over the time interval [0,20T].
(b) Plot the energy $H(p(t), q(t))$ versus the time t. Use the time step size $h=2 \cdot 10^{-3}$ for all three methods. Make an additional plot for the energy obtained with the symplectic Euler method and time step sizes $h=10^{-3}$ and $5 \cdot 10^{-4}$. What do you observe?
(c) Show that the angular momentum

$$
L(p, q)=q_{1} p_{2}-q_{2} p_{1}
$$

is conserved along the exact solution. What behavior do the numerical solutions show?
Note: Matlab templates for the programming exercises can be downloaded fromhttps://na.math.kit.edu/ cohen/

