Exercise 4: Construct the order condition, that belongs to the following tree τ.

What is the elementary differential, that belongs to this tree?

Exercise 5:

Compute the adjoint method to the symplectic Euler method.

Exercise 6:

Show, that the Störmer-Verlet method is symmetric.

Exercise 7:

(a) Show that a collocation method is symmetric if and only if $c_{i}+c_{s+1-i}=1$ for $i=1, \ldots, s$. Hint: Show that the adjoint method is a collocation method with $c_{i}^{*}=1-c_{s+1-i}$.
(b) Show that the Gauß collocation methods are symmetric.

Programming Exercise 3: Nyström methods

Consider the second order differential equation

$$
y^{\prime \prime}(t)=g\left(t, y(t), y^{\prime}(t)\right), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

For real coefficients $c_{i}, \bar{b}_{i}, \bar{a}_{i j}, \hat{b}_{i}$ and $\hat{a}_{i j}$ a Nyström method for this problem is given by

$$
\begin{aligned}
& l_{i}=g\left(t_{0}+c_{i} h, y_{0}+c_{i} h y_{0}^{\prime}+h^{2} \sum_{j=1}^{s} \bar{a}_{i j} l_{j}, y_{0}^{\prime}+h \sum_{j=1}^{s} \hat{a}_{i j} l_{j}\right) \\
& y_{1}=y_{0}+h y_{0}^{\prime}+h^{2} \sum_{i=1}^{s} \bar{b}_{i} l_{i} \\
& y_{1}^{\prime}=y_{0}^{\prime}+h \sum_{i=1}^{s} \hat{b}_{i} l_{i}
\end{aligned}
$$

(a) Show, that the Störmer-Verlet method is a Nyström method applied to the special problem $y^{\prime \prime}(t)=$ $g(t, y(t))$. Compute the coefficients.
(b) Charged particle in a magnetic field

Let the vector $b=\left(b_{1}, b_{2}, b_{3}\right)^{T}$ represent the magnetic field. Then, the equations of motion of a charged particle in this field are given by

$$
m q^{\prime \prime}(t)=-\gamma \frac{q}{\|q\|^{3}}+b \times q^{\prime}(t)
$$

where m is the mass of the particle and γ is a constant.
Set $m=\gamma=1, q_{\text {init }}=(1,1,1)^{T}, q_{\text {init }}^{\prime}=(0,0,0)^{T}$ and $b=(0,0,1)^{T}$. Implement a generalized Störmer-
Verlet method with coefficients $c_{i}, \bar{a}_{i j}, \bar{b}_{i}$ and \hat{b}_{i} from the first part of the exercise as well as $\hat{a}_{11}=\hat{a}_{21}=1 / 2$ and $\hat{a}_{21}=\hat{a}_{22}=0$ and compute the numerical solution on the time interval $[0,50]$ with time step size $h=10^{-2}$. Plot the second component q_{2} of the solution versus the first component q_{1}.

Note: Matlab templates for the programming exercises can be downloaded fromhttps://na.math.kit.edu/ cohen/.

