

Geometric Numerical Integration, Serie 2

15.5.2012

Exercise 4: Construct the order condition, that belongs to the following tree τ .

What is the elementary differential, that belongs to this tree?

Exercise 5:

Compute the adjoint method to the symplectic Euler method.

Exercise 6:

Show, that the Störmer-Verlet method is symmetric.

Exercise 7:

- (a) Show that a collocation method is symmetric if and only if $c_i + c_{s+1-i} = 1$ for i = 1, ..., s. *Hint:* Show that the adjoint method is a collocation method with $c_i^* = 1 - c_{s+1-i}$.
- (b) Show that the Gauß collocation methods are symmetric.

Programming Exercise 3: Nyström methods

Consider the second order differential equation

$$y''(t) = g(t, y(t), y'(t)), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0$$

For real coefficients c_i , \bar{b}_i , \bar{a}_{ij} , \hat{b}_i and \hat{a}_{ij} a Nyström method for this problem is given by

$$\begin{split} l_i &= g(t_0 + c_i h, \ y_0 + c_i h y_0' + h^2 \sum_{j=1}^s \bar{a}_{ij} l_j, \ y_0' + h \sum_{j=1}^s \hat{a}_{ij} l_j) ,\\ y_1 &= y_0 + h y_0' + h^2 \sum_{i=1}^s \bar{b}_i l_i ,\\ y_1' &= y_0' + h \sum_{i=1}^s \hat{b}_i l_i . \end{split}$$

- (a) Show, that the Störmer-Verlet method is a Nyström method applied to the special problem y''(t) = g(t, y(t)). Compute the coefficients.
- (b) Charged particle in a magnetic field

Let the vector $b = (b_1, b_2, b_3)^T$ represent the magnetic field. Then, the equations of motion of a charged particle in this field are given by

$$mq''(t) = -\gamma \frac{q}{\|q\|^3} + b \times q'(t)$$
 ,

where *m* is the mass of the particle and γ is a constant.

Set $m = \gamma = 1$, $q_{\text{init}} = (1, 1, 1)^T$, $q'_{\text{init}} = (0, 0, 0)^T$ and $b = (0, 0, 1)^T$. Implement a generalized Störmer-Verlet method with coefficients c_i , \bar{a}_{ij} , \bar{b}_i and \hat{b}_i from the first part of the exercise as well as $\hat{a}_{11} = \hat{a}_{21} = 1/2$ and $\hat{a}_{21} = \hat{a}_{22} = 0$ and compute the numerical solution on the time interval [0, 50] with time step size $h = 10^{-2}$. Plot the second component q_2 of the solution versus the first component q_1 .

Note: Matlab templates for the programming exercises can be downloaded from https://na.math.kit.edu/ cohen/.

Discussion in the exercise class on 24.5.2012.