

Geometric Numerical Integration, Serie 3

22.5.2012

Exercise 8: Prove the following corollary from the lecture:

A partitioned Runge-Kutta scheme for

$$\begin{cases} \dot{p} = f(p,q) \\ \dot{q} = g(p,q) \end{cases}$$

conserves linear invariants $I(p,q) = d_1^T p + d_2^T q$ with constant vectors d_i , if $b_i = \hat{b}_i$ or if I(p,q) only depends on p or q.

Exercise 9: Prove the following theorem from the lecture:

If the coefficients of a partitioned Runge-Kutta method satisfy

$$b_i \hat{a}_{ij} + \hat{b}_j a_{ji} = b_i \hat{b}_j$$
 , $b_i = \hat{b}_i$

for i, j = 1, ..., s, then the partitioned Runge-Kutta method conserves quadratic invariants of the form $Q(p, q) = p^T Dq$ for an arbitrary (constant) matrix D of the proper dimensions.

Exercise 10:

Show that the symplectic Euler scheme conserves quadratic invariants of the form $Q(p,q) = p^T Dq$ for an arbitrary (constant) matrix D of the proper dimensions.

Programming Exercise 4: Lotka-Volterra Problem

We consider the following problem

$$\dot{u} = u(v-2),$$

$$\dot{v} = v(1-u).$$

- (a) Compute numerical approximations to the exact solution on the interval [0,24] using the time step size h=0.12 and employing
 - (i) the explicit Euler method with starting value (u(0), v(0)) = (2, 2),
 - (ii) the implicit Euler method with starting value (u(0), v(0)) = (4, 8),
 - (iii) the symplectic Euler method with starting values (u(0), v(0)) = (4, 2) and (u(0), v(0)) = (6, 2).
- (b) Plot a phase diagram of the solutions obtained from part (a). Namely plot the second component *v* versus the first component *u*. Specifically mark the initial values in the diagram.
- (c) Show that $I(u,v) = \ln(u) u + 2\ln(v) v$ is an invariant for the above problem. What do you observe for the numerical solutions?