Fakultät für Mathematik
Dr. David Cohen Institut für Angewandte und Numerische Mathematik

Exercise 8: Prove the following corollary from the lecture:
A partitioned Runge-Kutta scheme for

$$
\left\{\begin{array}{l}
\dot{p}=f(p, q) \\
\dot{q}=g(p, q)
\end{array}\right.
$$

conserves linear invariants $I(p, q)=d_{1}^{T} p+d_{2}^{T} q$ with constant vectors d_{i}, if $b_{i}=\hat{b}_{i}$ or if $I(p, q)$ only depends on p or q.

Exercise 9: Prove the following theorem from the lecture:
If the coefficients of a partitioned Runge-Kutta method satisfy

$$
\begin{aligned}
b_{i} \hat{a}_{i j}+\hat{b}_{j} a_{j i} & =b_{i} \hat{b}_{j}, \\
b_{i} & =\hat{b}_{i}
\end{aligned}
$$

for $i, j=1, \ldots, s$, then the partitioned Runge-Kutta method conserves quadratic invariants of the form $Q(p, q)=$ $p^{T} D q$ for an arbitrary (constant) matrix D of the proper dimensions.

Exercise 10:

Show that the symplectic Euler scheme conserves quadratic invariants of the form $Q(p, q)=p^{T} D q$ for an arbitrary (constant) matrix D of the proper dimensions.

Programming Exercise 4: Lotka-Volterra Problem

We consider the following problem

$$
\begin{aligned}
\dot{u} & =u(v-2), \\
\dot{v} & =v(1-u) .
\end{aligned}
$$

(a) Compute numerical approximations to the exact solution on the interval $[0,24]$ using the time step size $h=0.12$ and employing
(i) the explicit Euler method with starting value $(u(0), v(0))=(2,2)$,
(ii) the implicit Euler method with starting value $(u(0), v(0))=(4,8)$,
(iii) the symplectic Euler method with starting values $(u(0), v(0))=(4,2)$ and $(u(0), v(0))=(6,2)$.
(b) Plot a phase diagram of the solutions obtained from part (a). Namely plot the second component v versus the first component u. Specifically mark the initial values in the diagram.
(c) Show that $I(u, v)=\ln (u)-u+2 \ln (v)-v$ is an invariant for the above problem. What do you observe for the numerical solutions?

