Fakultät für Mathematik

Exercise 11: Derivation of the Euler-Lagrange equations

Consider the following problem:
Let $L\left(x, y, y^{\prime}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function. The task is to find a function y, such that the functional

$$
T(y)=\int_{a}^{b} L\left(x, y(x), y^{\prime}(x)\right) \mathrm{d} x
$$

is minimal for all functions $y \in \mathcal{C}^{1}([a, b] ; \mathbb{R})$, which satisfy $y(a)=A$ and $y(b)=B$.
(a) Prove the following Lemma:

Let $y \in \mathcal{C}^{1}([a, b] ; \mathbb{R})$ be a function, that satisfies $y(a)=A$ and $y(b)=B$. Assume that $L\left(x, y(x), y^{\prime}(x)\right)$ is continuously differentiable in the neighbourhood of $\left(x, y(x), y^{\prime}(x)\right) \in \mathbb{R}^{3}$ for all $x \in[a, b]$. If y is an extremum of $T(y)$, then

$$
\int_{a}^{b}\left(\frac{\partial L}{\partial y}\left(x, y(x), y^{\prime}(x)\right) h(x)+\frac{\partial L}{\partial y^{\prime}}\left(x, y(x), y^{\prime}(x)\right) h^{\prime}(x)\right) \mathrm{d} x=0
$$

holds for all $h \in \mathcal{C}^{1}([a, b] ; \mathbb{R})$ with $h(a)=h(b)=0$. A function y, that fulfills (\star), is called extremal (stationary point).
(b) Prove the following Theorem:

Let $L\left(x, y, y^{\prime}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function such that all first partial derivatives exist and are continuous. A function y satisfying $y(a)=A$ and $y(b)=B$ is an extremal of the functional T if and only if
(i) $\frac{\partial L}{\partial y^{\prime}}\left(x, y(x), y^{\prime}(x)\right)$ is continuously differentiable with respect to x and
(ii) $\frac{\partial L}{\partial y}\left(x, y(x), y^{\prime}(x)\right)-\frac{\mathrm{d}}{\mathrm{d} x} \frac{\partial L}{\partial y^{\prime}}\left(x, y(x), y^{\prime}(x)\right)=0$ is satisfied.

Hint: In order to prove this theorem, make use of the Lemma of Du Bois-Reymond: Let $d:[a, b] \rightarrow \mathbb{R}$ be continuous and $\int_{a}^{b} d(x) h^{\prime}(x) \mathrm{d} x=0$ for all $h \in \mathcal{C}^{1}([a, b] ; \mathbb{R})$ that satisfy $h(a)=h(b)=0$. Then $d(x)$ is constant.

Exercise 12:

Consider the Hénon mapping $\Psi_{a, b}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
\Psi_{a, b}(p, q)=\binom{p}{1+b q+a p^{2}} .
$$

Show that $\Psi_{a, b}$ is symplectic, namely that

$$
\left(\frac{\partial}{\partial(p, q)} \Psi_{a, b}\right)^{T} J\left(\frac{\partial}{\partial(p, q)} \Psi_{a, b}\right)=J, \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

holds, if and only if $b=1$.

Exercise 13:

Show that a linear mapping $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is symplectic if and only if $\operatorname{det} A=1$.
Programming Exercise 5: Perturbed Kepler problem

We consider the perturbed Kepler problem with the Hamiltonian function

$$
H(p, q)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)-\frac{1}{\sqrt{q_{1}^{2}+q_{2}^{2}}}-\frac{0.005}{2 \sqrt{\left(q_{1}^{2}+q_{2}^{2}\right)^{3}}}
$$

and initial conditions

$$
p_{1}(0)=0, \quad p_{2}(0)=\sqrt{\frac{1+e}{1-e}}, \quad q_{1}(0)=1-e, \quad q_{2}(0)=0,
$$

where $e=0.6$ denotes the eccentricity, on the time interval [0,200]. From Programming Exercise 2 we know that the unperturbed Kepler problem conserves two quantities, namely the Hamiltonian function $H(p, q)$ itself an the angular momentum $L(p, q)=q_{1} p_{2}-q_{2} p_{1}$. Show that the angular momentum is still an invariant for Hamiltonian systems of the form

$$
H(p, q)=T\left(p_{1}^{2}+p_{2}^{2}\right)+V\left(q_{1}^{2}+q_{2}^{2}\right)
$$

Solve the problem numerically with the explicit Euler method as well as the symplectic Euler method (implicit in p), both with time step size $h=0.03$.
(a) Use the methods without any projection.
(b) Use the methods with projection onto the manifold given by $H(p, q)=H\left(p_{0}, q_{0}\right)$.
(c) Use the methods with projection onto the manifold given by $H(p, q)=H\left(p_{0}, q_{0}\right)$ as well as $L(p, q)=$ $L\left(p_{0}, q_{0}\right)$.

For each numerical solutions plot the second position coordinate q_{2} versus the first q_{1}.

