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Exercise 11: Derivation of the Euler-Lagrange equations

Consider the following problem:

Let L(x, y, y′) : R3 → R be a continuous function. The task is to find a function y, such that the functional

T(y) =
∫ b

a
L(x, y(x), y′(x))dx

is minimal for all functions y ∈ C1([a, b]; R
)
, which satisfy y(a) = A and y(b) = B.

(a) Prove the following Lemma:

Let y ∈ C1([a, b]; R
)

be a function, that satisfies y(a) = A and y(b) = B. Assume that L(x, y(x), y′(x))
is continuously differentiable in the neighbourhood of (x, y(x), y′(x)) ∈ R3 for all x ∈ [a, b]. If y is an
extremum of T(y), then

∫ b

a

(
∂L
∂y

(
x, y(x), y′(x)

)
h(x) +

∂L
∂y′
(

x, y(x), y′(x)
)

h′(x)
)

dx = 0 (?)

holds for all h ∈ C1([a, b]; R
)

with h(a) = h(b) = 0. A function y, that fulfills (?), is called extremal
(stationary point).

(b) Prove the following Theorem:

Let L(x, y, y′) : R3 → R be a continuous function such that all first partial derivatives exist and are
continuous. A function y satisfying y(a) = A and y(b) = B is an extremal of the functional T if and only
if

(i)
∂L
∂y′
(

x, y(x), y′(x)
)

is continuously differentiable with respect to x and

(ii)
∂L
∂y
(

x, y(x), y′(x)
)
− d

dx
∂L
∂y′
(

x, y(x), y′(x)
)
= 0 is satisfied.

Hint: In order to prove this theorem, make use of the Lemma of Du Bois-Reymond: Let d : [a, b] → R be
continuous and

∫ b
a d(x)h′(x)dx = 0 for all h ∈ C1([a, b]; R

)
that satisfy h(a) = h(b) = 0. Then d(x) is

constant.

Exercise 12:

Consider the Hénon mapping Ψa,b : R2 → R2 given by

Ψa,b(p, q) =
(

p
1 + bq + ap2

)
.

Show that Ψa,b is symplectic, namely that(
∂

∂(p, q)
Ψa,b

)T
J
(

∂

∂(p, q)
Ψa,b

)
= J , J =

(
0 1
−1 0

)
,

holds, if and only if b = 1.

Exercise 13:

Show that a linear mapping A : R2 → R2 is symplectic if and only if det A = 1.

Programming Exercise 5: Perturbed Kepler problem



We consider the perturbed Kepler problem with the Hamiltonian function

H(p, q) =
1
2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

− 0.005

2
√
(q2

1 + q2
2)

3

and initial conditions

p1(0) = 0 , p2(0) =

√
1 + e
1− e

, q1(0) = 1− e , q2(0) = 0 ,

where e = 0.6 denotes the eccentricity, on the time interval [0, 200]. From Programming Exercise 2 we know
that the unperturbed Kepler problem conserves two quantities, namely the Hamiltonian function H(p, q) itself
an the angular momentum L(p, q) = q1 p2 − q2 p1. Show that the angular momentum is still an invariant for
Hamiltonian systems of the form

H(p, q) = T(p2
1 + p2

2) + V(q2
1 + q2

2).

Solve the problem numerically with the explicit Euler method as well as the symplectic Euler method (implicit
in p), both with time step size h = 0.03.

(a) Use the methods without any projection.

(b) Use the methods with projection onto the manifold given by H(p, q) = H(p0, q0).

(c) Use the methods with projection onto the manifold given by H(p, q) = H(p0, q0) as well as L(p, q) =
L(p0, q0).

For each numerical solutions plot the second position coordinate q2 versus the first q1.

Discussion in the exercise class on 14.6.2012.
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