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Exercise 18: Complete the proof of the following Theorem from the lecture.

Let f (y) be analytic in B2R(y0), let the coefficients dj(y) of the numerical scheme be analytic in BR(y0) and
assume that

‖ f (y)‖ ≤ M for ‖y− y0‖ ≤ 2R

and

‖dj(y)‖ ≤ µM
(2κM

R

)j−1
for ‖y− y0‖ ≤ R

hold. If h ≤ h0/4 with h0 = R/(eηM), then there exists N = N(h) (namely N equals the largest integer
satisfying hN ≤ h0 < h(N + 1)) such that the difference between the numerical solution y1 = Φh(y0) and the
exact solution ϕN,t(y0) of the truncated modified equation satisfies

‖Φh(y0)− ϕN,h(y0)‖ ≤ hγMe−h0/h

where γ = e(2 + 1.65η + µ) depends only on the method.

The proof proceeded in the following steps, where all parts except for part (d) were done in the lecture.

(a) Show that for g(h) := Φh(y0)− ϕN,h(y0) the bound

‖g(h)‖ ≤
(h

ε

)N+1
max
|z|≤ε
‖g(z)‖

holds for 0 ≤ h ≤ ε := eh0/N.

(b) Split the error in two parts,

‖g(z)‖ ≤ ‖Φz(y0)− y0‖+ ‖ϕN,z(y0)− y0‖ ,

which are estimated separately in the following two steps of the proof.

(c) Show that
‖Φz(y0)− y0‖ ≤ εM(1 + µ)

holds.

(d) Show that
‖ϕN,z(y0)− y0‖ ≤ εM(1 + 1.65η)

for ϕN,z(y0) ∈ BR/2(y0).

(e) Finally combine both bounds to obtain the desired result.

Exercise 19:

Consider a differential equation
y′(t) = f (y(t)) , y(0) = y0 ,

which possesses the invariant I(y). We solve this equation numerically with a scheme Φh(y), that also con-
serves the invariant. Show that the modified equation conserves I(y) as well.

Hint: Show via induction that ∇I(y) f j(y) = 0, j = 1, . . . , r holds. For this purpose let ϕ
(h)
r,t be the flow of the

truncated modified equation ỹ′ = f (ỹ) + h f2(ỹ) + . . . + hr−1 fr(ỹ), ỹ(0) = y0.



Programming Exercise 7:

(a) Show that for a nonsymplectic method of order r applied to a Hamilton system the error in the energy
grows linearly with the time, namely

H(yn)− H(y0) = O(thr) ,

where t = nh.

Hint: Use that the local error of the method is of the order hr+1.

(b) Consider the pendulum equation given by the Hamiltonian

H(p, q) =
p2

2
− cos(q)

with initial condition (p0, q0) = (2.5, 0). Solve this equation with the explicit and the symplectic Euler
method on the time interval [0, T] = [0, 50] using the time step size h = 0.005. Plot the error in the energy
H of both methods over time.

Programming Exercise 8:

Consider the pendulum equation given by the Hamilton function

H(p, q) =
p2

2
− cos(q) .

(a) Let K be a compact subset of {(x, y) ∈ R2; |x| ≤ c}. Show that

‖ f (p, q)‖ ≤
√
(c + 2R)2 + e4R = M

for f (p, q) = −J∇H(p, q) and ||(p, q)− (p0, q0)|| ≤ 2R with (p0, q0) ∈ K.

(b) Now choose c = 2 and R = 1/2 and compute the corresponding time step size h0 for the midpoint rule
to obtain good energy conservation.

(c) Numerically compute the solution of the pendulum equations with the different initial conditions

(p0, q0) = (0,−1.5) , (0,−2.5) , (1.5,−π) , (2.5,−π) .

Therefore use the midpoint rule with the time step size h0 computed in the previous part on the time
interval [0, 200.000h0] and plot the components p and q against each other. What happens to the results,
if the time step size is increased?

Programming Exercise 9: Oscillatory example – Fermi-Pasta-Ulam problem

Consider the equation
x′′(t) = −ω2x(t) , ω � 1

with initial conditions x(0) = x0 and x′(0) = x′0.

(a) Show, that the exact solution of the system is given by(
ωx(t)
x′(t)

)
=

(
cos ωt sin ωt
− sin ωt cos ωt

)(
ωx0
x′0

)
.

(b) We consider the midpoint rule
yn+1 = yn + h f

(
yn + yn+1

2

)
for y′ = f (y) as well as the Störmer-Verlet method

x′n+1/2 = x′n +
h
2

g(xn)

xn+1 = xn + hx′n+1/2

x′n+1 = x′n+1/2 +
h
2

g(xn+1)

2



for x′′ = g(x). Compute one step of each method applied to the above problem. Note that for the mid-
point rule, the problem needs to be rewritten as a first order system. Analyze the stability of the methods
with respect to the time step size h.

Hint: Write the numerical solution as (
ωxn+1
x′n+1

)
= M(hω)

(
ωxn
x′n

)
and consider the eigenvalues of M(hω).

(c) The Hamiltonian of the Fermi-Pasta-Ulam problem in the scaled expansions of the springs is given by

H(y, x) =
1
2

m

∑
i=1

(
y2

0i + y2
1i
)
+

ω2

2

m

∑
i=1

x2
1i

+
1
4
(

x01 − x11
)4

+
1
4

m−1

∑
i=1

(
x0i+1 − x1i+1 − x0i − x1i

)4
+

1
4
(

x0m + x1m
)4 ,

the oscillatory energy of the stiff springs is given by

Ij(x1j, y1j) =
1
2
(
y2

1j + ω2x2
1j
)

and the total oscillatory energy is I = I1 + . . . + Im. Consider for m = 3 and ω = 50 the initial values

x01(0) = 1 , y01(0) = 1 , x11(0) = ω−1 , y11(0) = 1
x0i(0) = y0i(0) = x1i(0) = y1i(0) = 0 , i = 2, 3 .

Solve this problem numerically on the time interval [0, 225] with

(i) the implicit midpoint rule,

(ii) the symplectic Euler method and

(iii) the Störmer-Verlet method.

Employ the time step sizes h = 0.001 and h = 0.03 and plot the shifted Hamiltonian H(y, x)− 0.8 as well
as the total oscillatory energy I and the energies of the three stiff springs Ij, j = 1, 2, 3.

Discussion in the exercise class on 12.7.2012.
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