Fakultät für Mathematik

Exercise 18: Complete the proof of the following Theorem from the lecture.
Let $f(y)$ be analytic in $B_{2 R}\left(y_{0}\right)$, let the coefficients $d_{j}(y)$ of the numerical scheme be analytic in $B_{R}\left(y_{0}\right)$ and assume that

$$
\|f(y)\| \leq M \quad \text { for } \quad\left\|y-y_{0}\right\| \leq 2 R
$$

and

$$
\left\|d_{j}(y)\right\| \leq \mu M\left(\frac{2 \kappa M}{R}\right)^{j-1} \quad \text { for } \quad\left\|y-y_{0}\right\| \leq R
$$

hold. If $h \leq h_{0} / 4$ with $h_{0}=R /(\mathrm{e} \eta M)$, then there exists $N=N(h)$ (namely N equals the largest integer satisfying $h N \leq h_{0}<h(N+1)$) such that the difference between the numerical solution $y_{1}=\Phi_{h}\left(y_{0}\right)$ and the exact solution $\varphi_{N, t}\left(y_{0}\right)$ of the truncated modified equation satisfies

$$
\left\|\Phi_{h}\left(y_{0}\right)-\varphi_{N, h}\left(y_{0}\right)\right\| \leq h \gamma M \mathrm{e}^{-h_{0} / h}
$$

where $\gamma=\mathrm{e}(2+1.65 \eta+\mu)$ depends only on the method.
The proof proceeded in the following steps, where all parts except for part (d) were done in the lecture.
(a) Show that for $g(h):=\Phi_{h}\left(y_{0}\right)-\varphi_{N, h}\left(y_{0}\right)$ the bound

$$
\|g(h)\| \leq\left(\frac{h}{\varepsilon}\right)^{N+1} \max _{|z| \leq \varepsilon}\|g(z)\|
$$

holds for $0 \leq h \leq \varepsilon:=\mathrm{e} h_{0} / N$.
(b) Split the error in two parts,

$$
\|g(z)\| \leq\left\|\Phi_{z}\left(y_{0}\right)-y_{0}\right\|+\left\|\varphi_{N, z}\left(y_{0}\right)-y_{0}\right\|
$$

which are estimated separately in the following two steps of the proof.
(c) Show that

$$
\left\|\Phi_{z}\left(y_{0}\right)-y_{0}\right\| \leq \varepsilon M(1+\mu)
$$

holds.
(d) Show that

$$
\left\|\varphi_{N, z}\left(y_{0}\right)-y_{0}\right\| \leq \varepsilon M(1+1.65 \eta)
$$

for $\varphi_{N, z}\left(y_{0}\right) \in B_{R / 2}\left(y_{0}\right)$.
(e) Finally combine both bounds to obtain the desired result.

Exercise 19:

Consider a differential equation

$$
y^{\prime}(t)=f(y(t)), \quad y(0)=y_{0}
$$

which possesses the invariant $I(y)$. We solve this equation numerically with a scheme $\Phi_{h}(y)$, that also conserves the invariant. Show that the modified equation conserves $I(y)$ as well.
Hint: Show via induction that $\nabla I(y) f_{j}(y)=0, j=1, \ldots, r$ holds. For this purpose let $\varphi_{r, t}^{(h)}$ be the flow of the truncated modified equation $\tilde{y}^{\prime}=f(\tilde{y})+h f_{2}(\tilde{y})+\ldots+h^{r-1} f_{r}(\tilde{y}), \tilde{y}(0)=y_{0}$.

Programming Exercise 7:

(a) Show that for a nonsymplectic method of order r applied to a Hamilton system the error in the energy grows linearly with the time, namely

$$
H\left(y_{n}\right)-H\left(y_{0}\right)=\mathcal{O}\left(t h^{r}\right)
$$

where $t=n h$.
Hint: Use that the local error of the method is of the order h^{r+1}.
(b) Consider the pendulum equation given by the Hamiltonian

$$
H(p, q)=\frac{p^{2}}{2}-\cos (q)
$$

with initial condition $\left(p_{0}, q_{0}\right)=(2.5,0)$. Solve this equation with the explicit and the symplectic Euler method on the time interval $[0, T]=[0,50]$ using the time step size $h=0.005$. Plot the error in the energy H of both methods over time.

Programming Exercise 8:

Consider the pendulum equation given by the Hamilton function

$$
H(p, q)=\frac{p^{2}}{2}-\cos (q)
$$

(a) Let K be a compact subset of $\left\{(x, y) \in \mathbb{R}^{2} ;|x| \leq c\right\}$. Show that

$$
\|f(p, q)\| \leq \sqrt{(c+2 R)^{2}+\mathrm{e}^{4 R}}=M
$$

for $f(p, q)=-J \nabla H(p, q)$ and $\left\|(p, q)-\left(p_{0}, q_{0}\right)\right\| \leq 2 R$ with $\left(p_{0}, q_{0}\right) \in K$.
(b) Now choose $c=2$ and $R=1 / 2$ and compute the corresponding time step size h_{0} for the midpoint rule to obtain good energy conservation.
(c) Numerically compute the solution of the pendulum equations with the different initial conditions

$$
\left(p_{0}, q_{0}\right)=(0,-1.5), \quad(0,-2.5), \quad(1.5,-\pi), \quad(2.5,-\pi)
$$

Therefore use the midpoint rule with the time step size h_{0} computed in the previous part on the time interval $\left[0,200.000 h_{0}\right]$ and plot the components p and q against each other. What happens to the results, if the time step size is increased?

Programming Exercise 9: Oscillatory example - Fermi-Pasta-Ulam problem

Consider the equation

$$
x^{\prime \prime}(t)=-\omega^{2} x(t), \quad \omega \gg 1
$$

with initial conditions $x(0)=x_{0}$ and $x^{\prime}(0)=x_{0}^{\prime}$.
(a) Show, that the exact solution of the system is given by

$$
\binom{\omega x(t)}{x^{\prime}(t)}=\left(\begin{array}{cc}
\cos \omega t & \sin \omega t \\
-\sin \omega t & \cos \omega t
\end{array}\right)\binom{\omega x_{0}}{x_{0}^{\prime}} .
$$

(b) We consider the midpoint rule

$$
y_{n+1}=y_{n}+h f\left(\frac{y_{n}+y_{n+1}}{2}\right)
$$

for $y^{\prime}=f(y)$ as well as the Störmer-Verlet method

$$
\begin{aligned}
x_{n+1 / 2}^{\prime} & =x_{n}^{\prime}+\frac{h}{2} g\left(x_{n}\right) \\
x_{n+1} & =x_{n}+h x_{n+1 / 2}^{\prime} \\
x_{n+1}^{\prime} & =x_{n+1 / 2}^{\prime}+\frac{h}{2} g\left(x_{n+1}\right)
\end{aligned}
$$

for $x^{\prime \prime}=g(x)$. Compute one step of each method applied to the above problem. Note that for the midpoint rule, the problem needs to be rewritten as a first order system. Analyze the stability of the methods with respect to the time step size h.
Hint: Write the numerical solution as

$$
\binom{\omega x_{n+1}}{x_{n+1}^{\prime}}=M(h \omega)\binom{\omega x_{n}}{x_{n}^{\prime}}
$$

and consider the eigenvalues of $M(h \omega)$.
(c) The Hamiltonian of the Fermi-Pasta-Ulam problem in the scaled expansions of the springs is given by

$$
\begin{aligned}
H(y, x)= & \frac{1}{2} \sum_{i=1}^{m}\left(y_{0 i}^{2}+y_{1 i}^{2}\right)+\frac{\omega^{2}}{2} \sum_{i=1}^{m} x_{1 i}^{2} \\
& +\frac{1}{4}\left(x_{01}-x_{11}\right)^{4}+\frac{1}{4} \sum_{i=1}^{m-1}\left(x_{0 i+1}-x_{1 i+1}-x_{0 i}-x_{1 i}\right)^{4}+\frac{1}{4}\left(x_{0 m}+x_{1 m}\right)^{4},
\end{aligned}
$$

the oscillatory energy of the stiff springs is given by

$$
I_{j}\left(x_{1 j}, y_{1 j}\right)=\frac{1}{2}\left(y_{1 j}^{2}+\omega^{2} x_{1 j}^{2}\right)
$$

and the total oscillatory energy is $I=I_{1}+\ldots+I_{m}$. Consider for $m=3$ and $\omega=50$ the initial values

$$
\begin{aligned}
& x_{01}(0)=1, \quad y_{01}(0)=1, \quad x_{11}(0)=\omega^{-1}, \quad y_{11}(0)=1 \\
& x_{0 i}(0)=y_{0 i}(0)=x_{1 i}(0)=y_{1 i}(0)=0, \quad i=2,3
\end{aligned}
$$

Solve this problem numerically on the time interval $[0,225]$ with
(i) the implicit midpoint rule,
(ii) the symplectic Euler method and
(iii) the Störmer-Verlet method.

Employ the time step sizes $h=0.001$ and $h=0.03$ and plot the shifted Hamiltonian $H(y, x)-0.8$ as well as the total oscillatory energy I and the energies of the three stiff springs $I_{j}, j=1,2,3$.

