
Summary: Chapter 3

• We onsider problems of the form

ẏ = f(y),
y(t0) = y0.

A non-onstant funtion I(y) is alled an invariant or �rst integral if

I ′(y)f(y) = 0 ∀ y.

From this de�nition, it follows I(y(t)) = I(y(t0)) = Const. along solutions of our problem.

Examples: The total energyH(p, q) of a Hamiltonian system, the total mass in a hemial

reation, et.

• All Runge-Kutta methods preserve linear invariants I(y) = dTy, where d is a onstant

vetor: I(yn) = I(y0) for all n ≥ 1.

A partitioned Runge-Kutta method for

ṗ = f(p, q)
q̇ = g(p, q)

preserves linear invariants I(p, q), if bi = b̂i or, if I(p, q) only depends on p or only depends

on q.

• For matrix equations

Ẏ = B(Y )Y
Y (0) = Y0

with B(Y ) skew-symmetri, we have that the funtion g(Y ) := Y TY is an invariant.

Example: Rigid body.

• Gauÿ (olloation) methods preserve quadrati invariants, i.e.

yTnCyn = yT0 Cy0 ∀ n,

where C is a symmetri matrix.

Runge-Kutta methods with oe�ients satisfying

biaij + bjaji = bibj ∀ i, j = 1, . . . , s

preserve quadrati invariants I(y) = yTCy, where C is a symmetri matrix.

We have seen similar results for partitioned Runge-Kutta methods.



• Polynomial invariants: For n ≥ 3, no Runge-Kutta method an preserve all polynomial

invariants of degree n.

• We onsider di�erential equations on manifolds: Let

M := {y ∈ R
n : g(y) = 0}

a (n − m)-manifold of R
n
with g : R

n → R
m
, g′(y) has full rank, and a di�erential

equation ẏ = f(y) suh that

y0 ∈ M =⇒ y(t) ∈ M.

We de�ne a projetion method as follows:

1. Let yn ∈ M.

2. We de�ne ỹn+1 := Φ̃h(yn), where Φ̃h is an arbitrary one-step numerial sheme.

3. To �nd yn+1, we just projet ỹn+1 onto the manifold M. At this step, one has to

solve a nonlinear system (with simpli�ed Newton for example).

The projetion method has the same order of onvergene as the sheme Φ̃h.

Warning: It is important to projet onto the orret manifold. If one is not aware of

all invariants of the system and only projets onto ertain invariants, the method ould

produe bad results.

Example: Numerial solutions given by the expliit Euler and sympleti Euler methods

for the perturbed Kepler problem with invariants H(p, q) = 1

2
(p21 + p22) − 1√

q2
1
+q2

2

and

L(p, q) = q1p2 − q2p1.
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Figure 1: Projetion methods for the perturbed Kepler problem.

We have also seen a symmetri version of this projetion sheme (with better longtime

properties).


