
Summary: Chapter 5

• A one-step numerical scheme yn+1 = Φh(yn) is called symplectic if Φh : R2d → R2d is a

symplectic map:

Φ′h(y)TJΦ′h(y) = J ∀ y,

with J =

(
0 Id
−Id 0

)
and where Φ′h(y) :=

∂Φh(y)

∂y
.

Example: Midpoint rule.

• If the coe�cients of a Runge-Kutta scheme satisfy

biaij + bjaji = bibj ∀ i, j = 1, . . . , s,

then the numerical scheme is symplectic.

Idea of the proof: We consider a Hamiltonian problem together with its variational

equation

Ψ̇ = J−1∇2H(y)Ψ, Ψ(0) = I.

We next observe that ΨTJΨ is a quadratic invariant for the above augmented system

and thus every Runge-Kutta schemes with the above condition preserve this invariant.

Example: Gauss collocation methods.

• If the coe�cients of a partitioned Runge-Kutta scheme satisfy

biâij + b̂jaji = bib̂j ∀ i, j = 1, . . . , s

bi = b̂i ∀ i = 1, . . . , s,

then the numerical scheme is symplectic.

Example: Symplectic Euler scheme; Störmer-Verlet method.

• We consider the following problem

y′(x) = f(y(x))
y(0) = y0.

Hypothesis. The numerical solution reads

Φh(y) = y + hf(y) + h2d2(y) + h3d3(y) + . . .

with given dj(y).

Example: Explicit Euler scheme: dj(y) = 0 ∀ j ≥ 2. B-series methods.



Ansatz. The modi�ed di�erential equation is de�ned as

ỹ′ = fh(ỹ) = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . .
ỹ(0) = y0.

We ask for the exact solution of the modi�ed di�erential equation to be equal to the

numerical solution:

ỹ(nh) = yn = Φh(yn−1), ∀n ≥ 1.

A Taylor expansion of the exact solution gives us the coe�cients of the modi�ed equation

fj(y) in terms of the coe�cients of the numerical scheme dj(y) and of f(y).

• Properties of the modi�ed di�erential equation:

If the numerical scheme has order p then one has:

ỹ′ = fh(ỹ) = f(ỹ) + hpfp+1(ỹ) + hp+1fp+2(ỹ) + . . .
ỹ(0) = y0,

where fp+1(ỹ) is the main coe�cient of the local error.

The coe�cients of the modi�ed di�erential equation for the adjoint scheme satisfy

f ∗j (y) = (−1)j+1fj(y).

The coe�cients of the modi�ed di�erential equation for a symmetric scheme satisfy

fj(y) = 0 for j even.

If the problem is Hamiltonian, y′ = J−1∇H(y), and the numerical scheme is symplectic,

then the modi�ed di�erential equation is also Hamiltonian:

fj(y) = J−1∇Hj(y) ∀ j ≥ 2.

• Error analysis:

Hypothesis. We assume that

‖f (k)(y)‖ ≤ k!MR−k for k = 0, 1, 2, . . .

and ‖y − y0‖ ≤ 2R in a given norm. Let us consider an s-stage Runge-Kutta scheme

with step size h and de�ne the following quantities: µ :=
s∑

i=1

|bi|, κ := max
i=1,...,s

s∑
j=1

aij,

η := 2 max(κ, µ/(2 ln(2)− 1)), N an integer such that Nh ≤ R

eηM
, γ := e(2 + 1.65η+ µ),

h∗ :=
R

4eηM
.

Then one has:

‖dj(y)‖ ≤ µM
(

2κM

R

)j−1
for j ≥ 2 and ‖y − y0‖ ≤ R.

‖fj(y)‖ ≤ ln(2)ηM
(
ηMj

R

)j−1
for j ≥ 2 and ‖y − y0‖ ≤ R/2.

‖Φh(y0)− ϕN,h(y0)‖ ≤ hγMe−h
∗/h,



where ϕN,h(y) is the �ow of the truncated modi�ed di�erential equation ỹ′ = FN(ỹ) :=
f(ỹ) + hf2(ỹ) + . . .+ hN−1fN(ỹ), ỹ(0) = y0.

For a Hamiltonian problem ẏ = J−1∇H(y) and a symplectic numerical integrator of

order p, one �nally obtains

H̃(yn) = H̃(y0) +O(e−h
∗/(2h)) for nh ≤ T

H(yn) = H(y0) +O(hp) for nh ≤ T

for exponential long-time T = eh
∗/(2h).


