
Summary: Chapter 6

• In this hapter, we onsider highly osillatory di�erential equations of the form

ẍ + Ω2x = g(x) := −∇U(x)

x(0) = x̃0, ẋ(0) = ˙̃x0,
(1)

where Ω =
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with ω ≫ 1. We partition the vetor x = (x0, x1) aording to the

bloks of the matrix Ω. Moreover, we assume that the initial values are bounded
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where the onstant E does not depend on ω. We also assume that the potential is smooth,

i.e. with derivatives bounded independently of ω.

This problem is Hamiltonian with Hamiltonian funtion given by
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and has another quantity of interest, the osillatory energy
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Below, we will show that this quantity is almost preserved for very long time intervals

along the exat solution of (1).

Example: Modi�ed Fermi-Pasta-Ulam problem.

• A proper numerial treatment of the above problem is done by the trigonometri methods

xn+1 = cos(hΩ)xn + Ω−1 sin(hΩ)ẋn +
1
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ẋn+1 = −Ω sin(hΩ)xn + cos(hΩ)ẋn +
1

2
h
(

Ψ0gn +Ψ1gn+1

)

,

where gn := g(Φxn) and Φ = Φ(hΩ),Ψ = Ψ(hΩ),Ψ0 = Ψ0(hΩ),Ψ1 = Ψ1(hΩ) are alled
�lter funtions, see the yellow book for preise assumptions and examples. One thus

obtain a numerial approximation xn ≈ x(nh) of the exat solution of (1).

These numerial methods redue to the Störmer-Verlet method if Ω = 0; are exat if

g(x) = 0; are expliit; work well for large step sizes hω ≥ c1 > 0; and almost preserve

the energy H(x, ẋ) and the osillatory energy I(x, ẋ) for very long times, see below.



• The main ingredient to prove the near-preservation of the osillatory energy along the

exat solution of (1) is the modulated Fourier expansion. This onsists in writing the

exat solution as

x(t) = y(t) +
∑

|k|<N

e

ikωtzk(t) +RN (t), 0 ≤ t ≤ T,

with smooth funtions y(t), zk(t) and with a very small defetRN (t) = O(ω−N). Analysing
the system that determines the modulated oe�ients y(t) and zk(t), one �nds two for-

mal invariants that are lose to the original energy H(x, ẋ) and osillatory energy I(x, ẋ).
This is then used to prove the near-onservation of the osillatory energy for the exat

solution:

I(x(t), ẋ(t)) = I(x̃0, ˙̃x0) +O(ω−1) +O(tω−N), 0 ≤ t ≤ ωN .

• To explain the good long-time behaviour of the numerial solution by the trigonometri

methods, we proeed as for the exat solution and write the numerial solution as a

modulated Fourier expansion. Following the same program as above and using additional

assumptions, one an show that

H(xn, ẋn) = H(x̃0, ˙̃x0) +O(h)

I(xn, ẋn) = I(x̃0, ˙̃x0) +O(h)

along the numerial solution given by the trigonometri methods for 0 ≤ nh ≤ h−N+1
.


